xref: /openbmc/linux/arch/alpha/kernel/time.c (revision 2999a4b3)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the clocksource time handling.
7  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
8  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
9  * 1997-01-09    Adrian Sun
10  *      use interval timer if CONFIG_RTC=y
11  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
12  *      fixed tick loss calculation in timer_interrupt
13  *      (round system clock to nearest tick instead of truncating)
14  *      fixed algorithm in time_init for getting time from CMOS clock
15  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
16  *	fixed algorithm in do_gettimeofday() for calculating the precise time
17  *	from processor cycle counter (now taking lost_ticks into account)
18  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
19  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
20  */
21 #include <linux/errno.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h>
30 #include <linux/irq.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/bcd.h>
34 #include <linux/profile.h>
35 #include <linux/irq_work.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/hwrpb.h>
40 
41 #include <linux/mc146818rtc.h>
42 #include <linux/time.h>
43 #include <linux/timex.h>
44 #include <linux/clocksource.h>
45 #include <linux/clockchips.h>
46 
47 #include "proto.h"
48 #include "irq_impl.h"
49 
50 DEFINE_SPINLOCK(rtc_lock);
51 EXPORT_SYMBOL(rtc_lock);
52 
53 unsigned long est_cycle_freq;
54 
55 #ifdef CONFIG_IRQ_WORK
56 
57 DEFINE_PER_CPU(u8, irq_work_pending);
58 
59 #define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
60 #define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
61 #define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
62 
63 void arch_irq_work_raise(void)
64 {
65 	set_irq_work_pending_flag();
66 }
67 
68 #else  /* CONFIG_IRQ_WORK */
69 
70 #define test_irq_work_pending()      0
71 #define clear_irq_work_pending()
72 
73 #endif /* CONFIG_IRQ_WORK */
74 
75 
76 static inline __u32 rpcc(void)
77 {
78 	return __builtin_alpha_rpcc();
79 }
80 
81 
82 
83 /*
84  * The RTC as a clock_event_device primitive.
85  */
86 
87 static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
88 
89 irqreturn_t
90 rtc_timer_interrupt(int irq, void *dev)
91 {
92 	int cpu = smp_processor_id();
93 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
94 
95 	/* Don't run the hook for UNUSED or SHUTDOWN.  */
96 	if (likely(ce->mode == CLOCK_EVT_MODE_PERIODIC))
97 		ce->event_handler(ce);
98 
99 	if (test_irq_work_pending()) {
100 		clear_irq_work_pending();
101 		irq_work_run();
102 	}
103 
104 	return IRQ_HANDLED;
105 }
106 
107 static void
108 rtc_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce)
109 {
110 	/* The mode member of CE is updated in generic code.
111 	   Since we only support periodic events, nothing to do.  */
112 }
113 
114 static int
115 rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
116 {
117 	/* This hook is for oneshot mode, which we don't support.  */
118 	return -EINVAL;
119 }
120 
121 static void __init
122 init_rtc_clockevent(void)
123 {
124 	int cpu = smp_processor_id();
125 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
126 
127 	*ce = (struct clock_event_device){
128 		.name = "rtc",
129 		.features = CLOCK_EVT_FEAT_PERIODIC,
130 		.rating = 100,
131 		.cpumask = cpumask_of(cpu),
132 		.set_mode = rtc_ce_set_mode,
133 		.set_next_event = rtc_ce_set_next_event,
134 	};
135 
136 	clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
137 }
138 
139 
140 /*
141  * The QEMU clock as a clocksource primitive.
142  */
143 
144 static cycle_t
145 qemu_cs_read(struct clocksource *cs)
146 {
147 	return qemu_get_vmtime();
148 }
149 
150 static struct clocksource qemu_cs = {
151 	.name                   = "qemu",
152 	.rating                 = 400,
153 	.read                   = qemu_cs_read,
154 	.mask                   = CLOCKSOURCE_MASK(64),
155 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
156 	.max_idle_ns		= LONG_MAX
157 };
158 
159 
160 /*
161  * The QEMU alarm as a clock_event_device primitive.
162  */
163 
164 static void
165 qemu_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce)
166 {
167 	/* The mode member of CE is updated for us in generic code.
