xref: /openbmc/linux/arch/alpha/kernel/time.c (revision 91531b05)
11da177e4SLinus Torvalds /*
21da177e4SLinus Torvalds  *  linux/arch/alpha/kernel/time.c
31da177e4SLinus Torvalds  *
41da177e4SLinus Torvalds  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
51da177e4SLinus Torvalds  *
61da177e4SLinus Torvalds  * This file contains the PC-specific time handling details:
71da177e4SLinus Torvalds  * reading the RTC at bootup, etc..
81da177e4SLinus Torvalds  * 1994-07-02    Alan Modra
91da177e4SLinus Torvalds  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
101da177e4SLinus Torvalds  * 1995-03-26    Markus Kuhn
111da177e4SLinus Torvalds  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
121da177e4SLinus Torvalds  *      precision CMOS clock update
131da177e4SLinus Torvalds  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
141da177e4SLinus Torvalds  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
151da177e4SLinus Torvalds  * 1997-01-09    Adrian Sun
161da177e4SLinus Torvalds  *      use interval timer if CONFIG_RTC=y
171da177e4SLinus Torvalds  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
181da177e4SLinus Torvalds  *      fixed tick loss calculation in timer_interrupt
191da177e4SLinus Torvalds  *      (round system clock to nearest tick instead of truncating)
201da177e4SLinus Torvalds  *      fixed algorithm in time_init for getting time from CMOS clock
211da177e4SLinus Torvalds  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
221da177e4SLinus Torvalds  *	fixed algorithm in do_gettimeofday() for calculating the precise time
231da177e4SLinus Torvalds  *	from processor cycle counter (now taking lost_ticks into account)
241da177e4SLinus Torvalds  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
251da177e4SLinus Torvalds  * 	Fixed time_init to be aware of epoches != 1900. This prevents
261da177e4SLinus Torvalds  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
271da177e4SLinus Torvalds  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
281da177e4SLinus Torvalds  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
291da177e4SLinus Torvalds  */
301da177e4SLinus Torvalds #include <linux/errno.h>
311da177e4SLinus Torvalds #include <linux/module.h>
321da177e4SLinus Torvalds #include <linux/sched.h>
331da177e4SLinus Torvalds #include <linux/kernel.h>
341da177e4SLinus Torvalds #include <linux/param.h>
351da177e4SLinus Torvalds #include <linux/string.h>
361da177e4SLinus Torvalds #include <linux/mm.h>
371da177e4SLinus Torvalds #include <linux/delay.h>
381da177e4SLinus Torvalds #include <linux/ioport.h>
391da177e4SLinus Torvalds #include <linux/irq.h>
401da177e4SLinus Torvalds #include <linux/interrupt.h>
411da177e4SLinus Torvalds #include <linux/init.h>
421da177e4SLinus Torvalds #include <linux/bcd.h>
431da177e4SLinus Torvalds #include <linux/profile.h>
44e360adbeSPeter Zijlstra #include <linux/irq_work.h>
451da177e4SLinus Torvalds 
461da177e4SLinus Torvalds #include <asm/uaccess.h>
471da177e4SLinus Torvalds #include <asm/io.h>
481da177e4SLinus Torvalds #include <asm/hwrpb.h>
495f7dc5d7SIvan Kokshaysky #include <asm/rtc.h>
501da177e4SLinus Torvalds 
511da177e4SLinus Torvalds #include <linux/mc146818rtc.h>
521da177e4SLinus Torvalds #include <linux/time.h>
531da177e4SLinus Torvalds #include <linux/timex.h>
549ce34c8fSJohn Stultz #include <linux/clocksource.h>
551da177e4SLinus Torvalds 
561da177e4SLinus Torvalds #include "proto.h"
571da177e4SLinus Torvalds #include "irq_impl.h"
581da177e4SLinus Torvalds 
591da177e4SLinus Torvalds static int set_rtc_mmss(unsigned long);
601da177e4SLinus Torvalds 
611da177e4SLinus Torvalds DEFINE_SPINLOCK(rtc_lock);
62cff52dafSAl Viro EXPORT_SYMBOL(rtc_lock);
631da177e4SLinus Torvalds 
641da177e4SLinus Torvalds #define TICK_SIZE (tick_nsec / 1000)
651da177e4SLinus Torvalds 
661da177e4SLinus Torvalds /*
671da177e4SLinus Torvalds  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
681da177e4SLinus Torvalds  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
691da177e4SLinus Torvalds  * for large CPU clock rates.
