xref: /openbmc/linux/arch/alpha/kernel/time.c (revision 1da177e4)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/config.h>
31 #include <linux/errno.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/irq.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/bcd.h>
44 #include <linux/profile.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 
55 #include "proto.h"
56 #include "irq_impl.h"
57 
58 u64 jiffies_64 = INITIAL_JIFFIES;
59 
60 EXPORT_SYMBOL(jiffies_64);
61 
62 extern unsigned long wall_jiffies;	/* kernel/timer.c */
63 
64 static int set_rtc_mmss(unsigned long);
65 
66 DEFINE_SPINLOCK(rtc_lock);
67 
68 #define TICK_SIZE (tick_nsec / 1000)
69 
70 /*
71  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
72  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
73  * for large CPU clock rates.
74  */
75 #define FIX_SHIFT	48
76 
77 /* lump static variables together for more efficient access: */
78 static struct {
79 	/* cycle counter last time it got invoked */
80 	__u32 last_time;
81 	/* ticks/cycle * 2^48 */
82 	unsigned long scaled_ticks_per_cycle;
83 	/* last time the CMOS clock got updated */
84 	time_t last_rtc_update;
85 	/* partial unused tick */
86 	unsigned long partial_tick;
87 } state;
88 
89 unsigned long est_cycle_freq;
90 
91 
92 static inline __u32 rpcc(void)
93 {
94     __u32 result;
95     asm volatile ("rpcc %0" : "=r"(result));
96     return result;
97 }
98 
99 /*
100  * Scheduler clock - returns current time in nanosec units.
101  *
102  * Copied from ARM code for expediency... ;-}
103  */
104 unsigned long long sched_clock(void)
105 {
106         return (unsigned long long)jiffies * (1000000000 / HZ);
107 }
108 
109 
110 /*
111  * timer_interrupt() needs to keep up the real-time clock,
112  * as well as call the "do_timer()" routine every clocktick
113  */
114 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
115 {
116 	unsigned long delta;
117 	__u32 now;
118 	long nticks;
119 
120 #ifndef CONFIG_SMP
121 	/* Not SMP, do kernel PC profiling here.  */
122 	profile_tick(CPU_PROFILING, regs);
123 #endif
124 
125 	write_seqlock(&xtime_lock);
126 
127 	/*
128 	 * Calculate how many ticks have passed since the last update,
129 	 * including any previous partial leftover.  Save any resulting
130 	 * fraction for the next pass.
131 	 */
132 	now = rpcc();
133 	delta = now - state.last_time;
134 	state.last_time = now;
135 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
136 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
137 	nticks = delta >> FIX_SHIFT;
138 
139 	while (nticks > 0) {
140 		do_timer(regs);
141 #ifndef CONFIG_SMP
142 		update_process_times(user_mode(regs));
143 #endif
144 		nticks--;
145 	}
146 
147 	/*
148 	 * If we have an externally synchronized Linux clock, then update
149 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
150 	 * called as close as possible to 500 ms before the new second starts.
