1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 #include <linux/irq_work.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/io.h> 48 #include <asm/hwrpb.h> 49 #include <asm/8253pit.h> 50 #include <asm/rtc.h> 51 52 #include <linux/mc146818rtc.h> 53 #include <linux/time.h> 54 #include <linux/timex.h> 55 #include <linux/clocksource.h> 56 57 #include "proto.h" 58 #include "irq_impl.h" 59 60 static int set_rtc_mmss(unsigned long); 61 62 DEFINE_SPINLOCK(rtc_lock); 63 EXPORT_SYMBOL(rtc_lock); 64 65 #define TICK_SIZE (tick_nsec / 1000) 66 67 /* 68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 70 * for large CPU clock rates. 71 */ 72 #define FIX_SHIFT 48 73 74 /* lump static variables together for more efficient access: */ 75 static struct { 76 /* cycle counter last time it got invoked */ 77 __u32 last_time; 78 /* ticks/cycle * 2^48 */ 79 unsigned long scaled_ticks_per_cycle; 80 /* partial unused tick */ 81 unsigned long partial_tick; 82 } state; 83 84 unsigned long est_cycle_freq; 85 86 #ifdef CONFIG_IRQ_WORK 87 88 DEFINE_PER_CPU(u8, irq_work_pending); 89 90 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 91 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 92 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 93 94 void set_irq_work_pending(void) 95 { 96 set_irq_work_pending_flag(); 97 } 98 99 #else /* CONFIG_IRQ_WORK */ 100 101 #define test_irq_work_pending() 0 102 #define clear_irq_work_pending() 103 104 #endif /* CONFIG_IRQ_WORK */ 105 106 107 static inline __u32 rpcc(void) 108 { 109 __u32 result; 110 asm volatile ("rpcc %0" : "=r"(result)); 111 return result; 112 } 113 114 int update_persistent_clock(struct timespec now) 115 { 116 return set_rtc_mmss(now.tv_sec); 117 } 118 119 void read_persistent_clock(struct timespec *ts) 120 { 121 unsigned int year, mon, day, hour, min, sec, epoch; 122 123 sec = CMOS_READ(RTC_SECONDS); 124 min = CMOS_READ(RTC_MINUTES); 125 hour = CMOS_READ(RTC_HOURS); 126 day = CMOS_READ(RTC_DAY_OF_MONTH); 127 mon = CMOS_READ(RTC_MONTH); 128 year = CMOS_READ(RTC_YEAR); 129 130 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 131 sec = bcd2bin(sec); 132 min = bcd2bin(min); 133 hour = bcd2bin(hour); 134 day = bcd2bin(day); 135 mon = bcd2bin(mon); 136 year = bcd2bin(year); 137 } 138 139 /* PC-like is standard; used for year >= 70 */ 140 epoch = 1900; 141 if (year < 20) 142 epoch = 2000; 143 else if (year >= 20 && year < 48) 144 /* NT epoch */ 145 epoch = 1980; 146 else if (year >= 48 && year < 70) 147 /* Digital UNIX epoch */ 148 epoch = 1952; 149 150 printk(KERN_INFO "Using epoch = %d\n", epoch); 151 152 if ((year += epoch) < 1970) 153 year += 100; 154 155 ts->tv_sec = mktime(year, mon, day, hour, min, sec); 156 } 157 158 159 160 /* 161 * timer_interrupt() needs to keep up the real-time clock, 162 * as well as call the "do_timer()" routine every clocktick 163 */ 164 irqreturn_t timer_interrupt(int irq, void *dev) 165 { 166 unsigned long delta; 167 __u32 now; 168 long nticks; 169 170 #ifndef CONFIG_SMP 171 /* Not SMP, do kernel PC profiling here. */ 172 profile_tick(CPU_PROFILING); 173 #endif 174 175 write_seqlock(&xtime_lock); 176 177 /* 178 * Calculate how many ticks have passed since the last update, 179 * including any previous partial leftover. Save any resulting 180 * fraction for the next pass. 181 */ 182 now = rpcc(); 183 delta = now - state.last_time; 184 state.last_time = now; 185 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 186 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 187 nticks = delta >> FIX_SHIFT; 188 189 if (nticks) 190 do_timer(nticks); 191 192 write_sequnlock(&xtime_lock); 193 194 if (test_irq_work_pending()) { 195 clear_irq_work_pending(); 196 irq_work_run(); 197 } 198 199 #ifndef CONFIG_SMP 200 while (nticks--) 201 update_process_times(user_mode(get_irq_regs())); 202 #endif 203 204 return IRQ_HANDLED; 205 } 206 207 void __init 208 common_init_rtc(void) 209 { 210 unsigned char x; 211 212 /* Reset periodic interrupt frequency. */ 213 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 214 /* Test includes known working values on various platforms 215 where 0x26 is wrong; we refuse to change those. */ 216 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 217 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 218 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 219 } 220 221 /* Turn on periodic interrupts. */ 222 x = CMOS_READ(RTC_CONTROL); 223 if (!(x & RTC_PIE)) { 224 printk("Turning on RTC interrupts.