1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/io.h> 47 #include <asm/hwrpb.h> 48 #include <asm/8253pit.h> 49 50 #include <linux/mc146818rtc.h> 51 #include <linux/time.h> 52 #include <linux/timex.h> 53 54 #include "proto.h" 55 #include "irq_impl.h" 56 57 static int set_rtc_mmss(unsigned long); 58 59 DEFINE_SPINLOCK(rtc_lock); 60 EXPORT_SYMBOL(rtc_lock); 61 62 #define TICK_SIZE (tick_nsec / 1000) 63 64 /* 65 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 66 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 67 * for large CPU clock rates. 68 */ 69 #define FIX_SHIFT 48 70 71 /* lump static variables together for more efficient access: */ 72 static struct { 73 /* cycle counter last time it got invoked */ 74 __u32 last_time; 75 /* ticks/cycle * 2^48 */ 76 unsigned long scaled_ticks_per_cycle; 77 /* last time the CMOS clock got updated */ 78 time_t last_rtc_update; 79 /* partial unused tick */ 80 unsigned long partial_tick; 81 } state; 82 83 unsigned long est_cycle_freq; 84 85 86 static inline __u32 rpcc(void) 87 { 88 __u32 result; 89 asm volatile ("rpcc %0" : "=r"(result)); 90 return result; 91 } 92 93 /* 94 * timer_interrupt() needs to keep up the real-time clock, 95 * as well as call the "do_timer()" routine every clocktick 96 */ 97 irqreturn_t timer_interrupt(int irq, void *dev) 98 { 99 unsigned long delta; 100 __u32 now; 101 long nticks; 102 103 #ifndef CONFIG_SMP 104 /* Not SMP, do kernel PC profiling here. */ 105 profile_tick(CPU_PROFILING); 106 #endif 107 108 write_seqlock(&xtime_lock); 109 110 /* 111 * Calculate how many ticks have passed since the last update, 112 * including any previous partial leftover. Save any resulting 113 * fraction for the next pass. 114 */ 115 now = rpcc(); 116 delta = now - state.last_time; 117 state.last_time = now; 118 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 119 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 120 nticks = delta >> FIX_SHIFT; 121 122 if (nticks) 123 do_timer(nticks); 124 125 /* 126 * If we have an externally synchronized Linux clock, then update 127 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be 128 * called as close as possible to 500 ms before the new second starts. 129 */ 130 if (ntp_synced() 131 && xtime.tv_sec > state.last_rtc_update + 660 132 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 133 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { 134 int tmp = set_rtc_mmss(xtime.tv_sec); 135 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); 136 } 137 138 write_sequnlock(&xtime_lock); 139 140 #ifndef CONFIG_SMP 141 while (nticks--) 142 update_process_times(user_mode(get_irq_regs())); 143 #endif 144 145 return IRQ_HANDLED; 146 } 147 148 void __init 149 common_init_rtc(void) 150 { 151 unsigned char x; 152 153 /* Reset periodic interrupt frequency. */ 154 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 155 /* Test includes known working values on various platforms 156 where 0x26 is wrong; we refuse to change those. */ 157 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 158 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 159 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 160 } 161 162 /* Turn on periodic interrupts. */ 163 x = CMOS_READ(RTC_CONTROL); 164 if (!(x & RTC_PIE)) { 165 printk("Turning on RTC interrupts.\n"); 166 x |= RTC_PIE; 167 x &= ~(RTC_AIE | RTC_UIE); 168 CMOS_WRITE(x, RTC_CONTROL); 169 } 170 (void) CMOS_READ(RTC_INTR_FLAGS); 171 172 outb(0x36, 0x43); /* pit counter 0: system timer */ 173 outb(0x00, 0x40); 174 outb(0x00, 0x40); 175 176 outb(0xb6, 0x43); /* pit counter 2: speaker */ 177 outb(0x31, 0x42); 178 outb(0x13, 0x42); 179 180 init_rtc_irq(); 181 } 182 183 184 /* Validate a computed cycle counter result against the known bounds for 185 the given processor core. There's too much brokenness in the way of 186 timing hardware for any one method to work everywhere. :-( 187 188 Return 