xref: /openbmc/linux/arch/alpha/kernel/time.c (revision 9ac8d3fb)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/hwrpb.h>
48 #include <asm/8253pit.h>
49 
50 #include <linux/mc146818rtc.h>
51 #include <linux/time.h>
52 #include <linux/timex.h>
53 
54 #include "proto.h"
55 #include "irq_impl.h"
56 
57 static int set_rtc_mmss(unsigned long);
58 
59 DEFINE_SPINLOCK(rtc_lock);
60 EXPORT_SYMBOL(rtc_lock);
61 
62 #define TICK_SIZE (tick_nsec / 1000)
63 
64 /*
65  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
66  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
67  * for large CPU clock rates.
68  */
69 #define FIX_SHIFT	48
70 
71 /* lump static variables together for more efficient access: */
72 static struct {
73 	/* cycle counter last time it got invoked */
74 	__u32 last_time;
75 	/* ticks/cycle * 2^48 */
76 	unsigned long scaled_ticks_per_cycle;
77 	/* last time the CMOS clock got updated */
78 	time_t last_rtc_update;
79 	/* partial unused tick */
80 	unsigned long partial_tick;
81 } state;
82 
83 unsigned long est_cycle_freq;
84 
85 
86 static inline __u32 rpcc(void)
87 {
88     __u32 result;
89     asm volatile ("rpcc %0" : "=r"(result));
90     return result;
91 }
92 
93 /*
94  * timer_interrupt() needs to keep up the real-time clock,
95  * as well as call the "do_timer()" routine every clocktick
96  */
97 irqreturn_t timer_interrupt(int irq, void *dev)
98 {
99 	unsigned long delta;
100 	__u32 now;
101 	long nticks;
102 
103 #ifndef CONFIG_SMP
104 	/* Not SMP, do kernel PC profiling here.  */
105 	profile_tick(CPU_PROFILING);
106 #endif
107 
108 	write_seqlock(&xtime_lock);
109 
110 	/*
111 	 * Calculate how many ticks have passed since the last update,
112 	 * including any previous partial leftover.  Save any resulting
113 	 * fraction for the next pass.
114 	 */
115 	now = rpcc();
116 	delta = now - state.last_time;
117 	state.last_time = now;
118 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
119 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
120 	nticks = delta >> FIX_SHIFT;
121 
122 	if (nticks)
123 		do_timer(nticks);
124 
125 	/*
126 	 * If we have an externally synchronized Linux clock, then update
127 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
128 	 * called as close as possible to 500 ms before the new second starts.
129 	 */
130 	if (ntp_synced()
131 	    && xtime.tv_sec > state.last_rtc_update + 660
132 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
133 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
134 		int tmp = set_rtc_mmss(xtime.tv_sec);
135 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
136 	}
137 
138 	write_sequnlock(&xtime_lock);
139 
140 #ifndef CONFIG_SMP
141 	while (nticks--)
142 		update_process_times(user_mode(get_irq_regs()));
143 #endif
144 
145 	return IRQ_HANDLED;
146 }
147 
148 void __init
149 common_init_rtc(void)
150 {
151 	unsigned char x;
152 
153 	/* Reset periodic interrupt frequency.  */
154 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
155         /* Test includes known working values on various platforms
156            where 0x26 is wrong; we refuse to change those. */
157 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
158 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
159 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
160 	}
161 
162 	/* Turn on periodic interrupts.  */
163 	x = CMOS_READ(RTC_CONTROL);
164 	if (!(x & RTC_PIE)) {
165 		printk("Turning on RTC interrupts.\n");
166 		x |= RTC_PIE;
167 		x &= ~(RTC_AIE | RTC_UIE);
168 		CMOS_WRITE(x, RTC_CONTROL);
169 	}