701da177e4SLinus Torvalds  */
711da177e4SLinus Torvalds #define FIX_SHIFT	48
721da177e4SLinus Torvalds 
731da177e4SLinus Torvalds /* lump static variables together for more efficient access: */
741da177e4SLinus Torvalds static struct {
751da177e4SLinus Torvalds 	/* cycle counter last time it got invoked */
761da177e4SLinus Torvalds 	__u32 last_time;
771da177e4SLinus Torvalds 	/* ticks/cycle * 2^48 */
781da177e4SLinus Torvalds 	unsigned long scaled_ticks_per_cycle;
791da177e4SLinus Torvalds 	/* partial unused tick */
801da177e4SLinus Torvalds 	unsigned long partial_tick;
811da177e4SLinus Torvalds } state;
821da177e4SLinus Torvalds 
831da177e4SLinus Torvalds unsigned long est_cycle_freq;
841da177e4SLinus Torvalds 
85e360adbeSPeter Zijlstra #ifdef CONFIG_IRQ_WORK
86979f8671SMichael Cree 
87e360adbeSPeter Zijlstra DEFINE_PER_CPU(u8, irq_work_pending);
88979f8671SMichael Cree 
89e360adbeSPeter Zijlstra #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
90e360adbeSPeter Zijlstra #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
91e360adbeSPeter Zijlstra #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
92979f8671SMichael Cree 
930f933625SPeter Zijlstra void arch_irq_work_raise(void)
94979f8671SMichael Cree {
95e360adbeSPeter Zijlstra 	set_irq_work_pending_flag();
96979f8671SMichael Cree }
97979f8671SMichael Cree 
98e360adbeSPeter Zijlstra #else  /* CONFIG_IRQ_WORK */
99979f8671SMichael Cree 
100e360adbeSPeter Zijlstra #define test_irq_work_pending()      0
101e360adbeSPeter Zijlstra #define clear_irq_work_pending()
102979f8671SMichael Cree 
103e360adbeSPeter Zijlstra #endif /* CONFIG_IRQ_WORK */
104979f8671SMichael Cree 
1051da177e4SLinus Torvalds 
1061da177e4SLinus Torvalds static inline __u32 rpcc(void)
1071da177e4SLinus Torvalds {
10891531b05SRichard Henderson 	return __builtin_alpha_rpcc();
1091da177e4SLinus Torvalds }
1101da177e4SLinus Torvalds 
1111e871be1SJohn Stultz int update_persistent_clock(struct timespec now)
1121e871be1SJohn Stultz {
1131e871be1SJohn Stultz 	return set_rtc_mmss(now.tv_sec);
1141e871be1SJohn Stultz }
1151e871be1SJohn Stultz 
1161e871be1SJohn Stultz void read_persistent_clock(struct timespec *ts)
1171e871be1SJohn Stultz {
1181e871be1SJohn Stultz 	unsigned int year, mon, day, hour, min, sec, epoch;
1191e871be1SJohn Stultz 
1201e871be1SJohn Stultz 	sec = CMOS_READ(RTC_SECONDS);
1211e871be1SJohn Stultz 	min = CMOS_READ(RTC_MINUTES);
1221e871be1SJohn Stultz 	hour = CMOS_READ(RTC_HOURS);
1231e871be1SJohn Stultz 	day = CMOS_READ(RTC_DAY_OF_MONTH);
1241e871be1SJohn Stultz 	mon = CMOS_READ(RTC_MONTH);
1251e871be1SJohn Stultz 	year = CMOS_READ(RTC_YEAR);
1261e871be1SJohn Stultz 
1271e871be1SJohn Stultz 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1281e871be1SJohn Stultz 		sec = bcd2bin(sec);
1291e871be1SJohn Stultz 		min = bcd2bin(min);
1301e871be1SJohn Stultz 		hour = bcd2bin(hour);
1311e871be1SJohn Stultz 		day = bcd2bin(day);
1321e871be1SJohn Stultz 		mon = bcd2bin(mon);
1331e871be1SJohn Stultz 		year = bcd2bin(year);
1341e871be1SJohn Stultz 	}
1351e871be1SJohn Stultz 
1361e871be1SJohn Stultz 	/* PC-like is standard; used for year >= 70 */
1371e871be1SJohn Stultz 	epoch = 1900;
1381e871be1SJohn Stultz 	if (year < 20)
1391e871be1SJohn Stultz 		epoch = 2000;
1401e871be1SJohn Stultz 	else if (year >= 20 && year < 48)
1411e871be1SJohn Stultz 		/* NT epoch */
1421e871be1SJohn Stultz 		epoch = 1980;
1431e871be1SJohn Stultz 	else if (year >= 48 && year < 70)
1441e871be1SJohn Stultz 		/* Digital UNIX epoch */
1451e871be1SJohn Stultz 		epoch = 1952;
1461e871be1SJohn Stultz 