151 	 */
152 	if ((time_status & STA_UNSYNC) == 0
153 	    && xtime.tv_sec > state.last_rtc_update + 660
154 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
155 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
156 		int tmp = set_rtc_mmss(xtime.tv_sec);
157 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
158 	}
159 
160 	write_sequnlock(&xtime_lock);
161 	return IRQ_HANDLED;
162 }
163 
164 void
165 common_init_rtc(void)
166 {
167 	unsigned char x;
168 
169 	/* Reset periodic interrupt frequency.  */
170 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
171         /* Test includes known working values on various platforms
172            where 0x26 is wrong; we refuse to change those. */
173 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
174 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
175 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
176 	}
177 
178 	/* Turn on periodic interrupts.  */
179 	x = CMOS_READ(RTC_CONTROL);
180 	if (!(x & RTC_PIE)) {
181 		printk("Turning on RTC interrupts.\n");
182 		x |= RTC_PIE;
183 		x &= ~(RTC_AIE | RTC_UIE);
184 		CMOS_WRITE(x, RTC_CONTROL);
185 	}
186 	(void) CMOS_READ(RTC_INTR_FLAGS);
187 
188 	outb(0x36, 0x43);	/* pit counter 0: system timer */
189 	outb(0x00, 0x40);
190 	outb(0x00, 0x40);
191 
192 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
193 	outb(0x31, 0x42);
194 	outb(0x13, 0x42);
195 
196 	init_rtc_irq();
197 }
198 
199 
200 /* Validate a computed cycle counter result against the known bounds for
201    the given processor core.  There's too much brokenness in the way of
202    timing hardware for any one method to work everywhere.  :-(
203 
204    Return 0 if the result cannot be trusted, otherwise return the argument.  */
205 
206 static unsigned long __init
207 validate_cc_value(unsigned long cc)
208 {
209 	static struct bounds {
210 		unsigned int min, max;
211 	} cpu_hz[] __initdata = {
212 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
213 		[EV4_CPU]    = {  100000000,  300000000 },
214 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
215 		[EV45_CPU]   = {  200000000,  300000000 },
216 		[EV5_CPU]    = {  250000000,  433000000 },
217 		[EV56_CPU]   = {  333000000,  667000000 },
218 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
219 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
220 		[EV6_CPU]    = {  466000000,  600000000 },
221 		[EV67_CPU]   = {  600000000,  750000000 },
222 		[EV68AL_CPU] = {  750000000,  940000000 },
223 		[EV68CB_CPU] = { 1000000000, 1333333333 },
224 		/* None of the following are shipping as of 2001-11-01.  */
225 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
226 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
227 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
228 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
229 	};
230 
231 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
232 	const unsigned int deviation = 10000000;
233 
234 	struct percpu_struct *cpu;
235 	unsigned int index;
236 
237 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
238 	index = cpu->type & 0xffffffff;
239 
240 	/* If index out of bounds, no way to validate.  */
241 	if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0]))
242 		return cc;
243 
244 	/* If index contains no data, no way to validate.  */
245 	if (cpu_hz[index].max == 0)
246 		return cc;
247 
248 	if (cc < cpu_hz[index].min - deviation
249 	    || cc > cpu_hz[index].max + deviation)
250 		return 0;
251 
252 	return cc;
253 }
254 
255 
256 /*
257  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
258  * arch/i386/time.c.
259  */
260 
261 #define CALIBRATE_LATCH	0xffff
262 #define TIMEOUT_COUNT	0x100000
263 
264 static unsigned long __init
265 calibrate_cc_with_pit(void)
266 {
267 	int cc, count = 0;
268 
269 	/* Set the Gate high, disable speaker */
270 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
271 
272 	/*
273 	 * Now let's take care of CTC channel 2
274 	 *
275 	 * Set the Gate high, program CTC channel 2 for mode 0,
276 	 * (interrupt on terminal count mode), binary count,
277 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
278 	 */
279 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
280 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
281 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
282 
283 	cc = rpcc();
284 	do {
285 		count++;
286 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
287 	cc = rpcc() - cc;
288 
289 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
290 	if (count <= 1 || count == TIMEOUT_COUNT)
291 		return 0;
292 
293 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
294 }
295 
296 /* The Linux interpretation of the CMOS clock register contents:
