xref: /openbmc/linux/arch/alpha/kernel/time.c (revision 87c2ce3b)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/config.h>
31 #include <linux/errno.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/irq.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/bcd.h>
44 #include <linux/profile.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 
55 #include "proto.h"
56 #include "irq_impl.h"
57 
58 extern unsigned long wall_jiffies;	/* kernel/timer.c */
59 
60 static int set_rtc_mmss(unsigned long);
61 
62 DEFINE_SPINLOCK(rtc_lock);
63 
64 #define TICK_SIZE (tick_nsec / 1000)
65 
66 /*
67  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
68  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69  * for large CPU clock rates.
70  */
71 #define FIX_SHIFT	48
72 
73 /* lump static variables together for more efficient access: */
74 static struct {
75 	/* cycle counter last time it got invoked */
76 	__u32 last_time;
77 	/* ticks/cycle * 2^48 */
78 	unsigned long scaled_ticks_per_cycle;
79 	/* last time the CMOS clock got updated */
80 	time_t last_rtc_update;
81 	/* partial unused tick */
82 	unsigned long partial_tick;
83 } state;
84 
85 unsigned long est_cycle_freq;
86 
87 
88 static inline __u32 rpcc(void)
89 {
90     __u32 result;
91     asm volatile ("rpcc %0" : "=r"(result));
92     return result;
93 }
94 
95 /*
96  * Scheduler clock - returns current time in nanosec units.
97  *
98  * Copied from ARM code for expediency... ;-}
99  */
100 unsigned long long sched_clock(void)
101 {
102         return (unsigned long long)jiffies * (1000000000 / HZ);
103 }
104 
105 
106 /*
107  * timer_interrupt() needs to keep up the real-time clock,
108  * as well as call the "do_timer()" routine every clocktick
109  */
110 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
111 {
112 	unsigned long delta;
113 	__u32 now;
114 	long nticks;
115 
116 #ifndef CONFIG_SMP
117 	/* Not SMP, do kernel PC profiling here.  */
118 	profile_tick(CPU_PROFILING, regs);
119 #endif
120 
121 	write_seqlock(&xtime_lock);
122 
123 	/*
124 	 * Calculate how many ticks have passed since the last update,
125 	 * including any previous partial leftover.  Save any resulting
126 	 * fraction for the next pass.
127 	 */
128 	now = rpcc();
129 	delta = now - state.last_time;
130 	state.last_time = now;
131 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
132 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
133 	nticks = delta >> FIX_SHIFT;
134 
135 	while (nticks > 0) {
136 		do_timer(regs);
137 #ifndef CONFIG_SMP
138 		update_process_times(user_mode(regs));
139 #endif
140 		nticks--;
141 	}
142 
143 	/*
144 	 * If we have an externally synchronized Linux clock, then update
145 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
146 	 * called as close as possible to 500 ms before the new second starts.
147 	 */
148 	if (ntp_synced()
149 	    && xtime.tv_sec > state.last_rtc_update + 660
150 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
151 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
152 		int tmp = set_rtc_mmss(xtime.tv_sec);
153 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
154 	}
155 
156 	write_sequnlock(&xtime_lock);
157 	return IRQ_HANDLED;
158 }
159 
160 void
161 common_init_rtc(void)
162 {
163 	unsigned char x;
164 
165 	/* Reset periodic interrupt frequency.  */
166 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
167         /* Test includes known working values on various platforms
168            where 0x26 is wrong; we refuse to change those. */
169 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
170 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
171 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
172 	}
173 
174 	/* Turn on periodic interrupts.  */
