1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/io.h> 47 #include <asm/hwrpb.h> 48 #include <asm/8253pit.h> 49 #include <asm/rtc.h> 50 51 #include <linux/mc146818rtc.h> 52 #include <linux/time.h> 53 #include <linux/timex.h> 54 55 #include "proto.h" 56 #include "irq_impl.h" 57 58 static int set_rtc_mmss(unsigned long); 59 60 DEFINE_SPINLOCK(rtc_lock); 61 EXPORT_SYMBOL(rtc_lock); 62 63 #define TICK_SIZE (tick_nsec / 1000) 64 65 /* 66 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 67 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 68 * for large CPU clock rates. 69 */ 70 #define FIX_SHIFT 48 71 72 /* lump static variables together for more efficient access: */ 73 static struct { 74 /* cycle counter last time it got invoked */ 75 __u32 last_time; 76 /* ticks/cycle * 2^48 */ 77 unsigned long scaled_ticks_per_cycle; 78 /* last time the CMOS clock got updated */ 79 time_t last_rtc_update; 80 /* partial unused tick */ 81 unsigned long partial_tick; 82 } state; 83 84 unsigned long est_cycle_freq; 85 86 87 static inline __u32 rpcc(void) 88 { 89 __u32 result; 90 asm volatile ("rpcc %0" : "=r"(result)); 91 return result; 92 } 93 94 /* 95 * timer_interrupt() needs to keep up the real-time clock, 96 * as well as call the "do_timer()" routine every clocktick 97 */ 98 irqreturn_t timer_interrupt(int irq, void *dev) 99 { 100 unsigned long delta; 101 __u32 now; 102 long nticks; 103 104 #ifndef CONFIG_SMP 105 /* Not SMP, do kernel PC profiling here. */ 106 profile_tick(CPU_PROFILING); 107 #endif 108 109 write_seqlock(&xtime_lock); 110 111 /* 112 * Calculate how many ticks have passed since the last update, 113 * including any previous partial leftover. Save any resulting 114 * fraction for the next pass. 115 */ 116 now = rpcc(); 117 delta = now - state.last_time; 118 state.last_time = now; 119 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 120 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 121 nticks = delta >> FIX_SHIFT; 122 123 if (nticks) 124 do_timer(nticks); 125 126 /* 127 * If we have an externally synchronized Linux clock, then update 128 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be 129 * called as close as possible to 500 ms before the new second starts. 130 */ 131 if (ntp_synced() 132 && xtime.tv_sec > state.last_rtc_update + 660 133 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 134 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { 135 int tmp = set_rtc_mmss(xtime.tv_sec); 136 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); 137 } 138 139 write_sequnlock(&xtime_lock); 140 141 #ifndef CONFIG_SMP 142 while (nticks--) 143 update_process_times(user_mode(get_irq_regs())); 144 #endif 145 146 return IRQ_HANDLED; 147 } 148 149 void __init 150 common_init_rtc(void) 151 { 152 unsigned char x; 153 154 /* Reset periodic interrupt frequency. */ 155 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 156 /* Test includes known working values on various platforms 157 where 0x26 is wrong; we refuse to change those. */ 158 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 159 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 160 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 161 } 162 163 /* Turn on periodic interrupts. */ 164 x = CMOS_READ(RTC_CONTROL); 165 if (!(x & RTC_PIE)) { 166 printk("Turning on RTC interrupts.\n"); 167 x |= RTC_PIE; 168 x &= ~(RTC_AIE | RTC_UIE); 169 CMOS_WRITE(x, RTC_CONTROL); 170 } 171 (void) CMOS_READ(RTC_INTR_FLAGS); 172 173 outb(0x36, 0x43); /* pit counter 0: system timer */ 174 outb(0x00, 0x40); 175 outb(0x00, 0x40); 176 177 outb(0xb6, 0x43); /* pit counter 2: speaker */ 178 outb(0x31, 0x42); 179 outb(0x13, 0x42); 180 181 init_rtc_irq(); 182 } 183 184 unsigned int common_get_rtc_time(struct rtc_time *time) 185 { 186 return __get_rtc_time(time); 187 } 188 189 int common_set_rtc_time(struct rtc_time *time) 190 { 191 return __set_rtc_time(time); 192 } 193 194 /* Validate a computed cycle counter result against