1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/alpha/kernel/time.c 4 * 5 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 6 * 7 * This file contains the clocksource time handling. 8 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 9 * "A Kernel Model for Precision Timekeeping" by Dave Mills 10 * 1997-01-09 Adrian Sun 11 * use interval timer if CONFIG_RTC=y 12 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 13 * fixed tick loss calculation in timer_interrupt 14 * (round system clock to nearest tick instead of truncating) 15 * fixed algorithm in time_init for getting time from CMOS clock 16 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 17 * fixed algorithm in do_gettimeofday() for calculating the precise time 18 * from processor cycle counter (now taking lost_ticks into account) 19 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 20 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 21 */ 22 #include <linux/errno.h> 23 #include <linux/module.h> 24 #include <linux/sched.h> 25 #include <linux/kernel.h> 26 #include <linux/param.h> 27 #include <linux/string.h> 28 #include <linux/mm.h> 29 #include <linux/delay.h> 30 #include <linux/ioport.h> 31 #include <linux/irq.h> 32 #include <linux/interrupt.h> 33 #include <linux/init.h> 34 #include <linux/bcd.h> 35 #include <linux/profile.h> 36 #include <linux/irq_work.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/hwrpb.h> 41 42 #include <linux/mc146818rtc.h> 43 #include <linux/time.h> 44 #include <linux/timex.h> 45 #include <linux/clocksource.h> 46 #include <linux/clockchips.h> 47 48 #include "proto.h" 49 #include "irq_impl.h" 50 51 DEFINE_SPINLOCK(rtc_lock); 52 EXPORT_SYMBOL(rtc_lock); 53 54 unsigned long est_cycle_freq; 55 56 #ifdef CONFIG_IRQ_WORK 57 58 DEFINE_PER_CPU(u8, irq_work_pending); 59 60 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 61 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 62 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 63 64 void arch_irq_work_raise(void) 65 { 66 set_irq_work_pending_flag(); 67 } 68 69 #else /* CONFIG_IRQ_WORK */ 70 71 #define test_irq_work_pending() 0 72 #define clear_irq_work_pending() 73 74 #endif /* CONFIG_IRQ_WORK */ 75 76 77 static inline __u32 rpcc(void) 78 { 79 return __builtin_alpha_rpcc(); 80 } 81 82 83 84 /* 85 * The RTC as a clock_event_device primitive. 86 */ 87 88 static DEFINE_PER_CPU(struct clock_event_device, cpu_ce); 89 90 irqreturn_t 91 rtc_timer_interrupt(int irq, void *dev) 92 { 93 int cpu = smp_processor_id(); 94 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 95 96 /* Don't run the hook for UNUSED or SHUTDOWN. */ 97 if (likely(clockevent_state_periodic(ce))) 98 ce->event_handler(ce); 99 100 if (test_irq_work_pending()) { 101 clear_irq_work_pending(); 102 irq_work_run(); 103 } 104 105 return IRQ_HANDLED; 106 } 107 108 static int 109 rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) 110 { 111 /* This hook is for oneshot mode, which we don't support. */ 112 return -EINVAL; 113 } 114 115 static void __init 116 init_rtc_clockevent(void) 117 { 118 int cpu = smp_processor_id(); 119 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 120 121 *ce = (struct clock_event_device){ 122 .name = "rtc", 123 .features = CLOCK_EVT_FEAT_PERIODIC, 124 .rating = 100, 125 .cpumask = cpumask_of(cpu), 126 .set_next_event = rtc_ce_set_next_event, 127 }; 128 129 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0); 130 } 131 132 133 /* 134 * The QEMU clock as a clocksource primitive. 135 */ 136 137 static u64 138 qemu_cs_read(struct clocksource *cs) 139 { 140 return qemu_get_vmtime(); 141 } 142 143 static struct clocksource qemu_cs = { 144 .name = "qemu", 145 .rating = 400, 146 .read = qemu_cs_read, 147 .mask = CLOCKSOURCE_MASK(64), 148 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 149 .max_idle_ns = LONG_MAX 150 }; 151 152 153 /* 154 * The QEMU alarm as a clock_event_device primitive. 