1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 #include <linux/irq_work.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/io.h> 48 #include <asm/hwrpb.h> 49 #include <asm/rtc.h> 50 51 #include <linux/mc146818rtc.h> 52 #include <linux/time.h> 53 #include <linux/timex.h> 54 #include <linux/clocksource.h> 55 56 #include "proto.h" 57 #include "irq_impl.h" 58 59 static int set_rtc_mmss(unsigned long); 60 61 DEFINE_SPINLOCK(rtc_lock); 62 EXPORT_SYMBOL(rtc_lock); 63 64 #define TICK_SIZE (tick_nsec / 1000) 65 66 /* 67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 69 * for large CPU clock rates. 70 */ 71 #define FIX_SHIFT 48 72 73 /* lump static variables together for more efficient access: */ 74 static struct { 75 /* cycle counter last time it got invoked */ 76 __u32 last_time; 77 /* ticks/cycle * 2^48 */ 78 unsigned long scaled_ticks_per_cycle; 79 /* partial unused tick */ 80 unsigned long partial_tick; 81 } state; 82 83 unsigned long est_cycle_freq; 84 85 #ifdef CONFIG_IRQ_WORK 86 87 DEFINE_PER_CPU(u8, irq_work_pending); 88 89 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 90 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 91 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 92 93 void arch_irq_work_raise(void) 94 { 95 set_irq_work_pending_flag(); 96 } 97 98 #else /* CONFIG_IRQ_WORK */ 99 100 #define test_irq_work_pending() 0 101 #define clear_irq_work_pending() 102 103 #endif /* CONFIG_IRQ_WORK */ 104 105 106 static inline __u32 rpcc(void) 107 { 108 return __builtin_alpha_rpcc(); 109 } 110 111 int update_persistent_clock(struct timespec now) 112 { 113 return set_rtc_mmss(now.tv_sec); 114 } 115 116 void read_persistent_clock(struct timespec *ts) 117 { 118 unsigned int year, mon, day, hour, min, sec, epoch; 119 120 sec = CMOS_READ(RTC_SECONDS); 121 min = CMOS_READ(RTC_MINUTES); 122 hour = CMOS_READ(RTC_HOURS); 123 day = CMOS_READ(RTC_DAY_OF_MONTH); 124 mon = CMOS_READ(RTC_MONTH); 125 year = CMOS_READ(RTC_YEAR); 126 127 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 128 sec = bcd2bin(sec); 129 min = bcd2bin(min); 130 hour = bcd2bin(hour); 131 day = bcd2bin(day); 132 mon = bcd2bin(mon); 133 year = bcd2bin(year); 134 } 135 136 /* PC-like is standard; used for year >= 70 */ 137 epoch = 1900; 138 if (year < 20) 139 epoch = 2000; 140 else if (year >= 20 && year < 48) 141 /* NT epoch */ 142 epoch = 1980; 143 else if (year >= 48 && year < 70) 144 /* Digital UNIX epoch */ 145 epoch = 1952; 146 147 printk(KERN_INFO "Using epoch = %d\n", epoch); 148 149 if ((year += epoch) < 1970) 150 year += 100; 151 152 ts->tv_sec = mktime(year, mon, day, hour, min, sec); 153 ts->tv_nsec = 0; 154 } 155 156 157 158 /* 159 * timer_interrupt() needs to keep up the real-time clock, 160 * as well as call the "xtime_update()" routine every clocktick 161 */ 162 irqreturn_t timer_interrupt(int irq, void *dev) 163 { 164 unsigned long delta; 165 __u32 now; 166 long nticks; 167 168 #ifndef CONFIG_SMP 169 /* Not SMP, do kernel PC profiling here. */ 170 profile_tick(CPU_PROFILING); 171 #endif 172 173 /* 174 * Calculate how many ticks have passed since the last update, 175 * including any previous partial leftover. Save any resulting 176 * fraction for the next pass. 177 */ 178 now = rpcc(); 179 delta = now - state.last_time; 180 state.last_time = now; 181 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 182 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 183 nticks = delta >> FIX_SHIFT; 184 185 if (nticks) 186 xtime_update(nticks); 187 188 if (test_irq_work_pending()) { 189 clear_irq_work_pending(); 190 irq_work_run(); 191 } 192 193 #ifndef CONFIG_SMP 194 while (nticks--) 195 update_process_times(user_mode(get_irq_regs())); 196 #endif 197 198 return IRQ_HANDLED; 199 } 200 201 void __init 202 common_init_rtc(void) 203 { 204 unsigned char x; 205 206 /* Reset periodic interrupt frequency. */ 207 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 208 /* Test includes known working values on various platforms 209 where 0x26 is wrong; we refuse to change those. */ 210 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 211 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 212 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 213 } 214 215 /* Turn on periodic interrupts. */ 216 x = CMOS_READ(RTC_CONTROL); 217 if (!(x & RTC_PIE)) { 218 printk("Turning on RTC interrupts.