297    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
298    RTC registers show the second which has precisely just started.
299    Let's hope other operating systems interpret the RTC the same way.  */
300 
301 static unsigned long __init
302 rpcc_after_update_in_progress(void)
303 {
304 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
305 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
306 
307 	return rpcc();
308 }
309 
310 void __init
311 time_init(void)
312 {
313 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
314 	unsigned long cycle_freq, tolerance;
315 	long diff;
316 
317 	/* Calibrate CPU clock -- attempt #1.  */
318 	if (!est_cycle_freq)
319 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
320 
321 	cc1 = rpcc_after_update_in_progress();
322 
323 	/* Calibrate CPU clock -- attempt #2.  */
324 	if (!est_cycle_freq) {
325 		cc2 = rpcc_after_update_in_progress();
326 		est_cycle_freq = validate_cc_value(cc2 - cc1);
327 		cc1 = cc2;
328 	}
329 
330 	cycle_freq = hwrpb->cycle_freq;
331 	if (est_cycle_freq) {
332 		/* If the given value is within 250 PPM of what we calculated,
333 		   accept it.  Otherwise, use what we found.  */
334 		tolerance = cycle_freq / 4000;
335 		diff = cycle_freq - est_cycle_freq;
336 		if (diff < 0)
337 			diff = -diff;
338 		if ((unsigned long)diff > tolerance) {
339 			cycle_freq = est_cycle_freq;
340 			printk("HWRPB cycle frequency bogus.  "
341 			       "Estimated %lu Hz\n", cycle_freq);
342 		} else {
343 			est_cycle_freq = 0;
344 		}
345 	} else if (! validate_cc_value (cycle_freq)) {
346 		printk("HWRPB cycle frequency bogus, "
347 		       "and unable to estimate a proper value!\n");
348 	}
349 
350 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
351 	   to settle, as the Update-In-Progress bit going low isn't good
352 	   enough on some hardware.  2ms is our guess; we haven't found
353 	   bogomips yet, but this is close on a 500Mhz box.  */
354 	__delay(1000000);
355 
356 	sec = CMOS_READ(RTC_SECONDS);
357 	min = CMOS_READ(RTC_MINUTES);
358 	hour = CMOS_READ(RTC_HOURS);
359 	day = CMOS_READ(RTC_DAY_OF_MONTH);
360 	mon = CMOS_READ(RTC_MONTH);
361 	year = CMOS_READ(RTC_YEAR);
362 
363 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
364 		BCD_TO_BIN(sec);
365 		BCD_TO_BIN(min);
366 		BCD_TO_BIN(hour);
367 		BCD_TO_BIN(day);
368 		BCD_TO_BIN(mon);
369 		BCD_TO_BIN(year);
370 	}
371 
372 	/* PC-like is standard; used for year >= 70 */
373 	epoch = 1900;
374 	if (year < 20)
375 		epoch = 2000;
376 	else if (year >= 20 && year < 48)
377 		/* NT epoch */
378 		epoch = 1980;
379 	else if (year >= 48 && year < 70)
380 		/* Digital UNIX epoch */
381 		epoch = 1952;
382 
383 	printk(KERN_INFO "Using epoch = %d\n", epoch);
384 
385 	if ((year += epoch) < 1970)
386 		year += 100;
387 
388 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
389 	xtime.tv_nsec = 0;
390 
391         wall_to_monotonic.tv_sec -= xtime.tv_sec;
392         wall_to_monotonic.tv_nsec = 0;
393 
394 	if (HZ > (1<<16)) {
395 		extern void __you_loose (void);
396 		__you_loose();
397 	}
398 
399 	state.last_time = cc1;
400 	state.scaled_ticks_per_cycle
401 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
402 	state.last_rtc_update = 0;
403 	state.partial_tick = 0L;
404 
405 	/* Startup the timer source. */
406 	alpha_mv.init_rtc();
407 }
408 
409 /*
410  * Use the cycle counter to estimate an displacement from the last time
411  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
412  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
413  * part.  So we can't do the "find absolute time in terms of cycles" thing
414  * that the other ports do.
415  */
416 void
417 do_gettimeofday(struct timeval *tv)
418 {
419 	unsigned long flags;
420 	unsigned long sec, usec, lost, seq;
421 	unsigned long delta_cycles, delta_usec, partial_tick;
422 
423 	do {
424 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
425 
426 		delta_cycles = rpcc() - state.last_time;
427 		sec = xtime.tv_sec;
428 		usec = (xtime.tv_nsec / 1000);
429 		partial_tick = state.partial_tick;
430 		lost = jiffies - wall_jiffies;
431 
432 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
433 
434 #ifdef CONFIG_SMP
435 	/* Until and unless we figure out how to get cpu cycle counters
436 	   in sync and keep them there, we can't use the rpcc tricks.  */
437 	delta_usec = lost * (1000000 / HZ);
438 #else
439 	/*
440 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
441 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
442 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
443 	 *
444 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
445 	 * dynamic range of about 1.7e17, which is less than the
446 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
447 	 *
448 	 * Round, but with .5 up always, since .5 to even is harder
449 	 * with no clear gain.