170 	(void) CMOS_READ(RTC_INTR_FLAGS);
171 
172 	outb(0x36, 0x43);	/* pit counter 0: system timer */
173 	outb(0x00, 0x40);
174 	outb(0x00, 0x40);
175 
176 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
177 	outb(0x31, 0x42);
178 	outb(0x13, 0x42);
179 
180 	init_rtc_irq();
181 }
182 
183 
184 /* Validate a computed cycle counter result against the known bounds for
185    the given processor core.  There's too much brokenness in the way of
186    timing hardware for any one method to work everywhere.  :-(
187 
188    Return 0 if the result cannot be trusted, otherwise return the argument.  */
189 
190 static unsigned long __init
191 validate_cc_value(unsigned long cc)
192 {
193 	static struct bounds {
194 		unsigned int min, max;
195 	} cpu_hz[] __initdata = {
196 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
197 		[EV4_CPU]    = {  100000000,  300000000 },
198 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
199 		[EV45_CPU]   = {  200000000,  300000000 },
200 		[EV5_CPU]    = {  250000000,  433000000 },
201 		[EV56_CPU]   = {  333000000,  667000000 },
202 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
203 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
204 		[EV6_CPU]    = {  466000000,  600000000 },
205 		[EV67_CPU]   = {  600000000,  750000000 },
206 		[EV68AL_CPU] = {  750000000,  940000000 },
207 		[EV68CB_CPU] = { 1000000000, 1333333333 },
208 		/* None of the following are shipping as of 2001-11-01.  */
209 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
210 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
211 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
212 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
213 	};
214 
215 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
216 	const unsigned int deviation = 10000000;
217 
218 	struct percpu_struct *cpu;
219 	unsigned int index;
220 
221 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
222 	index = cpu->type & 0xffffffff;
223 
224 	/* If index out of bounds, no way to validate.  */
225 	if (index >= ARRAY_SIZE(cpu_hz))
226 		return cc;
227 
228 	/* If index contains no data, no way to validate.  */
229 	if (cpu_hz[index].max == 0)
230 		return cc;
231 
232 	if (cc < cpu_hz[index].min - deviation
233 	    || cc > cpu_hz[index].max + deviation)
234 		return 0;
235 
236 	return cc;
237 }
238 
239 
240 /*
241  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
242  * arch/i386/time.c.
243  */
244 
245 #define CALIBRATE_LATCH	0xffff
246 #define TIMEOUT_COUNT	0x100000
247 
248 static unsigned long __init
249 calibrate_cc_with_pit(void)
250 {
251 	int cc, count = 0;
252 
253 	/* Set the Gate high, disable speaker */
254 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
255 
256 	/*
257 	 * Now let's take care of CTC channel 2
258 	 *
259 	 * Set the Gate high, program CTC channel 2 for mode 0,
260 	 * (interrupt on terminal count mode), binary count,
261 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
262 	 */
263 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
264 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
265 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
266 
267 	cc = rpcc();
268 	do {
269 		count++;
270 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
271 	cc = rpcc() - cc;
272 
273 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
274 	if (count <= 1 || count == TIMEOUT_COUNT)
275 		return 0;
276 
277 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
278 }
279 
280 /* The Linux interpretation of the CMOS clock register contents:
281    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
282    RTC registers show the second which has precisely just started.
283    Let's hope other operating systems interpret the RTC the same way.  */
284 
285 static unsigned long __init
286 rpcc_after_update_in_progress(void)
287 {
288 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
289 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
290 
291 	return rpcc();
292 }
293 
294 void __init
295 time_init(void)
296 {
297 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
298 	unsigned long cycle_freq, tolerance;
299 	long diff;
300 
301 	/* Calibrate CPU clock -- attempt #1.  */
302 	if (!est_cycle_freq)
303 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
304 
305 	cc1 = rpcc();
306 
307 	/* Calibrate CPU clock -- attempt #2.  */
308 	if (!est_cycle_freq) {
309 		cc1 = rpcc_after_update_in_progress();
310 		cc2 = rpcc_after_update_in_progress();
311 		est_cycle_freq = validate_cc_value(cc2 - cc1);
312 		cc1 = cc2;
313 	}
314 
315 	cycle_freq = hwrpb->cycle_freq;
316 	if (est_cycle_freq) {
317 		/* If the given value is within 250 PPM of what we calculated,
318 		   accept it.  Otherwise, use what we found.  */
319 		tolerance = cycle_freq / 4000;
320 		diff = cycle_freq - est_cycle_freq;
321 		if (diff < 0)
322 			diff = -diff;
323 		if ((unsigned long)diff > tolerance) {
324 			cycle_freq = est_cycle_freq;
325 			printk("HWRPB cycle frequency bogus.  "
326 			       "Estimated %lu Hz\n", cycle_freq);
327 		} else {
328 			est_cycle_freq = 0;
329 		}
330 	} else if (! validate_cc_value (cycle_freq)) {
331 		printk("HWRPB cycle frequency bogus, "
332 		       "and unable to estimate a proper value!\n");
333 	}
334 
335 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
336 	   to settle, as the Update-In-Progress bit going low isn't good
337 	   enough on some hardware.  2ms is our guess; we haven't found
338 	   bogomips yet, but this is close on a 500Mhz box.  */
339 	__delay(1000000);
340 
341 	sec = CMOS_READ(RTC_SECONDS);
342 	min = CMOS_READ(RTC_MINUTES);
343 	hour = CMOS_READ(RTC_HOURS);
344 	day = CMOS_READ(RTC_DAY_OF_MONTH);
345 	mon = CMOS_READ(RTC_MONTH);
346 	year = CMOS_READ(RTC_YEAR);
347 
348 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
349 		sec = bcd2bin(sec);
350 		min = bcd2bin(min);
351 		hour = bcd2bin(hour);
352 		day = bcd2bin(day);
353 		mon = bcd2bin(mon);
354 		year = bcd2bin(year);
355 	}
356 
357 	/* PC-like is standard; used for year >= 70 */
358 	epoch = 1900;
359 	if (year < 20)
360 		epoch = 2000;
361 	else if (year >= 20 && year < 48)
362 		/* NT epoch */
363 		epoch = 1980;
364 	else if (year >= 48 && year < 70)
365 		/* Digital UNIX epoch */
366 		epoch = 1952;
367 
368 	printk(KERN_INFO "Using epoch = %d\n", epoch);
369 
370 	if ((year += epoch) < 1970)
371 		year += 100;
372 
373 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
374 	xtime.tv_nsec = 0;
375 
376         wall_to_monotonic.tv_sec -= xtime.tv_sec;
377         wall_to_monotonic.tv_nsec = 0;
378 
379 	if (HZ > (1<<16)) {
380 		extern void __you_loose (void);
381 		__you_loose();
382 	}
383 
384 	state.last_time = cc1;
385 	state.scaled_ticks_per_cycle
386 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
387 	state.last_rtc_update = 0;
388 	state.partial_tick = 0L;
389 
390 	/* Startup the timer source. */
391 	alpha_mv.init_rtc();
392 }
393 
394 /*
395  * Use the cycle counter to estimate an displacement from the last time
396  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
397  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
398  * part.  So we can't do the "find absolute time in terms of cycles" thing
399  * that the other ports do.
400  */
401 void
402 do_gettimeofday(struct timeval *tv)
403 {
404 	unsigned long flags;
405 	unsigned long sec, usec, seq;
406 	unsigned long delta_cycles, delta_usec, partial_tick;
407 
408 	do {
409 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
410 
411 		delta_cycles = rpcc() - state.last_time;
412 		sec = xtime.tv_sec;
413 		usec = (xtime.tv_nsec / 1000);
414 		partial_tick = state.partial_tick;
415 
416 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
417 
418 #ifdef CONFIG_SMP
419 	/* Until and unless we figure out how to get cpu cycle counters
420 	   in sync and keep them there, we can't use the rpcc tricks.  */
421 	delta_usec = 0;
422 #else
423 	/*
424 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
425 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
426 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
427 	 *
428 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
429 	 * dynamic range of about 1.7e17, which is less than the
430 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
431 	 *
432 	 * Round, but with .5 up always, since .5 to even is harder
433 	 * with no clear gain.
