1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/config.h> 31 #include <linux/errno.h> 32 #include <linux/module.h> 33 #include <linux/sched.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/delay.h> 39 #include <linux/ioport.h> 40 #include <linux/irq.h> 41 #include <linux/interrupt.h> 42 #include <linux/init.h> 43 #include <linux/bcd.h> 44 #include <linux/profile.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/io.h> 48 #include <asm/hwrpb.h> 49 #include <asm/8253pit.h> 50 51 #include <linux/mc146818rtc.h> 52 #include <linux/time.h> 53 #include <linux/timex.h> 54 55 #include "proto.h" 56 #include "irq_impl.h" 57 58 extern unsigned long wall_jiffies; /* kernel/timer.c */ 59 60 static int set_rtc_mmss(unsigned long); 61 62 DEFINE_SPINLOCK(rtc_lock); 63 64 #define TICK_SIZE (tick_nsec / 1000) 65 66 /* 67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 69 * for large CPU clock rates. 70 */ 71 #define FIX_SHIFT 48 72 73 /* lump static variables together for more efficient access: */ 74 static struct { 75 /* cycle counter last time it got invoked */ 76 __u32 last_time; 77 /* ticks/cycle * 2^48 */ 78 unsigned long scaled_ticks_per_cycle; 79 /* last time the CMOS clock got updated */ 80 time_t last_rtc_update; 81 /* partial unused tick */ 82 unsigned long partial_tick; 83 } state; 84 85 unsigned long est_cycle_freq; 86 87 88 static inline __u32 rpcc(void) 89 { 90 __u32 result; 91 asm volatile ("rpcc %0" : "=r"(result)); 92 return result; 93 } 94 95 /* 96 * Scheduler clock - returns current time in nanosec units. 97 * 98 * Copied from ARM code for expediency... ;-} 99 */ 100 unsigned long long sched_clock(void) 101 { 102 return (unsigned long long)jiffies * (1000000000 / HZ); 103 } 104 105 106 /* 107 * timer_interrupt() needs to keep up the real-time clock, 108 * as well as call the "do_timer()" routine every clocktick 109 */ 110 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs) 111 { 112 unsigned long delta; 113 __u32 now; 114 long nticks; 115 116 #ifndef CONFIG_SMP 117 /* Not SMP, do kernel PC profiling here. */ 118 profile_tick(CPU_PROFILING, regs); 119 #endif 120 121 write_seqlock(&xtime_lock); 122 123 /* 124 * Calculate how many ticks have passed since the last update, 125 * including any previous partial leftover. Save any resulting 126 * fraction for the next pass. 127 */ 128 now = rpcc(); 129 delta = now - state.last_time; 130 state.last_time = now; 131 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 132 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 133 nticks = delta >> FIX_SHIFT; 134 135 while (nticks > 0) { 136 do_timer(regs); 137 #ifndef CONFIG_SMP 138 update_process_times(user_mode(regs)); 139 #endif 140 nticks--; 141 } 142 143 /* 144 * If we have an externally synchronized Linux clock, then update 145 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be 146 * called as close as possible to 500 ms before the new second starts. 147 */ 148 if (ntp_synced() 149 && xtime.tv_sec > state.last_rtc_update + 660 150 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 151 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { 152 int tmp = set_rtc_mmss(xtime.tv_sec); 153 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); 154 } 155 156 write_sequnlock(&xtime_lock); 157 return IRQ_HANDLED; 158 } 159 160 void 161 common_init_rtc(void) 162 { 163 unsigned char x; 164 165 /* Reset periodic interrupt frequency. */ 166 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 167 /* Test includes known working values on various platforms 168 where 0x26 is wrong; we refuse to change those. */ 169 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 170 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 171 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 172 } 173 174 /* Turn on periodic interrupts. */ 175 x = CMOS_READ(RTC_CONTROL); 176 if (!(x & RTC_PIE)) { 177 printk("Turning on RTC interrupts.