155 */ 156 157 static int qemu_ce_shutdown(struct clock_event_device *ce) 158 { 159 /* The mode member of CE is updated for us in generic code. 160 Just make sure that the event is disabled. */ 161 qemu_set_alarm_abs(0); 162 return 0; 163 } 164 165 static int 166 qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) 167 { 168 qemu_set_alarm_rel(evt); 169 return 0; 170 } 171 172 static irqreturn_t 173 qemu_timer_interrupt(int irq, void *dev) 174 { 175 int cpu = smp_processor_id(); 176 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 177 178 ce->event_handler(ce); 179 return IRQ_HANDLED; 180 } 181 182 static void __init 183 init_qemu_clockevent(void) 184 { 185 int cpu = smp_processor_id(); 186 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 187 188 *ce = (struct clock_event_device){ 189 .name = "qemu", 190 .features = CLOCK_EVT_FEAT_ONESHOT, 191 .rating = 400, 192 .cpumask = cpumask_of(cpu), 193 .set_state_shutdown = qemu_ce_shutdown, 194 .set_state_oneshot = qemu_ce_shutdown, 195 .tick_resume = qemu_ce_shutdown, 196 .set_next_event = qemu_ce_set_next_event, 197 }; 198 199 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX); 200 } 201 202 203 void __init 204 common_init_rtc(void) 205 { 206 unsigned char x, sel = 0; 207 208 /* Reset periodic interrupt frequency. */ 209 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200 210 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 211 /* Test includes known working values on various platforms 212 where 0x26 is wrong; we refuse to change those. */ 213 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 214 sel = RTC_REF_CLCK_32KHZ + 6; 215 } 216 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32 217 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ); 218 #else 219 # error "Unknown HZ from arch/alpha/Kconfig" 220 #endif 221 if (sel) { 222 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n", 223 CONFIG_HZ, sel); 224 CMOS_WRITE(sel, RTC_FREQ_SELECT); 225 } 226 227 /* Turn on periodic interrupts. */ 228 x = CMOS_READ(RTC_CONTROL); 229 if (!(x & RTC_PIE)) { 230 printk("Turning on RTC interrupts.\n"); 231 x |= RTC_PIE; 232 x &= ~(RTC_AIE | RTC_UIE); 233 CMOS_WRITE(x, RTC_CONTROL); 234 } 235 (void) CMOS_READ(RTC_INTR_FLAGS); 236 237 outb(0x36, 0x43); /* pit counter 0: system timer */ 238 outb(0x00, 0x40); 239 outb(0x00, 0x40); 240 241 outb(0xb6, 0x43); /* pit counter 2: speaker */ 242 outb(0x31, 0x42); 243 outb(0x13, 0x42); 244 245 init_rtc_irq(NULL); 246 } 247 248 249 #ifndef CONFIG_ALPHA_WTINT 250 /* 251 * The RPCC as a clocksource primitive. 252 * 253 * While we have free-running timecounters running on all CPUs, and we make 254 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter 255 * with the wall clock, that initialization isn't kept up-to-date across 256 * different time counters in SMP mode. Therefore we can only use this 257 * method when there's only one CPU enabled. 258 * 259 * When using the WTINT PALcall, the RPCC may shift to a lower frequency, 260 * or stop altogether, while waiting for the interrupt. Therefore we cannot 261 * use this method when WTINT is in use. 262 */ 263 264 static u64 read_rpcc(struct clocksource *cs) 265 { 266 return rpcc(); 267 } 268 269 static struct clocksource clocksource_rpcc = { 270 .name = "rpcc", 271 .rating = 300, 272 .read = read_rpcc, 273 .mask = CLOCKSOURCE_MASK(32), 274 .flags = CLOCK_SOURCE_IS_CONTINUOUS 275 }; 276 #endif /* ALPHA_WTINT */ 277 278 279 /* Validate a computed cycle counter result against the known bounds for 280 the given processor core. There's too much brokenness in the way of 281 timing hardware for any one method to work everywhere. :-( 282 283 Return 0 if the result cannot be trusted, otherwise return the argument. */ 284 285 static unsigned long __init 286 validate_cc_value(unsigned long cc) 287 { 288 static struct bounds { 289 unsigned int min, max; 290 } cpu_hz[] __initdata = { 291 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 292 [EV4_CPU] = { 100000000, 300000000 }, 293 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 294 [EV45_CPU] = { 200000000, 300000000 }, 295 [EV5_CPU] = { 250000000, 433000000 }, 296 [EV56_CPU] = { 333000000, 667000000 }, 297 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 298 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 299 [EV6_CPU] = { 466000000, 600000000 }, 300 [EV67_CPU] = { 600000000, 750000000 }, 301 [EV68AL_CPU] = { 750000000, 940000000 }, 302 [EV68CB_CPU] = { 1000000000, 1333333333 }, 303 /* None of the following are shipping as of 2001-11-01. */ 304 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 305 