168 	   Just make sure that the event is disabled.  */
169 	qemu_set_alarm_abs(0);
170 }
171 
172 static int
173 qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
174 {
175 	qemu_set_alarm_rel(evt);
176 	return 0;
177 }
178 
179 static irqreturn_t
180 qemu_timer_interrupt(int irq, void *dev)
181 {
182 	int cpu = smp_processor_id();
183 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
184 
185 	ce->event_handler(ce);
186 	return IRQ_HANDLED;
187 }
188 
189 static void __init
190 init_qemu_clockevent(void)
191 {
192 	int cpu = smp_processor_id();
193 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
194 
195 	*ce = (struct clock_event_device){
196 		.name = "qemu",
197 		.features = CLOCK_EVT_FEAT_ONESHOT,
198 		.rating = 400,
199 		.cpumask = cpumask_of(cpu),
200 		.set_mode = qemu_ce_set_mode,
201 		.set_next_event = qemu_ce_set_next_event,
202 	};
203 
204 	clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
205 }
206 
207 
208 void __init
209 common_init_rtc(void)
210 {
211 	unsigned char x, sel = 0;
212 
213 	/* Reset periodic interrupt frequency.  */
214 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
215  	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
216 	/* Test includes known working values on various platforms
217 	   where 0x26 is wrong; we refuse to change those. */
218  	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
219 		sel = RTC_REF_CLCK_32KHZ + 6;
220 	}
221 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
222 	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
223 #else
224 # error "Unknown HZ from arch/alpha/Kconfig"
225 #endif
226 	if (sel) {
227 		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
228 		       CONFIG_HZ, sel);
229 		CMOS_WRITE(sel, RTC_FREQ_SELECT);
230  	}
231 
232 	/* Turn on periodic interrupts.  */
233 	x = CMOS_READ(RTC_CONTROL);
234 	if (!(x & RTC_PIE)) {
235 		printk("Turning on RTC interrupts.\n");
236 		x |= RTC_PIE;
237 		x &= ~(RTC_AIE | RTC_UIE);
238 		CMOS_WRITE(x, RTC_CONTROL);
239 	}
240 	(void) CMOS_READ(RTC_INTR_FLAGS);
241 
242 	outb(0x36, 0x43);	/* pit counter 0: system timer */
243 	outb(0x00, 0x40);
244 	outb(0x00, 0x40);
245 
246 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
247 	outb(0x31, 0x42);
248 	outb(0x13, 0x42);
249 
250 	init_rtc_irq();
251 }
252 
253 
254 #ifndef CONFIG_ALPHA_WTINT
255 /*
256  * The RPCC as a clocksource primitive.
257  *
258  * While we have free-running timecounters running on all CPUs, and we make
259  * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
260  * with the wall clock, that initialization isn't kept up-to-date across
261  * different time counters in SMP mode.  Therefore we can only use this
262  * method when there's only one CPU enabled.
263  *
264  * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
265  * or stop altogether, while waiting for the interrupt.  Therefore we cannot
266  * use this method when WTINT is in use.
267  */
268 
269 static cycle_t read_rpcc(struct clocksource *cs)
270 {
271 	return rpcc();
272 }
273 
274 static struct clocksource clocksource_rpcc = {
275 	.name                   = "rpcc",
276 	.rating                 = 300,
277 	.read                   = read_rpcc,
278 	.mask                   = CLOCKSOURCE_MASK(32),
279 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
280 };
281 #endif /* ALPHA_WTINT */
282 
283 
284 /* Validate a computed cycle counter result against the known bounds for
285    the given processor core.  There's too much brokenness in the way of
286    timing hardware for any one method to work everywhere.  :-(
287 
288    Return 0 if the result cannot be trusted, otherwise return the argument.  */
289 
290 static unsigned long __init
291 validate_cc_value(unsigned long cc)
292 {
293 	static struct bounds {
294 		unsigned int min, max;
295 	} cpu_hz[] __initdata = {
296 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
297 		[EV4_CPU]    = {  100000000,  300000000 },
298 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
299 		[EV45_CPU]   = {  200000000,  300000000 },
300 		[EV5_CPU]    = {  250000000,  433000000 },
301 		[EV56_CPU]   = {  333000000,  667000000 },
302 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
303 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
304 		[EV6_CPU]    = {  466000000,  600000000 },
305 		[EV67_CPU]   = {  600000000,  750000000 },
306 		[EV68AL_CPU] = {  750000000,  940000000 },
307 		[EV68CB_CPU] = { 1000000000, 1333333333 },
308 		/* None of the following are shipping as of 2001-11-01.  */
309 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
310 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
311 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
312 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
313 	};
314 
315 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
316 	const unsigned int deviation = 10000000;
317 
318 	struct percpu_struct *cpu;
319 	unsigned int index;
320 
321 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
322 	index = cpu->type & 0xffffffff;
323 
324 	/* If index out of bounds, no way to validate.  */
325 	if (index >= ARRAY_SIZE(cpu_hz))
326 		return cc;
327 
328 	/* If index contains no data, no way to validate.  */
329 	if (cpu_hz[index].max == 0)
330 		return cc;
331 
332 	if (cc < cpu_hz[index].min - deviation
333 	    || cc > cpu_hz[index].max + deviation)
334 		return 0;
335 
336 	return cc;
337 }
338 
339 
340 /*
341  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
342  * arch/i386/time.c.