0 if the result cannot be trusted, otherwise return the argument. */ 189 190 static unsigned long __init 191 validate_cc_value(unsigned long cc) 192 { 193 static struct bounds { 194 unsigned int min, max; 195 } cpu_hz[] __initdata = { 196 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 197 [EV4_CPU] = { 100000000, 300000000 }, 198 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 199 [EV45_CPU] = { 200000000, 300000000 }, 200 [EV5_CPU] = { 250000000, 433000000 }, 201 [EV56_CPU] = { 333000000, 667000000 }, 202 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 203 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 204 [EV6_CPU] = { 466000000, 600000000 }, 205 [EV67_CPU] = { 600000000, 750000000 }, 206 [EV68AL_CPU] = { 750000000, 940000000 }, 207 [EV68CB_CPU] = { 1000000000, 1333333333 }, 208 /* None of the following are shipping as of 2001-11-01. */ 209 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 210 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 211 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 212 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 213 }; 214 215 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 216 const unsigned int deviation = 10000000; 217 218 struct percpu_struct *cpu; 219 unsigned int index; 220 221 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 222 index = cpu->type & 0xffffffff; 223 224 /* If index out of bounds, no way to validate. */ 225 if (index >= ARRAY_SIZE(cpu_hz)) 226 return cc; 227 228 /* If index contains no data, no way to validate. */ 229 if (cpu_hz[index].max == 0) 230 return cc; 231 232 if (cc < cpu_hz[index].min - deviation 233 || cc > cpu_hz[index].max + deviation) 234 return 0; 235 236 return cc; 237 } 238 239 240 /* 241 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 242 * arch/i386/time.c. 243 */ 244 245 #define CALIBRATE_LATCH 0xffff 246 #define TIMEOUT_COUNT 0x100000 247 248 static unsigned long __init 249 calibrate_cc_with_pit(void) 250 { 251 int cc, count = 0; 252 253 /* Set the Gate high, disable speaker */ 254 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 255 256 /* 257 * Now let's take care of CTC channel 2 258 * 259 * Set the Gate high, program CTC channel 2 for mode 0, 260 * (interrupt on terminal count mode), binary count, 261 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 262 */ 263 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 264 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 265 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 266 267 cc = rpcc(); 268 do { 269 count++; 270 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 271 cc = rpcc() - cc; 272 273 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 274 if (count <= 1 || count == TIMEOUT_COUNT) 275 return 0; 276 277 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 278 } 279 280 /* The Linux interpretation of the CMOS clock register contents: 281 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 282 RTC registers show the second which has precisely just started. 283 Let's hope other operating systems interpret the RTC the same way. */ 284 285 static unsigned long __init 286 rpcc_after_update_in_progress(void) 287 { 288 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 289 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 290 291 return rpcc(); 292 } 293 294 void __init 295 time_init(void) 296 { 297 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; 298 unsigned long cycle_freq, tolerance; 299 long diff; 300 301 /* Calibrate CPU clock -- attempt #1. */ 302 if (!est_cycle_freq) 303 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 304 305 cc1 = rpcc(); 306 307 /* Calibrate CPU clock -- attempt #2. */ 308 if (!est_cycle_freq) { 309 cc1 = rpcc_after_update_in_progress(); 310 cc2 = rpcc_after_update_in_progress(); 311 est_cycle_freq = validate_cc_value(cc2 - cc1); 312 cc1 = cc2; 313 } 314 315 cycle_freq = hwrpb->cycle_freq; 316 if (est_cycle_freq) { 317 /* If the given value is within 250 PPM of what we calculated, 318 accept it. Otherwise, use what we found. */ 319 tolerance = cycle_freq / 4000; 320 diff = cycle_freq - est_cycle_freq; 321 if (diff < 0) 322 diff = -diff; 323 if ((unsigned long)diff > tolerance) { 324 cycle_freq = est_cycle_freq; 325 printk("HWRPB cycle frequency bogus. " 326 "Estimated %lu Hz\n", cycle_freq); 327 } else { 328 est_cycle_freq = 0; 329 } 330 } else if (! validate_cc_value (cycle_freq)) { 331 printk("HWRPB cycle frequency bogus, " 332 "and unable to estimate a proper value!\n"); 333 } 334 335 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 336 to settle, as the Update-In-Progress bit going low isn't good 337 enough on some hardware. 2ms is our guess; we haven't found 338 bogomips yet, but this is close on a 500Mhz box. */ 339 __delay(1000000); 340 341 sec = CMOS_READ(RTC_SECONDS); 342 min = CMOS_READ(RTC_MINUTES); 343 hour = CMOS_READ(RTC_HOURS); 344 day = CMOS_READ(RTC_DAY_OF_MONTH); 345 mon = CMOS_READ(RTC_MONTH); 346 year = CMOS_READ(RTC_YEAR); 347 348 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 349 sec = bcd2bin(sec); 350 min = bcd2bin(min); 351 hour = bcd2bin(hour); 352 day = bcd2bin(day); 353 mon = bcd2bin(mon); 354 year = bcd2bin(year); 355 } 356 357 /* PC-like is standard; used for year >= 70 */ 358 epoch = 1900; 359 if (year < 20) 360 epoch = 2000; 361 else if (year >= 20 && year < 48) 362 /* NT epoch */ 363 epoch = 1980; 364 else if (year >= 48 && year < 70) 365 /* Digital UNIX epoch */ 366 epoch = 1952; 367 368 printk(KERN_INFO "Using epoch = %d\n", epoch); 369 370 if ((year += epoch) < 1970) 371 year += 100; 372 373 xtime.tv_sec = mktime(year, mon, day, hour, min, sec); 374 xtime.tv_nsec = 0; 375 376 wall_to_monotonic.tv_sec -= xtime.tv_sec; 377 wall_to_monotonic.tv_nsec = 0; 378 379 if (HZ > (1<<16)) { 380 extern void __you_loose (void); 381 __you_loose(); 382 } 383 384 state.last_time = cc1; 385 state.scaled_ticks_per_cycle 386 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 387 state.last_rtc_update = 0; 388 state.partial_tick = 0L; 389 390 /* Startup the timer source. */ 391 alpha_mv.init_rtc(); 392 } 393 394 /* 395 * Use the cycle counter to estimate an displacement from the last time 396 * tick. Unfortunately the Alpha designers made only the low 32-bits of 397 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz 398 * part. So we can't do the "find absolute time in terms of cycles" thing 399 * that the other ports do. 400 */ 401 void 402 do_gettimeofday(struct timeval *tv) 403 { 404 unsigned long flags; 405 unsigned long sec, usec, seq; 406 unsigned long delta_cycles, delta_usec, partial_tick; 407 408 do { 409 seq = read_seqbegin_irqsave(&xtime_lock, flags); 410 411 delta_cycles = rpcc() - state.last_time; 412 sec = xtime.tv_sec; 413 usec = (xtime.tv_nsec / 1000); 414 partial_tick = state.partial_tick; 415 416 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 417 418 #ifdef CONFIG_SMP 419 /* Until and unless we figure out how to get cpu cycle counters 420 in sync and keep them there, we can't use the rpcc tricks. */ 421 delta_usec = 0; 422 #else 423 /* 424 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) 425 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) 426 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks) 427 * 428 * which, given a 600MHz cycle and a 1024Hz tick, has a 429 * dynamic range of about 1.7e17, which is less than the 430 * 1.8e19 in an unsigned long, so we are safe from overflow. 