\n"); 178 x |= RTC_PIE; 179 x &= ~(RTC_AIE | RTC_UIE); 180 CMOS_WRITE(x, RTC_CONTROL); 181 } 182 (void) CMOS_READ(RTC_INTR_FLAGS); 183 184 outb(0x36, 0x43); /* pit counter 0: system timer */ 185 outb(0x00, 0x40); 186 outb(0x00, 0x40); 187 188 outb(0xb6, 0x43); /* pit counter 2: speaker */ 189 outb(0x31, 0x42); 190 outb(0x13, 0x42); 191 192 init_rtc_irq(); 193 } 194 195 196 /* Validate a computed cycle counter result against the known bounds for 197 the given processor core. There's too much brokenness in the way of 198 timing hardware for any one method to work everywhere. :-( 199 200 Return 0 if the result cannot be trusted, otherwise return the argument. */ 201 202 static unsigned long __init 203 validate_cc_value(unsigned long cc) 204 { 205 static struct bounds { 206 unsigned int min, max; 207 } cpu_hz[] __initdata = { 208 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 209 [EV4_CPU] = { 100000000, 300000000 }, 210 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 211 [EV45_CPU] = { 200000000, 300000000 }, 212 [EV5_CPU] = { 250000000, 433000000 }, 213 [EV56_CPU] = { 333000000, 667000000 }, 214 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 215 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 216 [EV6_CPU] = { 466000000, 600000000 }, 217 [EV67_CPU] = { 600000000, 750000000 }, 218 [EV68AL_CPU] = { 750000000, 940000000 }, 219 [EV68CB_CPU] = { 1000000000, 1333333333 }, 220 /* None of the following are shipping as of 2001-11-01. */ 221 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 222 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 223 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 224 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 225 }; 226 227 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 228 const unsigned int deviation = 10000000; 229 230 struct percpu_struct *cpu; 231 unsigned int index; 232 233 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 234 index = cpu->type & 0xffffffff; 235 236 /* If index out of bounds, no way to validate. */ 237 if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0])) 238 return cc; 239 240 /* If index contains no data, no way to validate. */ 241 if (cpu_hz[index].max == 0) 242 return cc; 243 244 if (cc < cpu_hz[index].min - deviation 245 || cc > cpu_hz[index].max + deviation) 246 return 0; 247 248 return cc; 249 } 250 251 252 /* 253 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 254 * arch/i386/time.c. 255 */ 256 257 #define CALIBRATE_LATCH 0xffff 258 #define TIMEOUT_COUNT 0x100000 259 260 static unsigned long __init 261 calibrate_cc_with_pit(void) 262 { 263 int cc, count = 0; 264 265 /* Set the Gate high, disable speaker */ 266 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 267 268 /* 269 * Now let's take care of CTC channel 2 270 * 271 * Set the Gate high, program CTC channel 2 for mode 0, 272 * (interrupt on terminal count mode), binary count, 273 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 274 */ 275 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 276 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 277 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 278 279 cc = rpcc(); 280 do { 281 count++; 282 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 283 cc = rpcc() - cc; 284 285 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 286 if (count <= 1 || count == TIMEOUT_COUNT) 287 return 0; 288 289 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 290 } 291 292 /* The Linux interpretation of the CMOS clock register contents: 293 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 294 RTC registers show the second which has precisely just started. 