175 	x = CMOS_READ(RTC_CONTROL);
176 	if (!(x & RTC_PIE)) {
177 		printk("Turning on RTC interrupts.\n");
178 		x |= RTC_PIE;
179 		x &= ~(RTC_AIE | RTC_UIE);
180 		CMOS_WRITE(x, RTC_CONTROL);
181 	}
182 	(void) CMOS_READ(RTC_INTR_FLAGS);
183 
184 	outb(0x36, 0x43);	/* pit counter 0: system timer */
185 	outb(0x00, 0x40);
186 	outb(0x00, 0x40);
187 
188 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
189 	outb(0x31, 0x42);
190 	outb(0x13, 0x42);
191 
192 	init_rtc_irq();
193 }
194 
195 
196 /* Validate a computed cycle counter result against the known bounds for
197    the given processor core.  There's too much brokenness in the way of
198    timing hardware for any one method to work everywhere.  :-(
199 
200    Return 0 if the result cannot be trusted, otherwise return the argument.  */
201 
202 static unsigned long __init
203 validate_cc_value(unsigned long cc)
204 {
205 	static struct bounds {
206 		unsigned int min, max;
207 	} cpu_hz[] __initdata = {
208 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
209 		[EV4_CPU]    = {  100000000,  300000000 },
210 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
211 		[EV45_CPU]   = {  200000000,  300000000 },
212 		[EV5_CPU]    = {  250000000,  433000000 },
213 		[EV56_CPU]   = {  333000000,  667000000 },
214 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
215 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
216 		[EV6_CPU]    = {  466000000,  600000000 },
217 		[EV67_CPU]   = {  600000000,  750000000 },
218 		[EV68AL_CPU] = {  750000000,  940000000 },
219 		[EV68CB_CPU] = { 1000000000, 1333333333 },
220 		/* None of the following are shipping as of 2001-11-01.  */
221 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
222 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
223 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
224 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
225 	};
226 
227 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
228 	const unsigned int deviation = 10000000;
229 
230 	struct percpu_struct *cpu;
231 	unsigned int index;
232 
233 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
234 	index = cpu->type & 0xffffffff;
235 
236 	/* If index out of bounds, no way to validate.  */
237 	if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0]))
238 		return cc;
239 
240 	/* If index contains no data, no way to validate.  */
241 	if (cpu_hz[index].max == 0)
242 		return cc;
243 
244 	if (cc < cpu_hz[index].min - deviation
245 	    || cc > cpu_hz[index].max + deviation)
246 		return 0;
247 
248 	return cc;
249 }
250 
251 
252 /*
253  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
254  * arch/i386/time.c.
255  */
256 
257 #define CALIBRATE_LATCH	0xffff
258 #define TIMEOUT_COUNT	0x100000
259 
260 static unsigned long __init
261 calibrate_cc_with_pit(void)
262 {
263 	int cc, count = 0;
264 
265 	/* Set the Gate high, disable speaker */
266 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
267 
268 	/*
269 	 * Now let's take care of CTC channel 2
270 	 *
271 	 * Set the Gate high, program CTC channel 2 for mode 0,
272 	 * (interrupt on terminal count mode), binary count,
273 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
274 	 */
275 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
276 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
277 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
278 
279 	cc = rpcc();
280 	do {
281 		count++;
282 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
283 	cc = rpcc() - cc;
284 
285 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
286 	if (count <= 1 || count == TIMEOUT_COUNT)
287 		return 0;
288 
289 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
290 }
291 
292 /* The Linux interpretation of the CMOS clock register contents:
293    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
294    RTC registers show the second which has precisely just started.
295    Let's hope other operating systems interpret the RTC the same way.  */
296 
297 static unsigned long __init
298 rpcc_after_update_in_progress(void)
299 {
300 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
301 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
302 
303 	return rpcc();
304 }
305 
306 void __init
307 time_init(void)
308 {
309 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
310 	unsigned long cycle_freq, tolerance;
311 	long diff;
312 
313 	/* Calibrate CPU clock -- attempt #1.  */
314 	if (!est_cycle_freq)
315 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
316 
317 	cc1 = rpcc_after_update_in_progress();
318 
319 	/* Calibrate CPU clock -- attempt #2.  */
320 	if (!est_cycle_freq) {
321 		cc2 = rpcc_after_update_in_progress();
322 		est_cycle_freq = validate_cc_value(cc2 - cc1);
323 		cc1 = cc2;
324 	}
325 
326 	cycle_freq = hwrpb->cycle_freq;
327 	if (est_cycle_freq) {
328 		/* If the given value is within 250 PPM of what we calculated,
329 		   accept it.  Otherwise, use what we found.  */
330 		tolerance = cycle_freq / 4000;
331 		diff = cycle_freq - est_cycle_freq;
332 		if (diff < 0)
333 			diff = -diff;
334 		if ((unsigned long)diff > tolerance) {
335 			cycle_freq = est_cycle_freq;
336 			printk("HWRPB cycle frequency bogus.  "
337 			       "Estimated %lu Hz\n", cycle_freq);
338 		} else {
339 			est_cycle_freq = 0;
340 		}
341 	} else if (! validate_cc_value (cycle_freq)) {
342 		printk("HWRPB cycle frequency bogus, "
343 		       "and unable to estimate a proper value!\n");
344 	}
345 
346 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
347 	   to settle, as the Update-In-Progress bit going low isn't good
348 	   enough on some hardware.  2ms is our guess; we haven't found
349 	   bogomips yet, but this is close on a 500Mhz box.  */
350 	__delay(1000000);
351 
352 	sec = CMOS_READ(RTC_SECONDS);
353 	min = CMOS_READ(RTC_MINUTES);
354 	hour = CMOS_READ(RTC_HOURS);
355 	day = CMOS_READ(RTC_DAY_OF_MONTH);
356 	mon = CMOS_READ(RTC_MONTH);
357 	year = CMOS_READ(RTC_YEAR);
358 
359 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
360 		BCD_TO_BIN(sec);
361 		BCD_TO_BIN(min);
362 		BCD_TO_BIN(hour);
363 		BCD_TO_BIN(day);
364 		BCD_TO_BIN(mon);
365 		BCD_TO_BIN(year);
366 	}
367 
368 	/* PC-like is standard; used for year >= 70 */
369 	epoch = 1900;
370 	if (year < 20)
371 		epoch = 2000;
372 	else if (year >= 20 && year < 48)
373 		/* NT epoch */
374 		epoch = 1980;
375 	else if (year >= 48 && year < 70)
376 		/* Digital UNIX epoch */
377 		epoch = 1952;
378 
379 	printk(KERN_INFO "Using epoch = %d\n", epoch);
380 
381 	if ((year += epoch) < 1970)
382 		year += 100;
383 
384 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
385 	xtime.tv_nsec = 0;
386 
387         wall_to_monotonic.tv_sec -= xtime.tv_sec;
388         wall_to_monotonic.tv_nsec = 0;
389 
390 	if (HZ > (1<<16)) {
391 		extern void __you_loose (void);
392 		__you_loose();
393 	}
394 
395 	state.last_time = cc1;
396 	state.scaled_ticks_per_cycle
397 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
398 	state.last_rtc_update = 0;
399 	state.partial_tick = 0L;
400 
401 	/* Startup the timer source. */
402 	alpha_mv.init_rtc();
403 }
404 
405 /*
406  * Use the cycle counter to estimate an displacement from the last time
407  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
408  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
409  * part.  So we can't do the "find absolute time in terms of cycles" thing
410  * that the other ports do.
411  */
412 void
413 do_gettimeofday(struct timeval *tv)
414 {
415 	unsigned long flags;
416 	unsigned long sec, usec, lost, seq;
417 	unsigned long delta_cycles, delta_usec, partial_tick;
418 
419 	do {
420 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
421 
422 		delta_cycles = rpcc() - state.last_time;
423 		sec = xtime.tv_sec;
424 		usec = (xtime.tv_nsec / 1000);
425 		partial_tick = state.partial_tick;
426 		lost = jiffies - wall_jiffies;
427 
428 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
429 
430 #ifdef CONFIG_SMP
431 	/* Until and unless we figure out how to get cpu cycle counters
432 	   in sync and keep them there, we can't use the rpcc tricks.  */
433 	delta_usec = lost * (1000000 / HZ);
434 #else
435 	/*
436 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
437 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
438 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
439 	 *
440 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
441 	 * dynamic range of about 1.7e17, which is less than the
442 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
443 	 *
444 	 * Round, but with .5 up always, since .5 to even is harder
445 	 * with no clear gain.