431 * 432 * Round, but with .5 up always, since .5 to even is harder 433 * with no clear gain. 434 */ 435 436 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 437 + partial_tick) * 15625; 438 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 439 #endif 440 441 usec += delta_usec; 442 if (usec >= 1000000) { 443 sec += 1; 444 usec -= 1000000; 445 } 446 447 tv->tv_sec = sec; 448 tv->tv_usec = usec; 449 } 450 451 EXPORT_SYMBOL(do_gettimeofday); 452 453 int 454 do_settimeofday(struct timespec *tv) 455 { 456 time_t wtm_sec, sec = tv->tv_sec; 457 long wtm_nsec, nsec = tv->tv_nsec; 458 unsigned long delta_nsec; 459 460 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 461 return -EINVAL; 462 463 write_seqlock_irq(&xtime_lock); 464 465 /* The offset that is added into time in do_gettimeofday above 466 must be subtracted out here to keep a coherent view of the 467 time. Without this, a full-tick error is possible. */ 468 469 #ifdef CONFIG_SMP 470 delta_nsec = 0; 471 #else 472 delta_nsec = rpcc() - state.last_time; 473 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle 474 + state.partial_tick) * 15625; 475 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 476 delta_nsec *= 1000; 477 #endif 478 479 nsec -= delta_nsec; 480 481 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 482 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 483 484 set_normalized_timespec(&xtime, sec, nsec); 485 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 486 487 ntp_clear(); 488 489 write_sequnlock_irq(&xtime_lock); 490 clock_was_set(); 491 return 0; 492 } 493 494 EXPORT_SYMBOL(do_settimeofday); 495 496 497 /* 498 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 499 * called 500 ms after the second nowtime has started, because when 500 * nowtime is written into the registers of the CMOS clock, it will 501 * jump to the next second precisely 500 ms later. Check the Motorola 502 * MC146818A or Dallas DS12887 data sheet for details. 503 * 504 * BUG: This routine does not handle hour overflow properly; it just 505 * sets the minutes. Usually you won't notice until after reboot! 506 */ 507 508 509 static int 510 set_rtc_mmss(unsigned long nowtime) 511 { 512 int retval = 0; 513 int real_seconds, real_minutes, cmos_minutes; 514 unsigned char save_control, save_freq_select; 515 516 /* irq are locally disabled here */ 517 spin_lock(&rtc_lock); 518 /* Tell the clock it's being set */ 519 save_control = CMOS_READ(RTC_CONTROL); 520 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 521 522 /* Stop and reset prescaler */ 523 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 524 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 525 526 cmos_minutes = CMOS_READ(RTC_MINUTES); 527 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 528 cmos_minutes = bcd2bin(cmos_minutes); 529 530 /* 531 * since we're only adjusting minutes and seconds, 532 * don't interfere with hour overflow. This avoids 533 * messing with unknown time zones but requires your 534 * RTC not to be off by more than 15 minutes 535 */ 536 real_seconds = nowtime % 60; 537 real_minutes = nowtime / 60; 538 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 539 /* correct for half hour time zone */ 540 real_minutes += 30; 541 } 542 real_minutes %= 60; 543 544 if (abs(real_minutes - cmos_minutes) < 30) { 545 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 546 real_seconds = bin2bcd(real_seconds); 547 real_minutes = bin2bcd(real_minutes); 548 } 549 CMOS_WRITE(real_seconds,RTC_SECONDS); 550 CMOS_WRITE(real_minutes,RTC_MINUTES); 551 } else { 552 printk(KERN_WARNING 553 "set_rtc_mmss: can't update from %d to %d\n", 554 cmos_minutes, real_minutes); 555 retval = -1; 556 } 557 558 /* The following flags have to be released exactly in this order, 559 * otherwise the DS12887 (popular MC146818A clone with integrated 560 * battery and quartz) will not reset the oscillator and will not 561 * update precisely 500 ms later. You won't find this mentioned in 562 * the Dallas Semiconductor data sheets, but who believes data 563 * sheets anyway ... -- Markus Kuhn 564 */ 565 CMOS_WRITE(save_control, RTC_CONTROL); 566 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 567 spin_unlock(&rtc_lock); 568 569 return retval; 570 } 571