the known bounds for 195 the given processor core. There's too much brokenness in the way of 196 timing hardware for any one method to work everywhere. :-( 197 198 Return 0 if the result cannot be trusted, otherwise return the argument. */ 199 200 static unsigned long __init 201 validate_cc_value(unsigned long cc) 202 { 203 static struct bounds { 204 unsigned int min, max; 205 } cpu_hz[] __initdata = { 206 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 207 [EV4_CPU] = { 100000000, 300000000 }, 208 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 209 [EV45_CPU] = { 200000000, 300000000 }, 210 [EV5_CPU] = { 250000000, 433000000 }, 211 [EV56_CPU] = { 333000000, 667000000 }, 212 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 213 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 214 [EV6_CPU] = { 466000000, 600000000 }, 215 [EV67_CPU] = { 600000000, 750000000 }, 216 [EV68AL_CPU] = { 750000000, 940000000 }, 217 [EV68CB_CPU] = { 1000000000, 1333333333 }, 218 /* None of the following are shipping as of 2001-11-01. */ 219 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 220 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 221 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 222 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 223 }; 224 225 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 226 const unsigned int deviation = 10000000; 227 228 struct percpu_struct *cpu; 229 unsigned int index; 230 231 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 232 index = cpu->type & 0xffffffff; 233 234 /* If index out of bounds, no way to validate. */ 235 if (index >= ARRAY_SIZE(cpu_hz)) 236 return cc; 237 238 /* If index contains no data, no way to validate. */ 239 if (cpu_hz[index].max == 0) 240 return cc; 241 242 if (cc < cpu_hz[index].min - deviation 243 || cc > cpu_hz[index].max + deviation) 244 return 0; 245 246 return cc; 247 } 248 249 250 /* 251 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 252 * arch/i386/time.c. 253 */ 254 255 #define CALIBRATE_LATCH 0xffff 256 #define TIMEOUT_COUNT 0x100000 257 258 static unsigned long __init 259 calibrate_cc_with_pit(void) 260 { 261 int cc, count = 0; 262 263 /* Set the Gate high, disable speaker */ 264 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 265 266 /* 267 * Now let's take care of CTC channel 2 268 * 269 * Set the Gate high, program CTC channel 2 for mode 0, 270 * (interrupt on terminal count mode), binary count, 271 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 272 */ 273 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 274 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 275 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 276 277 cc = rpcc(); 278 do { 279 count++; 280 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 281 cc = rpcc() - cc; 282 283 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 284 if (count <= 1 || count == TIMEOUT_COUNT) 285 return 0; 286 287 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 288 } 289 290 /* The Linux interpretation of the CMOS clock register contents: 291 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 292 RTC registers show the second which has precisely just started. 293 Let's hope other operating systems interpret the RTC the same way. */ 294 295 static unsigned long __init 296 rpcc_after_update_in_progress(void) 297 { 298 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 299 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 300 301 return rpcc(); 302 } 303 304 void __init 305 time_init(void) 306 { 307 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; 308 unsigned long cycle_freq, tolerance; 309 long diff; 310 311 /* Calibrate CPU clock -- attempt #1. */ 312 if (!est_cycle_freq) 313 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 314 315 cc1 = rpcc(); 316 317 /* Calibrate CPU clock -- attempt #2. */ 318 if (!est_cycle_freq) { 319 cc1 = rpcc_after_update_in_progress(); 320 cc2 = rpcc_after_update_in_progress(); 321 est_cycle_freq = validate_cc_value(cc2 - cc1); 322 cc1 = cc2; 323 } 324 325 cycle_freq = hwrpb->cycle_freq; 326 if (est_cycle_freq) { 327 /* If the given value is within 250 PPM of what we calculated, 328 accept it. Otherwise, use what we found. */ 329 tolerance = cycle_freq / 4000; 330 diff = cycle_freq - est_cycle_freq; 331 if (diff < 0) 332 diff = -diff; 333 if ((unsigned long)diff > tolerance) { 334 cycle_freq = est_cycle_freq; 335 printk("HWRPB cycle frequency bogus. " 336 "Estimated %lu Hz\n", cycle_freq); 337 } else { 338 est_cycle_freq = 0; 339 } 340 } else if (! validate_cc_value (cycle_freq)) { 341 printk("HWRPB cycle frequency bogus, " 342 "and unable to estimate a proper value!\n"); 343 } 344 345 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 346 to settle, as the Update-In-Progress bit going low isn't good 347 enough on some hardware. 2ms is our guess; we haven't found 348 bogomips yet, but this is close on a 500Mhz box. */ 349 __delay(1000000); 350 351 sec = CMOS_READ(RTC_SECONDS); 352 min = CMOS_READ(RTC_MINUTES); 353 hour = CMOS_READ(RTC_HOURS); 354 day = CMOS_READ(RTC_DAY_OF_MONTH); 355 mon = CMOS_READ(RTC_MONTH); 356 year = CMOS_READ(RTC_YEAR); 357 358 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 359 sec = bcd2bin(sec); 360 min = bcd2bin(min); 361 hour = bcd2bin(hour); 362 day = bcd2bin(day); 363 mon = bcd2bin(mon); 364 year = bcd2bin(year); 365 } 366 367 /* PC-like is standard; used for year >= 70 */ 368 epoch = 1900; 369 if (year < 20) 370 epoch = 2000; 371 else if (year >= 20 && year < 48) 372 /* NT epoch */ 373 epoch = 1980; 374 else if (year >= 48 && year < 70) 375 /* Digital UNIX epoch */ 376 epoch = 1952; 377 378 printk(KERN_INFO "Using epoch = %d\n", epoch); 379 380 if ((year += epoch) < 1970) 381 year += 100; 382 383 xtime.tv_sec = mktime(year, mon, day, hour, min, sec); 384 xtime.tv_nsec = 0; 385 386 wall_to_monotonic.tv_sec -= xtime.tv_sec; 387 wall_to_monotonic.tv_nsec = 0; 388 389 if (HZ > (1<<16)) { 390 extern void __you_loose (void); 391 __you_loose(); 392 } 393 394 state.last_time = cc1; 395 state.scaled_ticks_per_cycle 396 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 397 state.last_rtc_update = 0; 398 state.partial_tick = 0L; 399 400 /* Startup the timer source. */ 401 alpha_mv.init_rtc(); 402 } 403 404 /* 405 * Use the cycle counter to estimate an displacement from the last time 406 * tick. Unfortunately the Alpha designers made only the low 32-bits of 407 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz 408 * part. So we can't do the "find absolute time in terms of cycles" thing 409 * that the other ports do. 410 */ 411 void 412 do_gettimeofday(struct timeval *tv) 413 { 414 unsigned long flags; 415 unsigned long sec, usec, seq; 416 unsigned long delta_cycles, delta_usec, partial_tick; 417 418 do { 419 seq = read_seqbegin_irqsave(&xtime_lock, flags); 420 421 delta_cycles = rpcc() - state.last_time; 422 sec = xtime.tv_sec; 423 usec = (xtime.tv_nsec / 1000); 424 partial_tick = state.partial_tick; 425 426 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 427 428 #ifdef CONFIG_SMP 429 /* Until and unless we figure out how to get cpu cycle counters 430 in sync and keep them there, we can't use the rpcc tricks. */ 431 delta_usec = 0; 432 #else 433 /* 434 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) 435 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) 436 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks) 437 * 438 * which, given a 600MHz cycle and a 1024Hz tick, has a 439 * dynamic range of about 1.7e17, which is less than the 440 * 1.8e19 in an unsigned long, so we are safe from overflow. 