434 	 */
435 
436 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
437 		      + partial_tick) * 15625;
438 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
439 #endif
440 
441 	usec += delta_usec;
442 	if (usec >= 1000000) {
443 		sec += 1;
444 		usec -= 1000000;
445 	}
446 
447 	tv->tv_sec = sec;
448 	tv->tv_usec = usec;
449 }
450 
451 EXPORT_SYMBOL(do_gettimeofday);
452 
453 int
454 do_settimeofday(struct timespec *tv)
455 {
456 	time_t wtm_sec, sec = tv->tv_sec;
457 	long wtm_nsec, nsec = tv->tv_nsec;
458 	unsigned long delta_nsec;
459 
460 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
461 		return -EINVAL;
462 
463 	write_seqlock_irq(&xtime_lock);
464 
465 	/* The offset that is added into time in do_gettimeofday above
466 	   must be subtracted out here to keep a coherent view of the
467 	   time.  Without this, a full-tick error is possible.  */
468 
469 #ifdef CONFIG_SMP
470 	delta_nsec = 0;
471 #else
472 	delta_nsec = rpcc() - state.last_time;
473 	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
474 		      + state.partial_tick) * 15625;
475 	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
476 	delta_nsec *= 1000;
477 #endif
478 
479 	nsec -= delta_nsec;
480 
481 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
482 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
483 
484 	set_normalized_timespec(&xtime, sec, nsec);
485 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
486 
487 	ntp_clear();
488 
489 	write_sequnlock_irq(&xtime_lock);
490 	clock_was_set();
491 	return 0;
492 }
493 
494 EXPORT_SYMBOL(do_settimeofday);
495 
496 
497 /*
498  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
499  * called 500 ms after the second nowtime has started, because when
500  * nowtime is written into the registers of the CMOS clock, it will
501  * jump to the next second precisely 500 ms later. Check the Motorola
502  * MC146818A or Dallas DS12887 data sheet for details.
503  *
504  * BUG: This routine does not handle hour overflow properly; it just
505  *      sets the minutes. Usually you won't notice until after reboot!
506  */
507 
508 
509 static int
510 set_rtc_mmss(unsigned long nowtime)
511 {
512 	int retval = 0;
513 	int real_seconds, real_minutes, cmos_minutes;
514 	unsigned char save_control, save_freq_select;
515 
516 	/* irq are locally disabled here */
517 	spin_lock(&rtc_lock);
518 	/* Tell the clock it's being set */
519 	save_control = CMOS_READ(RTC_CONTROL);
520 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
521 
522 	/* Stop and reset prescaler */
523 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
524 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
525 
526 	cmos_minutes = CMOS_READ(RTC_MINUTES);
527 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
528 		cmos_minutes = bcd2bin(cmos_minutes);
529 
530 	/*
531 	 * since we're only adjusting minutes and seconds,
532 	 * don't interfere with hour overflow. This avoids
533 	 * messing with unknown time zones but requires your
534 	 * RTC not to be off by more than 15 minutes
535 	 */
536 	real_seconds = nowtime % 60;
537 	real_minutes = nowtime / 60;
538 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
539 		/* correct for half hour time zone */
540 		real_minutes += 30;
541 	}
542 	real_minutes %= 60;
543 
544 	if (abs(real_minutes - cmos_minutes) < 30) {
545 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
546 			real_seconds = bin2bcd(real_seconds);
547 			real_minutes = bin2bcd(real_minutes);
548 		}
549 		CMOS_WRITE(real_seconds,RTC_SECONDS);
550 		CMOS_WRITE(real_minutes,RTC_MINUTES);
551 	} else {
552 		printk(KERN_WARNING
553 		       "set_rtc_mmss: can't update from %d to %d\n",
554 		       cmos_minutes, real_minutes);
555  		retval = -1;
556 	}
557 
558 	/* The following flags have to be released exactly in this order,
559 	 * otherwise the DS12887 (popular MC146818A clone with integrated
560 	 * battery and quartz) will not reset the oscillator and will not
561 	 * update precisely 500 ms later. You won't find this mentioned in
562 	 * the Dallas Semiconductor data sheets, but who believes data
563 	 * sheets anyway ...                           -- Markus Kuhn
564 	 */
565 	CMOS_WRITE(save_control, RTC_CONTROL);
566 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
567 	spin_unlock(&rtc_lock);
568 
569 	return retval;
570 }
571