343  */
344 
345 #define CALIBRATE_LATCH	0xffff
346 #define TIMEOUT_COUNT	0x100000
347 
348 static unsigned long __init
349 calibrate_cc_with_pit(void)
350 {
351 	int cc, count = 0;
352 
353 	/* Set the Gate high, disable speaker */
354 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
355 
356 	/*
357 	 * Now let's take care of CTC channel 2
358 	 *
359 	 * Set the Gate high, program CTC channel 2 for mode 0,
360 	 * (interrupt on terminal count mode), binary count,
361 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
362 	 */
363 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
364 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
365 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
366 
367 	cc = rpcc();
368 	do {
369 		count++;
370 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
371 	cc = rpcc() - cc;
372 
373 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
374 	if (count <= 1 || count == TIMEOUT_COUNT)
375 		return 0;
376 
377 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
378 }
379 
380 /* The Linux interpretation of the CMOS clock register contents:
381    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
382    RTC registers show the second which has precisely just started.
383    Let's hope other operating systems interpret the RTC the same way.  */
384 
385 static unsigned long __init
386 rpcc_after_update_in_progress(void)
387 {
388 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
389 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
390 
391 	return rpcc();
392 }
393 
394 void __init
395 time_init(void)
396 {
397 	unsigned int cc1, cc2;
398 	unsigned long cycle_freq, tolerance;
399 	long diff;
400 
401 	if (alpha_using_qemu) {
402 		clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
403 		init_qemu_clockevent();
404 
405 		timer_irqaction.handler = qemu_timer_interrupt;
406 		init_rtc_irq();
407 		return;
408 	}
409 
410 	/* Calibrate CPU clock -- attempt #1.  */
411 	if (!est_cycle_freq)
412 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
413 
414 	cc1 = rpcc();
415 
416 	/* Calibrate CPU clock -- attempt #2.  */
417 	if (!est_cycle_freq) {
418 		cc1 = rpcc_after_update_in_progress();
419 		cc2 = rpcc_after_update_in_progress();
420 		est_cycle_freq = validate_cc_value(cc2 - cc1);
421 		cc1 = cc2;
422 	}
423 
424 	cycle_freq = hwrpb->cycle_freq;
425 	if (est_cycle_freq) {
426 		/* If the given value is within 250 PPM of what we calculated,
427 		   accept it.  Otherwise, use what we found.  */
428 		tolerance = cycle_freq / 4000;
429 		diff = cycle_freq - est_cycle_freq;
430 		if (diff < 0)
431 			diff = -diff;
432 		if ((unsigned long)diff > tolerance) {
433 			cycle_freq = est_cycle_freq;
434 			printk("HWRPB cycle frequency bogus.  "
435 			       "Estimated %lu Hz\n", cycle_freq);
436 		} else {
437 			est_cycle_freq = 0;
438 		}
439 	} else if (! validate_cc_value (cycle_freq)) {
440 		printk("HWRPB cycle frequency bogus, "
441 		       "and unable to estimate a proper value!\n");
442 	}
443 
444 	/* See above for restrictions on using clocksource_rpcc.  */
445 #ifndef CONFIG_ALPHA_WTINT
446 	if (hwrpb->nr_processors == 1)
447 		clocksource_register_hz(&clocksource_rpcc, cycle_freq);
448 #endif
449 
450 	/* Startup the timer source. */
451 	alpha_mv.init_rtc();
452 	init_rtc_clockevent();
453 }
454 
455 /* Initialize the clock_event_device for secondary cpus.  */
456 #ifdef CONFIG_SMP
457 void __init
458 init_clockevent(void)
459 {
460 	if (alpha_using_qemu)
461 		init_qemu_clockevent();
462 	else
463 		init_rtc_clockevent();
464 }
465 #endif
466