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 306 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 307 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 308 }; 309 310 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 311 const unsigned int deviation = 10000000; 312 313 struct percpu_struct *cpu; 314 unsigned int index; 315 316 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 317 index = cpu->type & 0xffffffff; 318 319 /* If index out of bounds, no way to validate. */ 320 if (index >= ARRAY_SIZE(cpu_hz)) 321 return cc; 322 323 /* If index contains no data, no way to validate. */ 324 if (cpu_hz[index].max == 0) 325 return cc; 326 327 if (cc < cpu_hz[index].min - deviation 328 || cc > cpu_hz[index].max + deviation) 329 return 0; 330 331 return cc; 332 } 333 334 335 /* 336 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 337 * arch/i386/time.c. 338 */ 339 340 #define CALIBRATE_LATCH 0xffff 341 #define TIMEOUT_COUNT 0x100000 342 343 static unsigned long __init 344 calibrate_cc_with_pit(void) 345 { 346 int cc, count = 0; 347 348 /* Set the Gate high, disable speaker */ 349 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 350 351 /* 352 * Now let's take care of CTC channel 2 353 * 354 * Set the Gate high, program CTC channel 2 for mode 0, 355 * (interrupt on terminal count mode), binary count, 356 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 357 */ 358 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 359 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 360 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 361 362 cc = rpcc(); 363 do { 364 count++; 365 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 366 cc = rpcc() - cc; 367 368 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 369 if (count <= 1 || count == TIMEOUT_COUNT) 370 return 0; 371 372 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 373 } 374 375 /* The Linux interpretation of the CMOS clock register contents: 376 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 377 RTC registers show the second which has precisely just started. 378 Let's hope other operating systems interpret the RTC the same way. */ 379 380 static unsigned long __init 381 rpcc_after_update_in_progress(void) 382 { 383 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 384 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 385 386 return rpcc(); 387 } 388 389 void __init 390 time_init(void) 391 { 392 unsigned int cc1, cc2; 393 unsigned long cycle_freq, tolerance; 394 long diff; 395 396 if (alpha_using_qemu) { 397 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC); 398 init_qemu_clockevent(); 399 init_rtc_irq(qemu_timer_interrupt); 400 return; 401 } 402 403 /* Calibrate CPU clock -- attempt #1. */ 404 if (!est_cycle_freq) 405 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 406 407 cc1 = rpcc(); 408 409 /* Calibrate CPU clock -- attempt #2. */ 410 if (!est_cycle_freq) { 411 cc1 = rpcc_after_update_in_progress(); 412 cc2 = rpcc_after_update_in_progress(); 413 est_cycle_freq = validate_cc_value(cc2 - cc1); 414 cc1 = cc2; 415 } 416 417 cycle_freq = hwrpb->cycle_freq; 418 if (est_cycle_freq) { 419 /* If the given value is within 250 PPM of what we calculated, 420 accept it. Otherwise, use what we found. */ 421 tolerance = cycle_freq / 4000; 422 diff = cycle_freq - est_cycle_freq; 423 if (diff < 0) 424 diff = -diff; 425 if ((unsigned long)diff > tolerance) { 426 cycle_freq = est_cycle_freq; 427 printk("HWRPB cycle frequency bogus. " 428 "Estimated %lu Hz\n", cycle_freq); 429 } else { 430 est_cycle_freq = 0; 431 } 432 } else if (! validate_cc_value (cycle_freq)) { 433 printk("HWRPB cycle frequency bogus, " 434 "and unable to estimate a proper value!\n"); 435 } 436 437 /* See above for restrictions on using clocksource_rpcc. */ 438 #ifndef CONFIG_ALPHA_WTINT 439 if (hwrpb->nr_processors == 1) 440 clocksource_register_hz(&clocksource_rpcc, cycle_freq); 441 #endif 442 443 /* Startup the timer source. */ 444 alpha_mv.init_rtc(); 445 init_rtc_clockevent(); 446 } 447 448 /* Initialize the clock_event_device for secondary cpus. */ 449 #ifdef CONFIG_SMP 450 void __init 451 init_clockevent(void) 452 { 453 if (alpha_using_qemu) 454 init_qemu_clockevent(); 455 else 456 init_rtc_clockevent(); 457 } 458 #endif 459