295 Let's hope other operating systems interpret the RTC the same way. */ 296 297 static unsigned long __init 298 rpcc_after_update_in_progress(void) 299 { 300 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 301 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 302 303 return rpcc(); 304 } 305 306 void __init 307 time_init(void) 308 { 309 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; 310 unsigned long cycle_freq, tolerance; 311 long diff; 312 313 /* Calibrate CPU clock -- attempt #1. */ 314 if (!est_cycle_freq) 315 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 316 317 cc1 = rpcc_after_update_in_progress(); 318 319 /* Calibrate CPU clock -- attempt #2. */ 320 if (!est_cycle_freq) { 321 cc2 = rpcc_after_update_in_progress(); 322 est_cycle_freq = validate_cc_value(cc2 - cc1); 323 cc1 = cc2; 324 } 325 326 cycle_freq = hwrpb->cycle_freq; 327 if (est_cycle_freq) { 328 /* If the given value is within 250 PPM of what we calculated, 329 accept it. Otherwise, use what we found. */ 330 tolerance = cycle_freq / 4000; 331 diff = cycle_freq - est_cycle_freq; 332 if (diff < 0) 333 diff = -diff; 334 if ((unsigned long)diff > tolerance) { 335 cycle_freq = est_cycle_freq; 336 printk("HWRPB cycle frequency bogus. " 337 "Estimated %lu Hz\n", cycle_freq); 338 } else { 339 est_cycle_freq = 0; 340 } 341 } else if (! validate_cc_value (cycle_freq)) { 342 printk("HWRPB cycle frequency bogus, " 343 "and unable to estimate a proper value!\n"); 344 } 345 346 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 347 to settle, as the Update-In-Progress bit going low isn't good 348 enough on some hardware. 2ms is our guess; we haven't found 349 bogomips yet, but this is close on a 500Mhz box. */ 350 __delay(1000000); 351 352 sec = CMOS_READ(RTC_SECONDS); 353 min = CMOS_READ(RTC_MINUTES); 354 hour = CMOS_READ(RTC_HOURS); 355 day = CMOS_READ(RTC_DAY_OF_MONTH); 356 mon = CMOS_READ(RTC_MONTH); 357 year = CMOS_READ(RTC_YEAR); 358 359 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 360 BCD_TO_BIN(sec); 361 BCD_TO_BIN(min); 362 BCD_TO_BIN(hour); 363 BCD_TO_BIN(day); 364 BCD_TO_BIN(mon); 365 BCD_TO_BIN(year); 366 } 367 368 /* PC-like is standard; used for year >= 70 */ 369 epoch = 1900; 370 if (year < 20) 371 epoch = 2000; 372 else if (year >= 20 && year < 48) 373 /* NT epoch */ 374 epoch = 1980; 375 else if (year >= 48 && year < 70) 376 /* Digital UNIX epoch */ 377 epoch = 1952; 378 379 printk(KERN_INFO "Using epoch = %d\n", epoch); 380 381 if ((year += epoch) < 1970) 382 year += 100; 383 384 xtime.tv_sec = mktime(year, mon, day, hour, min, sec); 385 xtime.tv_nsec = 0; 386 387 wall_to_monotonic.tv_sec -= xtime.tv_sec; 388 wall_to_monotonic.tv_nsec = 0; 389 390 if (HZ > (1<<16)) { 391 extern void __you_loose (void); 392 __you_loose(); 393 } 394 395 state.last_time = cc1; 396 state.scaled_ticks_per_cycle 397 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 398 state.last_rtc_update = 0; 399 state.partial_tick = 0L; 400 401 /* Startup the timer source. */ 402 alpha_mv.init_rtc(); 403 } 404 405 /* 406 * Use the cycle counter to estimate an displacement from the last time 407 * tick. Unfortunately the Alpha designers made only the low 32-bits of 408 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz 409 * part. So we can't do the "find absolute time in terms of cycles" thing 410 * that the other ports do. 411 */ 412 void 413 do_gettimeofday(struct timeval *tv) 414 { 415 unsigned long flags; 416 unsigned long sec, usec, lost, seq; 417 unsigned long delta_cycles, delta_usec, partial_tick; 418 419 do { 420 seq = read_seqbegin_irqsave(&xtime_lock, flags); 421 422 delta_cycles = rpcc() - state.last_time; 423 sec = xtime.tv_sec; 424 usec = (xtime.tv_nsec / 1000); 425 partial_tick = state.partial_tick; 426 lost = jiffies - wall_jiffies; 427 428 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 429 430 #ifdef CONFIG_SMP 431 /* Until and unless we figure out how to get cpu cycle counters 432 in sync and keep them there, we can't use the rpcc tricks. */ 433 delta_usec = lost * (1000000 / HZ); 434 #else 435 /* 436 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) 437 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) 438 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks) 439 * 440 * which, given a 600MHz cycle and a 1024Hz tick, has a 441 * dynamic range of about 1.7e17, which is less than the 442 * 1.8e19 in an unsigned long, so we are safe from overflow. 