1471e871be1SJohn Stultz 	printk(KERN_INFO "Using epoch = %d\n", epoch);
1481e871be1SJohn Stultz 
1491e871be1SJohn Stultz 	if ((year += epoch) < 1970)
1501e871be1SJohn Stultz 		year += 100;
1511e871be1SJohn Stultz 
1521e871be1SJohn Stultz 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
153a78eda5cSRichard Henderson 	ts->tv_nsec = 0;
1541e871be1SJohn Stultz }
1551e871be1SJohn Stultz 
1561e871be1SJohn Stultz 
1571e871be1SJohn Stultz 
1581da177e4SLinus Torvalds /*
1591da177e4SLinus Torvalds  * timer_interrupt() needs to keep up the real-time clock,
1601340f3e0STorben Hohn  * as well as call the "xtime_update()" routine every clocktick
1611da177e4SLinus Torvalds  */
1628774cb81SAl Viro irqreturn_t timer_interrupt(int irq, void *dev)
1631da177e4SLinus Torvalds {
1641da177e4SLinus Torvalds 	unsigned long delta;
1651da177e4SLinus Torvalds 	__u32 now;
1661da177e4SLinus Torvalds 	long nticks;
1671da177e4SLinus Torvalds 
1681da177e4SLinus Torvalds #ifndef CONFIG_SMP
1691da177e4SLinus Torvalds 	/* Not SMP, do kernel PC profiling here.  */
1708774cb81SAl Viro 	profile_tick(CPU_PROFILING);
1711da177e4SLinus Torvalds #endif
1721da177e4SLinus Torvalds 
1731da177e4SLinus Torvalds 	/*
1741da177e4SLinus Torvalds 	 * Calculate how many ticks have passed since the last update,
1751da177e4SLinus Torvalds 	 * including any previous partial leftover.  Save any resulting
1761da177e4SLinus Torvalds 	 * fraction for the next pass.
1771da177e4SLinus Torvalds 	 */
1781da177e4SLinus Torvalds 	now = rpcc();
1791da177e4SLinus Torvalds 	delta = now - state.last_time;
1801da177e4SLinus Torvalds 	state.last_time = now;
1811da177e4SLinus Torvalds 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
1821da177e4SLinus Torvalds 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
1831da177e4SLinus Torvalds 	nticks = delta >> FIX_SHIFT;
1841da177e4SLinus Torvalds 
185aa02cd2dSPeter Zijlstra 	if (nticks)
1861340f3e0STorben Hohn 		xtime_update(nticks);
187aa02cd2dSPeter Zijlstra 
188e360adbeSPeter Zijlstra 	if (test_irq_work_pending()) {
189e360adbeSPeter Zijlstra 		clear_irq_work_pending();
190e360adbeSPeter Zijlstra 		irq_work_run();
191979f8671SMichael Cree 	}
192979f8671SMichael Cree 
193bdc8b891SMichael Cree #ifndef CONFIG_SMP
194bdc8b891SMichael Cree 	while (nticks--)
195bdc8b891SMichael Cree 		update_process_times(user_mode(get_irq_regs()));
196bdc8b891SMichael Cree #endif
197bdc8b891SMichael Cree 
1981da177e4SLinus Torvalds 	return IRQ_HANDLED;
1991da177e4SLinus Torvalds }
2001da177e4SLinus Torvalds 
201ebaf4fc1SSam Ravnborg void __init
2021da177e4SLinus Torvalds common_init_rtc(void)
2031da177e4SLinus Torvalds {
2041da177e4SLinus Torvalds 	unsigned char x;
2051da177e4SLinus Torvalds 
2061da177e4SLinus Torvalds 	/* Reset periodic interrupt frequency.  */
2071da177e4SLinus Torvalds 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
2081da177e4SLinus Torvalds         /* Test includes known working values on various platforms
2091da177e4SLinus Torvalds            where 0x26 is wrong; we refuse to change those. */
2101da177e4SLinus Torvalds 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
2111da177e4SLinus Torvalds 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
2121da177e4SLinus Torvalds 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
2131da177e4SLinus Torvalds 	}
2141da177e4SLinus Torvalds 
2151da177e4SLinus Torvalds 	/* Turn on periodic interrupts.  */
2161da177e4SLinus Torvalds 	x = CMOS_READ(RTC_CONTROL);
2171da177e4SLinus Torvalds 	if (!(x & RTC_PIE)) {
2181da177e4SLinus Torvalds 		printk("Turning on RTC interrupts.\n");