450 	 */
451 
452 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
453 		      + partial_tick
454 		      + (lost << FIX_SHIFT)) * 15625;
455 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
456 #endif
457 
458 	usec += delta_usec;
459 	if (usec >= 1000000) {
460 		sec += 1;
461 		usec -= 1000000;
462 	}
463 
464 	tv->tv_sec = sec;
465 	tv->tv_usec = usec;
466 }
467 
468 EXPORT_SYMBOL(do_gettimeofday);
469 
470 int
471 do_settimeofday(struct timespec *tv)
472 {
473 	time_t wtm_sec, sec = tv->tv_sec;
474 	long wtm_nsec, nsec = tv->tv_nsec;
475 	unsigned long delta_nsec;
476 
477 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
478 		return -EINVAL;
479 
480 	write_seqlock_irq(&xtime_lock);
481 
482 	/* The offset that is added into time in do_gettimeofday above
483 	   must be subtracted out here to keep a coherent view of the
484 	   time.  Without this, a full-tick error is possible.  */
485 
486 #ifdef CONFIG_SMP
487 	delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ);
488 #else
489 	delta_nsec = rpcc() - state.last_time;
490 	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
491 		      + state.partial_tick
492 		      + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625;
493 	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
494 	delta_nsec *= 1000;
495 #endif
496 
497 	nsec -= delta_nsec;
498 
499 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
500 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
501 
502 	set_normalized_timespec(&xtime, sec, nsec);
503 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
504 
505 	time_adjust = 0;		/* stop active adjtime() */
506 	time_status |= STA_UNSYNC;
507 	time_maxerror = NTP_PHASE_LIMIT;
508 	time_esterror = NTP_PHASE_LIMIT;
509 
510 	write_sequnlock_irq(&xtime_lock);
511 	clock_was_set();
512 	return 0;
513 }
514 
515 EXPORT_SYMBOL(do_settimeofday);
516 
517 
518 /*
519  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
520  * called 500 ms after the second nowtime has started, because when
521  * nowtime is written into the registers of the CMOS clock, it will
522  * jump to the next second precisely 500 ms later. Check the Motorola
523  * MC146818A or Dallas DS12887 data sheet for details.
524  *
525  * BUG: This routine does not handle hour overflow properly; it just
526  *      sets the minutes. Usually you won't notice until after reboot!
527  */
528 
529 
530 static int
531 set_rtc_mmss(unsigned long nowtime)
532 {
533 	int retval = 0;
534 	int real_seconds, real_minutes, cmos_minutes;
535 	unsigned char save_control, save_freq_select;
536 
537 	/* irq are locally disabled here */
538 	spin_lock(&rtc_lock);
539 	/* Tell the clock it's being set */
540 	save_control = CMOS_READ(RTC_CONTROL);
541 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
542 
543 	/* Stop and reset prescaler */
544 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
545 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
546 
547 	cmos_minutes = CMOS_READ(RTC_MINUTES);
548 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
549 		BCD_TO_BIN(cmos_minutes);
550 
551 	/*
552 	 * since we're only adjusting minutes and seconds,
553 	 * don't interfere with hour overflow. This avoids
554 	 * messing with unknown time zones but requires your
555 	 * RTC not to be off by more than 15 minutes
556 	 */
557 	real_seconds = nowtime % 60;
558 	real_minutes = nowtime / 60;
559 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
560 		/* correct for half hour time zone */
561 		real_minutes += 30;
562 	}
563 	real_minutes %= 60;
564 
565 	if (abs(real_minutes - cmos_minutes) < 30) {
566 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
567 			BIN_TO_BCD(real_seconds);
568 			BIN_TO_BCD(real_minutes);
569 		}
570 		CMOS_WRITE(real_seconds,RTC_SECONDS);
571 		CMOS_WRITE(real_minutes,RTC_MINUTES);
572 	} else {
573 		printk(KERN_WARNING
574 		       "set_rtc_mmss: can't update from %d to %d\n",
575 		       cmos_minutes, real_minutes);
576  		retval = -1;
577 	}
578 
579 	/* The following flags have to be released exactly in this order,
580 	 * otherwise the DS12887 (popular MC146818A clone with integrated
581 	 * battery and quartz) will not reset the oscillator and will not
582 	 * update precisely 500 ms later. You won't find this mentioned in
583 	 * the Dallas Semiconductor data sheets, but who believes data
584 	 * sheets anyway ...                           -- Markus Kuhn
585 	 */
586 	CMOS_WRITE(save_control, RTC_CONTROL);
587 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
588 	spin_unlock(&rtc_lock);
589 
590 	return retval;
591 }
592