443 * 444 * Round, but with .5 up always, since .5 to even is harder 445 * with no clear gain. 446 */ 447 448 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 449 + partial_tick 450 + (lost << FIX_SHIFT)) * 15625; 451 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 452 #endif 453 454 usec += delta_usec; 455 if (usec >= 1000000) { 456 sec += 1; 457 usec -= 1000000; 458 } 459 460 tv->tv_sec = sec; 461 tv->tv_usec = usec; 462 } 463 464 EXPORT_SYMBOL(do_gettimeofday); 465 466 int 467 do_settimeofday(struct timespec *tv) 468 { 469 time_t wtm_sec, sec = tv->tv_sec; 470 long wtm_nsec, nsec = tv->tv_nsec; 471 unsigned long delta_nsec; 472 473 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 474 return -EINVAL; 475 476 write_seqlock_irq(&xtime_lock); 477 478 /* The offset that is added into time in do_gettimeofday above 479 must be subtracted out here to keep a coherent view of the 480 time. Without this, a full-tick error is possible. */ 481 482 #ifdef CONFIG_SMP 483 delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ); 484 #else 485 delta_nsec = rpcc() - state.last_time; 486 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle 487 + state.partial_tick 488 + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625; 489 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 490 delta_nsec *= 1000; 491 #endif 492 493 nsec -= delta_nsec; 494 495 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 496 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 497 498 set_normalized_timespec(&xtime, sec, nsec); 499 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 500 501 ntp_clear(); 502 503 write_sequnlock_irq(&xtime_lock); 504 clock_was_set(); 505 return 0; 506 } 507 508 EXPORT_SYMBOL(do_settimeofday); 509 510 511 /* 512 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 513 * called 500 ms after the second nowtime has started, because when 514 * nowtime is written into the registers of the CMOS clock, it will 515 * jump to the next second precisely 500 ms later. Check the Motorola 516 * MC146818A or Dallas DS12887 data sheet for details. 517 * 518 * BUG: This routine does not handle hour overflow properly; it just 519 * sets the minutes. Usually you won't notice until after reboot! 520 */ 521 522 523 static int 524 set_rtc_mmss(unsigned long nowtime) 525 { 526 int retval = 0; 527 int real_seconds, real_minutes, cmos_minutes; 528 unsigned char save_control, save_freq_select; 529 530 /* irq are locally disabled here */ 531 spin_lock(&rtc_lock); 532 /* Tell the clock it's being set */ 533 save_control = CMOS_READ(RTC_CONTROL); 534 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 535 536 /* Stop and reset prescaler */ 537 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 538 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 539 540 cmos_minutes = CMOS_READ(RTC_MINUTES); 541 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 542 BCD_TO_BIN(cmos_minutes); 543 544 /* 545 * since we're only adjusting minutes and seconds, 546 * don't interfere with hour overflow. This avoids 547 * messing with unknown time zones but requires your 548 * RTC not to be off by more than 15 minutes 549 */ 550 real_seconds = nowtime % 60; 551 real_minutes = nowtime / 60; 552 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 553 /* correct for half hour time zone */ 554 real_minutes += 30; 555 } 556 real_minutes %= 60; 557 558 if (abs(real_minutes - cmos_minutes) < 30) { 559 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 560 BIN_TO_BCD(real_seconds); 561 BIN_TO_BCD(real_minutes); 562 } 563 CMOS_WRITE(real_seconds,RTC_SECONDS); 564 CMOS_WRITE(real_minutes,RTC_MINUTES); 565 } else { 566 printk(KERN_WARNING 567 "set_rtc_mmss: can't update from %d to %d\n", 568 cmos_minutes, real_minutes); 569 retval = -1; 570 } 571 572 /* The following flags have to be released exactly in this order, 573 * otherwise the DS12887 (popular MC146818A clone with integrated 574 * battery and quartz) will not reset the oscillator and will not 575 * update precisely 500 ms later. You won't find this mentioned in 576 * the Dallas Semiconductor data sheets, but who believes data 577 * sheets anyway ... -- Markus Kuhn 578 */ 579 CMOS_WRITE(save_control, RTC_CONTROL); 580 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 581 spin_unlock(&rtc_lock); 582 583 return retval; 584 } 585