\n"); 225 x |= RTC_PIE; 226 x &= ~(RTC_AIE | RTC_UIE); 227 CMOS_WRITE(x, RTC_CONTROL); 228 } 229 (void) CMOS_READ(RTC_INTR_FLAGS); 230 231 outb(0x36, 0x43); /* pit counter 0: system timer */ 232 outb(0x00, 0x40); 233 outb(0x00, 0x40); 234 235 outb(0xb6, 0x43); /* pit counter 2: speaker */ 236 outb(0x31, 0x42); 237 outb(0x13, 0x42); 238 239 init_rtc_irq(); 240 } 241 242 unsigned int common_get_rtc_time(struct rtc_time *time) 243 { 244 return __get_rtc_time(time); 245 } 246 247 int common_set_rtc_time(struct rtc_time *time) 248 { 249 return __set_rtc_time(time); 250 } 251 252 /* Validate a computed cycle counter result against the known bounds for 253 the given processor core. There's too much brokenness in the way of 254 timing hardware for any one method to work everywhere. :-( 255 256 Return 0 if the result cannot be trusted, otherwise return the argument. */ 257 258 static unsigned long __init 259 validate_cc_value(unsigned long cc) 260 { 261 static struct bounds { 262 unsigned int min, max; 263 } cpu_hz[] __initdata = { 264 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 265 [EV4_CPU] = { 100000000, 300000000 }, 266 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 267 [EV45_CPU] = { 200000000, 300000000 }, 268 [EV5_CPU] = { 250000000, 433000000 }, 269 [EV56_CPU] = { 333000000, 667000000 }, 270 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 271 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 272 [EV6_CPU] = { 466000000, 600000000 }, 273 [EV67_CPU] = { 600000000, 750000000 }, 274 [EV68AL_CPU] = { 750000000, 940000000 }, 275 [EV68CB_CPU] = { 1000000000, 1333333333 }, 276 /* None of the following are shipping as of 2001-11-01. */ 277 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 278 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 279 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 280 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 281 }; 282 283 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 284 const unsigned int deviation = 10000000; 285 286 struct percpu_struct *cpu; 287 unsigned int index; 288 289 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 290 index = cpu->type & 0xffffffff; 291 292 /* If index out of bounds, no way to validate. */ 293 if (index >= ARRAY_SIZE(cpu_hz)) 294 return cc; 295 296 /* If index contains no data, no way to validate. */ 297 if (cpu_hz[index].max == 0) 298 return cc; 299 300 if (cc < cpu_hz[index].min - deviation 301 || cc > cpu_hz[index].max + deviation) 302 return 0; 303 304 return cc; 305 } 306 307 308 /* 309 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 310 * arch/i386/time.c. 311 */ 312 313 #define CALIBRATE_LATCH 0xffff 314 #define TIMEOUT_COUNT 0x100000 315 316 static unsigned long __init 317 calibrate_cc_with_pit(void) 318 { 319 int cc, count = 0; 320 321 /* Set the Gate high, disable speaker */ 322 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 323 324 /* 325 * Now let's take care of CTC channel 2 326 * 327 * Set the Gate high, program CTC channel 2 for mode 0, 328 * (interrupt on terminal count mode), binary count, 329 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 330 */ 331 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 332 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 333 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 334 335 cc = rpcc(); 336 do { 337 count++; 338 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 339 cc = rpcc() - cc; 340 341 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 342 if (count <= 1 || count == TIMEOUT_COUNT) 343 return 0; 344 345 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 346 } 347 348 /* The Linux interpretation of the CMOS clock register contents: 349 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 350 RTC registers show the second which has precisely just started. 351 Let's hope other operating systems interpret the RTC the same way. */ 352 353 static unsigned long __init 354 rpcc_after_update_in_progress(void) 355 { 356 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 357 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 358 359 return rpcc(); 360 } 361 362 #ifndef CONFIG_SMP 363 /* Until and unless we figure out how to get cpu cycle counters 364 in sync and keep them there, we can't use the rpcc. */ 365 static cycle_t read_rpcc(struct clocksource *cs) 366 { 367 cycle_t ret = (cycle_t)rpcc(); 368 return ret; 369 } 370 371 static struct clocksource clocksource_rpcc = { 372 .name = "rpcc", 373 .rating = 300, 374 .read = read_rpcc, 375 .mask = CLOCKSOURCE_MASK(32), 376 .flags = CLOCK_SOURCE_IS_CONTINUOUS 377 }; 378 379 static inline void register_rpcc_clocksource(long cycle_freq) 380 { 381 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4); 