2191da177e4SLinus Torvalds 		x |= RTC_PIE;
2201da177e4SLinus Torvalds 		x &= ~(RTC_AIE | RTC_UIE);
2211da177e4SLinus Torvalds 		CMOS_WRITE(x, RTC_CONTROL);
2221da177e4SLinus Torvalds 	}
2231da177e4SLinus Torvalds 	(void) CMOS_READ(RTC_INTR_FLAGS);
2241da177e4SLinus Torvalds 
2251da177e4SLinus Torvalds 	outb(0x36, 0x43);	/* pit counter 0: system timer */
2261da177e4SLinus Torvalds 	outb(0x00, 0x40);
2271da177e4SLinus Torvalds 	outb(0x00, 0x40);
2281da177e4SLinus Torvalds 
2291da177e4SLinus Torvalds 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
2301da177e4SLinus Torvalds 	outb(0x31, 0x42);
2311da177e4SLinus Torvalds 	outb(0x13, 0x42);
2321da177e4SLinus Torvalds 
2331da177e4SLinus Torvalds 	init_rtc_irq();
2341da177e4SLinus Torvalds }
2351da177e4SLinus Torvalds 
2365f7dc5d7SIvan Kokshaysky unsigned int common_get_rtc_time(struct rtc_time *time)
2375f7dc5d7SIvan Kokshaysky {
2385f7dc5d7SIvan Kokshaysky 	return __get_rtc_time(time);
2395f7dc5d7SIvan Kokshaysky }
2405f7dc5d7SIvan Kokshaysky 
2415f7dc5d7SIvan Kokshaysky int common_set_rtc_time(struct rtc_time *time)
2425f7dc5d7SIvan Kokshaysky {
2435f7dc5d7SIvan Kokshaysky 	return __set_rtc_time(time);
2445f7dc5d7SIvan Kokshaysky }
2451da177e4SLinus Torvalds 
2461da177e4SLinus Torvalds /* Validate a computed cycle counter result against the known bounds for
2471da177e4SLinus Torvalds    the given processor core.  There's too much brokenness in the way of
2481da177e4SLinus Torvalds    timing hardware for any one method to work everywhere.  :-(
2491da177e4SLinus Torvalds 
2501da177e4SLinus Torvalds    Return 0 if the result cannot be trusted, otherwise return the argument.  */
2511da177e4SLinus Torvalds 
2521da177e4SLinus Torvalds static unsigned long __init
2531da177e4SLinus Torvalds validate_cc_value(unsigned long cc)
2541da177e4SLinus Torvalds {
2551da177e4SLinus Torvalds 	static struct bounds {
2561da177e4SLinus Torvalds 		unsigned int min, max;
2571da177e4SLinus Torvalds 	} cpu_hz[] __initdata = {
2581da177e4SLinus Torvalds 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
2591da177e4SLinus Torvalds 		[EV4_CPU]    = {  100000000,  300000000 },
2601da177e4SLinus Torvalds 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
2611da177e4SLinus Torvalds 		[EV45_CPU]   = {  200000000,  300000000 },
2621da177e4SLinus Torvalds 		[EV5_CPU]    = {  250000000,  433000000 },
2631da177e4SLinus Torvalds 		[EV56_CPU]   = {  333000000,  667000000 },
2641da177e4SLinus Torvalds 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
2651da177e4SLinus Torvalds 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
2661da177e4SLinus Torvalds 		[EV6_CPU]    = {  466000000,  600000000 },
2671da177e4SLinus Torvalds 		[EV67_CPU]   = {  600000000,  750000000 },
2681da177e4SLinus Torvalds 		[EV68AL_CPU] = {  750000000,  940000000 },
2691da177e4SLinus Torvalds 		[EV68CB_CPU] = { 1000000000, 1333333333 },
2701da177e4SLinus Torvalds 		/* None of the following are shipping as of 2001-11-01.  */
2711da177e4SLinus Torvalds 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
2721da177e4SLinus Torvalds 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
2731da177e4SLinus Torvalds 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
2741da177e4SLinus Torvalds 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
2751da177e4SLinus Torvalds 	};
2761da177e4SLinus Torvalds 
2771da177e4SLinus Torvalds 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
2781da177e4SLinus Torvalds 	const unsigned int deviation = 10000000;
2791da177e4SLinus Torvalds 