\n"); 219 x |= RTC_PIE; 220 x &= ~(RTC_AIE | RTC_UIE); 221 CMOS_WRITE(x, RTC_CONTROL); 222 } 223 (void) CMOS_READ(RTC_INTR_FLAGS); 224 225 outb(0x36, 0x43); /* pit counter 0: system timer */ 226 outb(0x00, 0x40); 227 outb(0x00, 0x40); 228 229 outb(0xb6, 0x43); /* pit counter 2: speaker */ 230 outb(0x31, 0x42); 231 outb(0x13, 0x42); 232 233 init_rtc_irq(); 234 } 235 236 unsigned int common_get_rtc_time(struct rtc_time *time) 237 { 238 return __get_rtc_time(time); 239 } 240 241 int common_set_rtc_time(struct rtc_time *time) 242 { 243 return __set_rtc_time(time); 244 } 245 246 /* Validate a computed cycle counter result against the known bounds for 247 the given processor core. There's too much brokenness in the way of 248 timing hardware for any one method to work everywhere. :-( 249 250 Return 0 if the result cannot be trusted, otherwise return the argument. */ 251 252 static unsigned long __init 253 validate_cc_value(unsigned long cc) 254 { 255 static struct bounds { 256 unsigned int min, max; 257 } cpu_hz[] __initdata = { 258 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 259 [EV4_CPU] = { 100000000, 300000000 }, 260 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 261 [EV45_CPU] = { 200000000, 300000000 }, 262 [EV5_CPU] = { 250000000, 433000000 }, 263 [EV56_CPU] = { 333000000, 667000000 }, 264 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 265 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 266 [EV6_CPU] = { 466000000, 600000000 }, 267 [EV67_CPU] = { 600000000, 750000000 }, 268 [EV68AL_CPU] = { 750000000, 940000000 }, 269 [EV68CB_CPU] = { 1000000000, 1333333333 }, 270 /* None of the following are shipping as of 2001-11-01. */ 271 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 272 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 273 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 274 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 275 }; 276 277 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 278 const unsigned int deviation = 10000000; 279 280 struct percpu_struct *cpu; 281 unsigned int index; 282 283 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 284 index = cpu->type & 0xffffffff; 285 286 /* If index out of bounds, no way to validate. */ 287 if (index >= ARRAY_SIZE(cpu_hz)) 288 return cc; 289 290 /* If index contains no data, no way to validate. */ 291 if (cpu_hz[index].max == 0) 292 return cc; 293 294 if (cc < cpu_hz[index].min - deviation 295 || cc > cpu_hz[index].max + deviation) 296 return 0; 297 298 return cc; 299 } 300 301 302 /* 303 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 304 * arch/i386/time.c. 305 */ 306 307 #define CALIBRATE_LATCH 0xffff 308 #define TIMEOUT_COUNT 0x100000 309 310 static unsigned long __init 311 calibrate_cc_with_pit(void) 312 { 313 int cc, count = 0; 314 315 /* Set the Gate high, disable speaker */ 316 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 317 318 /* 319 * Now let's take care of CTC channel 2 320 * 321 * Set the Gate high, program CTC channel 2 for mode 0, 322 * (interrupt on terminal count mode), binary count, 323 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 324 */ 325 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 326 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 327 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 328 329 cc = rpcc(); 330 do { 331 count++; 332 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 333 cc = rpcc() - cc; 334 335 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 336 if (count <= 1 || count == TIMEOUT_COUNT) 337 return 0; 338 339 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 340 } 341 342 /* The Linux interpretation of the CMOS clock register contents: 343 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 344 RTC registers show the second which has precisely just started. 345 Let's hope other operating systems interpret the RTC the same way. */ 346 347 static unsigned long __init 348 rpcc_after_update_in_progress(void) 349 { 350 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 351 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 352 353 return rpcc(); 354 } 355 356 #ifndef CONFIG_SMP 357 /* Until and unless we figure out how to get cpu cycle counters 358 in sync and keep them there, we can't use the rpcc. */ 359 static cycle_t read_rpcc(struct clocksource *cs) 360 { 361 cycle_t ret = (cycle_t)rpcc(); 362 return ret; 363 } 364 365 static struct clocksource clocksource_rpcc = { 366 .name = "rpcc", 367 .rating = 300, 368 .read = read_rpcc, 369 .mask = CLOCKSOURCE_MASK(32), 370 .flags = CLOCK_SOURCE_IS_CONTINUOUS 371 }; 372 373 static inline void register_rpcc_clocksource(long cycle_freq) 374 { 375 clocksource_register_hz(&clocksource_rpcc, cycle_freq); 376 } 377 #else /* !CONFIG_SMP */ 378 static inline void register_rpcc_clocksource(long cycle_freq) 379 { 380 } 381 #endif /* !CONFIG_SMP */ 382 383 void __init 384 time_init(void) 385 { 386 unsigned int cc1, cc2; 387 unsigned long cycle_freq, tolerance; 388 long diff; 389 390 /* Calibrate CPU clock -- attempt #1. */ 391 if (!est_cycle_freq) 392 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 393 394 cc1 = rpcc(); 395 396 /* Calibrate CPU clock -- attempt #2. */ 397 if (!est_cycle_freq) { 398 cc1 = rpcc_after_update_in_progress(); 399 cc2 = rpcc_after_update_in_progress(); 400 est_cycle_freq = validate_cc_value(cc2 - cc1); 401 cc1 = cc2; 402 } 403 404 cycle_freq = hwrpb->cycle_freq; 405 if (est_cycle_freq) { 406 /* If the given value is within 250 PPM of what we calculated, 407 accept it. Otherwise, use what we found. */ 408 tolerance = cycle_freq / 4000; 409 diff = cycle_freq - est_cycle_freq; 410 if (diff < 0) 411 diff = -diff; 412 if ((unsigned long)diff > tolerance) { 413 cycle_freq = est_cycle_freq; 414 printk("HWRPB cycle frequency bogus. " 415 "Estimated %lu Hz\n", cycle_freq); 416 } else { 417 est_cycle_freq = 0; 418 } 419 } else if (! validate_cc_value (cycle_freq)) { 420 printk("HWRPB cycle frequency bogus, " 421 "and unable to estimate a proper value!\n"); 422 } 423 424 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 425 to settle, as the Update-In-Progress bit going low isn't good 426 enough on some hardware. 2ms is our guess; we haven't found 427 bogomips yet, but this is close on a 500Mhz box. */ 428 __delay(1000000); 429 430 431 if (HZ > (1<<16)) { 432 extern void __you_loose (void); 433 __you_loose(); 434 } 435 436 register_rpcc_clocksource(cycle_freq); 437 438 state.last_time = cc1; 439 state.scaled_ticks_per_cycle 440 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 441 state.partial_tick = 0L; 442 443 /* Startup the timer source. */ 444 alpha_mv.init_rtc(); 445 } 446 447 /* 448 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 449 * called 500 ms after the second nowtime has started, because when 450 * nowtime is written into the registers of the CMOS clock, it will 451 * jump to the next second precisely 500 ms later. Check the Motorola 452 * MC146818A or Dallas DS12887 data sheet for details. 453 * 454 * BUG: This routine does not handle hour overflow properly; it just 455 * sets the minutes. Usually you won't notice until after reboot! 456 */ 457 458 459 static int 460 set_rtc_mmss(unsigned long nowtime) 461 { 462 int retval = 0; 463 int real_seconds, real_minutes, cmos_minutes; 464 unsigned char save_control, save_freq_select; 465 466 /* irq are locally disabled here */ 467 spin_lock(&rtc_lock); 468 /* Tell the clock it's being set */ 469 save_control = CMOS_READ(RTC_CONTROL); 470 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 471 472 /* Stop and reset prescaler */ 473 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 474 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 475 476 cmos_minutes = CMOS_READ(RTC_MINUTES); 477 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 478 cmos_minutes = bcd2bin(cmos_minutes); 479 480 /* 481 * since we're only adjusting minutes and seconds, 482 * don't interfere with hour overflow. This avoids 483 * messing with unknown time zones but requires your 484 * RTC not to be off by more than 15 minutes 485 */ 486 real_seconds = nowtime % 60; 487 real_minutes = nowtime / 60; 488 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 489 /* correct for half hour time zone */ 490 real_minutes += 30; 491 } 492 real_minutes %= 60; 493 494 if (abs(real_minutes - cmos_minutes) < 30) { 495 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 496 real_seconds = bin2bcd(real_seconds); 497 real_minutes = bin2bcd(real_minutes); 498 } 499 CMOS_WRITE(real_seconds,RTC_SECONDS); 500 CMOS_WRITE(real_minutes,RTC_MINUTES); 501 } else { 502 printk_once(KERN_NOTICE 503 "set_rtc_mmss: can't update from %d to %d\n", 504 cmos_minutes, real_minutes); 505 retval = -1; 506 } 507 508 /* The following flags have to be released exactly in this order, 509 * otherwise the DS12887 (popular MC146818A clone with integrated 510 * battery and quartz) will not reset the oscillator and will not 511 * update precisely 500 ms later. You won't find this mentioned in 512 * the Dallas Semiconductor data sheets, but who believes data 513 * sheets anyway ... -- Markus Kuhn 514 */ 515 CMOS_WRITE(save_control, RTC_CONTROL); 516 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 517 spin_unlock(&rtc_lock); 518 519 return retval; 520 } 521