446 	 */
447 
448 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
449 		      + partial_tick
450 		      + (lost << FIX_SHIFT)) * 15625;
451 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
452 #endif
453 
454 	usec += delta_usec;
455 	if (usec >= 1000000) {
456 		sec += 1;
457 		usec -= 1000000;
458 	}
459 
460 	tv->tv_sec = sec;
461 	tv->tv_usec = usec;
462 }
463 
464 EXPORT_SYMBOL(do_gettimeofday);
465 
466 int
467 do_settimeofday(struct timespec *tv)
468 {
469 	time_t wtm_sec, sec = tv->tv_sec;
470 	long wtm_nsec, nsec = tv->tv_nsec;
471 	unsigned long delta_nsec;
472 
473 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
474 		return -EINVAL;
475 
476 	write_seqlock_irq(&xtime_lock);
477 
478 	/* The offset that is added into time in do_gettimeofday above
479 	   must be subtracted out here to keep a coherent view of the
480 	   time.  Without this, a full-tick error is possible.  */
481 
482 #ifdef CONFIG_SMP
483 	delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ);
484 #else
485 	delta_nsec = rpcc() - state.last_time;
486 	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
487 		      + state.partial_tick
488 		      + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625;
489 	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
490 	delta_nsec *= 1000;
491 #endif
492 
493 	nsec -= delta_nsec;
494 
495 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
496 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
497 
498 	set_normalized_timespec(&xtime, sec, nsec);
499 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
500 
501 	ntp_clear();
502 
503 	write_sequnlock_irq(&xtime_lock);
504 	clock_was_set();
505 	return 0;
506 }
507 
508 EXPORT_SYMBOL(do_settimeofday);
509 
510 
511 /*
512  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
513  * called 500 ms after the second nowtime has started, because when
514  * nowtime is written into the registers of the CMOS clock, it will
515  * jump to the next second precisely 500 ms later. Check the Motorola
516  * MC146818A or Dallas DS12887 data sheet for details.
517  *
518  * BUG: This routine does not handle hour overflow properly; it just
519  *      sets the minutes. Usually you won't notice until after reboot!
520  */
521 
522 
523 static int
524 set_rtc_mmss(unsigned long nowtime)
525 {
526 	int retval = 0;
527 	int real_seconds, real_minutes, cmos_minutes;
528 	unsigned char save_control, save_freq_select;
529 
530 	/* irq are locally disabled here */
531 	spin_lock(&rtc_lock);
532 	/* Tell the clock it's being set */
533 	save_control = CMOS_READ(RTC_CONTROL);
534 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
535 
536 	/* Stop and reset prescaler */
537 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
538 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
539 
540 	cmos_minutes = CMOS_READ(RTC_MINUTES);
541 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
542 		BCD_TO_BIN(cmos_minutes);
543 
544 	/*
545 	 * since we're only adjusting minutes and seconds,
546 	 * don't interfere with hour overflow. This avoids
547 	 * messing with unknown time zones but requires your
548 	 * RTC not to be off by more than 15 minutes
549 	 */
550 	real_seconds = nowtime % 60;
551 	real_minutes = nowtime / 60;
552 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
553 		/* correct for half hour time zone */
554 		real_minutes += 30;
555 	}
556 	real_minutes %= 60;
557 
558 	if (abs(real_minutes - cmos_minutes) < 30) {
559 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
560 			BIN_TO_BCD(real_seconds);
561 			BIN_TO_BCD(real_minutes);
562 		}
563 		CMOS_WRITE(real_seconds,RTC_SECONDS);
564 		CMOS_WRITE(real_minutes,RTC_MINUTES);
565 	} else {
566 		printk(KERN_WARNING
567 		       "set_rtc_mmss: can't update from %d to %d\n",
568 		       cmos_minutes, real_minutes);
569  		retval = -1;
570 	}
571 
572 	/* The following flags have to be released exactly in this order,
573 	 * otherwise the DS12887 (popular MC146818A clone with integrated
574 	 * battery and quartz) will not reset the oscillator and will not
575 	 * update precisely 500 ms later. You won't find this mentioned in
576 	 * the Dallas Semiconductor data sheets, but who believes data
577 	 * sheets anyway ...                           -- Markus Kuhn
578 	 */
579 	CMOS_WRITE(save_control, RTC_CONTROL);
580 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
581 	spin_unlock(&rtc_lock);
582 
583 	return retval;
584 }
585