441 * 442 * Round, but with .5 up always, since .5 to even is harder 443 * with no clear gain. 444 */ 445 446 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 447 + partial_tick) * 15625; 448 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 449 #endif 450 451 usec += delta_usec; 452 if (usec >= 1000000) { 453 sec += 1; 454 usec -= 1000000; 455 } 456 457 tv->tv_sec = sec; 458 tv->tv_usec = usec; 459 } 460 461 EXPORT_SYMBOL(do_gettimeofday); 462 463 int 464 do_settimeofday(struct timespec *tv) 465 { 466 time_t wtm_sec, sec = tv->tv_sec; 467 long wtm_nsec, nsec = tv->tv_nsec; 468 unsigned long delta_nsec; 469 470 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 471 return -EINVAL; 472 473 write_seqlock_irq(&xtime_lock); 474 475 /* The offset that is added into time in do_gettimeofday above 476 must be subtracted out here to keep a coherent view of the 477 time. Without this, a full-tick error is possible. */ 478 479 #ifdef CONFIG_SMP 480 delta_nsec = 0; 481 #else 482 delta_nsec = rpcc() - state.last_time; 483 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle 484 + state.partial_tick) * 15625; 485 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 486 delta_nsec *= 1000; 487 #endif 488 489 nsec -= delta_nsec; 490 491 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 492 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 493 494 set_normalized_timespec(&xtime, sec, nsec); 495 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 496 497 ntp_clear(); 498 499 write_sequnlock_irq(&xtime_lock); 500 clock_was_set(); 501 return 0; 502 } 503 504 EXPORT_SYMBOL(do_settimeofday); 505 506 507 /* 508 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 509 * called 500 ms after the second nowtime has started, because when 510 * nowtime is written into the registers of the CMOS clock, it will 511 * jump to the next second precisely 500 ms later. Check the Motorola 512 * MC146818A or Dallas DS12887 data sheet for details. 513 * 514 * BUG: This routine does not handle hour overflow properly; it just 515 * sets the minutes. Usually you won't notice until after reboot! 516 */ 517 518 519 static int 520 set_rtc_mmss(unsigned long nowtime) 521 { 522 int retval = 0; 523 int real_seconds, real_minutes, cmos_minutes; 524 unsigned char save_control, save_freq_select; 525 526 /* irq are locally disabled here */ 527 spin_lock(&rtc_lock); 528 /* Tell the clock it's being set */ 529 save_control = CMOS_READ(RTC_CONTROL); 530 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 531 532 /* Stop and reset prescaler */ 533 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 534 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 535 536 cmos_minutes = CMOS_READ(RTC_MINUTES); 537 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 538 cmos_minutes = bcd2bin(cmos_minutes); 539 540 /* 541 * since we're only adjusting minutes and seconds, 542 * don't interfere with hour overflow. This avoids 543 * messing with unknown time zones but requires your 544 * RTC not to be off by more than 15 minutes 545 */ 546 real_seconds = nowtime % 60; 547 real_minutes = nowtime / 60; 548 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 549 /* correct for half hour time zone */ 550 real_minutes += 30; 551 } 552 real_minutes %= 60; 553 554 if (abs(real_minutes - cmos_minutes) < 30) { 555 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 556 real_seconds = bin2bcd(real_seconds); 557 real_minutes = bin2bcd(real_minutes); 558 } 559 CMOS_WRITE(real_seconds,RTC_SECONDS); 560 CMOS_WRITE(real_minutes,RTC_MINUTES); 561 } else { 562 printk(KERN_WARNING 563 "set_rtc_mmss: can't update from %d to %d\n", 564 cmos_minutes, real_minutes); 565 retval = -1; 566 } 567 568 /* The following flags have to be released exactly in this order, 569 * otherwise the DS12887 (popular MC146818A clone with integrated 570 * battery and quartz) will not reset the oscillator and will not 571 * update precisely 500 ms later. You won't find this mentioned in 572 * the Dallas Semiconductor data sheets, but who believes data 573 * sheets anyway ... -- Markus Kuhn 574 */ 575 CMOS_WRITE(save_control, RTC_CONTROL); 576 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 577 spin_unlock(&rtc_lock); 578 579 return retval; 580 } 581