382 clocksource_register(&clocksource_rpcc); 383 } 384 #else /* !CONFIG_SMP */ 385 static inline void register_rpcc_clocksource(long cycle_freq) 386 { 387 } 388 #endif /* !CONFIG_SMP */ 389 390 void __init 391 time_init(void) 392 { 393 unsigned int cc1, cc2; 394 unsigned long cycle_freq, tolerance; 395 long diff; 396 397 /* Calibrate CPU clock -- attempt #1. */ 398 if (!est_cycle_freq) 399 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 400 401 cc1 = rpcc(); 402 403 /* Calibrate CPU clock -- attempt #2. */ 404 if (!est_cycle_freq) { 405 cc1 = rpcc_after_update_in_progress(); 406 cc2 = rpcc_after_update_in_progress(); 407 est_cycle_freq = validate_cc_value(cc2 - cc1); 408 cc1 = cc2; 409 } 410 411 cycle_freq = hwrpb->cycle_freq; 412 if (est_cycle_freq) { 413 /* If the given value is within 250 PPM of what we calculated, 414 accept it. Otherwise, use what we found. */ 415 tolerance = cycle_freq / 4000; 416 diff = cycle_freq - est_cycle_freq; 417 if (diff < 0) 418 diff = -diff; 419 if ((unsigned long)diff > tolerance) { 420 cycle_freq = est_cycle_freq; 421 printk("HWRPB cycle frequency bogus. " 422 "Estimated %lu Hz\n", cycle_freq); 423 } else { 424 est_cycle_freq = 0; 425 } 426 } else if (! validate_cc_value (cycle_freq)) { 427 printk("HWRPB cycle frequency bogus, " 428 "and unable to estimate a proper value!\n"); 429 } 430 431 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 432 to settle, as the Update-In-Progress bit going low isn't good 433 enough on some hardware. 2ms is our guess; we haven't found 434 bogomips yet, but this is close on a 500Mhz box. */ 435 __delay(1000000); 436 437 438 if (HZ > (1<<16)) { 439 extern void __you_loose (void); 440 __you_loose(); 441 } 442 443 register_rpcc_clocksource(cycle_freq); 444 445 state.last_time = cc1; 446 state.scaled_ticks_per_cycle 447 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 448 state.partial_tick = 0L; 449 450 /* Startup the timer source. */ 451 alpha_mv.init_rtc(); 452 } 453 454 /* 455 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 456 * called 500 ms after the second nowtime has started, because when 457 * nowtime is written into the registers of the CMOS clock, it will 458 * jump to the next second precisely 500 ms later. Check the Motorola 459 * MC146818A or Dallas DS12887 data sheet for details. 460 * 461 * BUG: This routine does not handle hour overflow properly; it just 462 * sets the minutes. Usually you won't notice until after reboot! 463 */ 464 465 466 static int 467 set_rtc_mmss(unsigned long nowtime) 468 { 469 int retval = 0; 470 int real_seconds, real_minutes, cmos_minutes; 471 unsigned char save_control, save_freq_select; 472 473 /* irq are locally disabled here */ 474 spin_lock(&rtc_lock); 475 /* Tell the clock it's being set */ 476 save_control = CMOS_READ(RTC_CONTROL); 477 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 478 479 /* Stop and reset prescaler */ 480 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 481 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 482 483 cmos_minutes = CMOS_READ(RTC_MINUTES); 484 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 485 cmos_minutes = bcd2bin(cmos_minutes); 486 487 /* 488 * since we're only adjusting minutes and seconds, 489 * don't interfere with hour overflow. This avoids 490 * messing with unknown time zones but requires your 491 * RTC not to be off by more than 15 minutes 492 */ 493 real_seconds = nowtime % 60; 494 real_minutes = nowtime / 60; 495 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 496 /* correct for half hour time zone */ 497 real_minutes += 30; 498 } 499 real_minutes %= 60; 500 501 if (abs(real_minutes - cmos_minutes) < 30) { 502 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 503 real_seconds = bin2bcd(real_seconds); 504 real_minutes = bin2bcd(real_minutes); 505 } 506 CMOS_WRITE(real_seconds,RTC_SECONDS); 507 CMOS_WRITE(real_minutes,RTC_MINUTES); 508 } else { 509 printk_once(KERN_NOTICE 510 "set_rtc_mmss: can't update from %d to %d\n", 511 cmos_minutes, real_minutes); 512 retval = -1; 513 } 514 515 /* The following flags have to be released exactly in this order, 516 * otherwise the DS12887 (popular MC146818A clone with integrated 517 * battery and quartz) will not reset the oscillator and will not 518 * update precisely 500 ms later. You won't find this mentioned in 519 * the Dallas Semiconductor data sheets, but who believes data 520 * sheets anyway ... -- Markus Kuhn 521 */ 522 CMOS_WRITE(save_control, RTC_CONTROL); 523 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 524 spin_unlock(&rtc_lock); 525 526 return retval; 527 } 528