2801da177e4SLinus Torvalds 	struct percpu_struct *cpu;
2811da177e4SLinus Torvalds 	unsigned int index;
2821da177e4SLinus Torvalds 
2831da177e4SLinus Torvalds 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
2841da177e4SLinus Torvalds 	index = cpu->type & 0xffffffff;
2851da177e4SLinus Torvalds 
2861da177e4SLinus Torvalds 	/* If index out of bounds, no way to validate.  */
28725c8716cSTobias Klauser 	if (index >= ARRAY_SIZE(cpu_hz))
2881da177e4SLinus Torvalds 		return cc;
2891da177e4SLinus Torvalds 
2901da177e4SLinus Torvalds 	/* If index contains no data, no way to validate.  */
2911da177e4SLinus Torvalds 	if (cpu_hz[index].max == 0)
2921da177e4SLinus Torvalds 		return cc;
2931da177e4SLinus Torvalds 
2941da177e4SLinus Torvalds 	if (cc < cpu_hz[index].min - deviation
2951da177e4SLinus Torvalds 	    || cc > cpu_hz[index].max + deviation)
2961da177e4SLinus Torvalds 		return 0;
2971da177e4SLinus Torvalds 
2981da177e4SLinus Torvalds 	return cc;
2991da177e4SLinus Torvalds }
3001da177e4SLinus Torvalds 
3011da177e4SLinus Torvalds 
3021da177e4SLinus Torvalds /*
3031da177e4SLinus Torvalds  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
3041da177e4SLinus Torvalds  * arch/i386/time.c.
3051da177e4SLinus Torvalds  */
3061da177e4SLinus Torvalds 
3071da177e4SLinus Torvalds #define CALIBRATE_LATCH	0xffff
3081da177e4SLinus Torvalds #define TIMEOUT_COUNT	0x100000
3091da177e4SLinus Torvalds 
3101da177e4SLinus Torvalds static unsigned long __init
3111da177e4SLinus Torvalds calibrate_cc_with_pit(void)
3121da177e4SLinus Torvalds {
3131da177e4SLinus Torvalds 	int cc, count = 0;
3141da177e4SLinus Torvalds 
3151da177e4SLinus Torvalds 	/* Set the Gate high, disable speaker */
3161da177e4SLinus Torvalds 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
3171da177e4SLinus Torvalds 
3181da177e4SLinus Torvalds 	/*
3191da177e4SLinus Torvalds 	 * Now let's take care of CTC channel 2
3201da177e4SLinus Torvalds 	 *
3211da177e4SLinus Torvalds 	 * Set the Gate high, program CTC channel 2 for mode 0,
3221da177e4SLinus Torvalds 	 * (interrupt on terminal count mode), binary count,
3231da177e4SLinus Torvalds 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
3241da177e4SLinus Torvalds 	 */
3251da177e4SLinus Torvalds 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
3261da177e4SLinus Torvalds 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
3271da177e4SLinus Torvalds 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
3281da177e4SLinus Torvalds 
3291da177e4SLinus Torvalds 	cc = rpcc();
3301da177e4SLinus Torvalds 	do {
3311da177e4SLinus Torvalds 		count++;
3321da177e4SLinus Torvalds 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
3331da177e4SLinus Torvalds 	cc = rpcc() - cc;
3341da177e4SLinus Torvalds 
3351da177e4SLinus Torvalds 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
3361da177e4SLinus Torvalds 	if (count <= 1 || count == TIMEOUT_COUNT)
3371da177e4SLinus Torvalds 		return 0;
3381da177e4SLinus Torvalds 
3391da177e4SLinus Torvalds 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
3401da177e4SLinus Torvalds }
3411da177e4SLinus Torvalds 
3421da177e4SLinus Torvalds /* The Linux interpretation of the CMOS clock register contents:
3431da177e4SLinus Torvalds    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
3441da177e4SLinus Torvalds    RTC registers show the second which has precisely just started.
3451da177e4SLinus Torvalds    Let's hope other operating systems interpret the RTC the same way.  */
3461da177e4SLinus Torvalds 
3471da177e4SLinus Torvalds static unsigned long __init
3481da177e4SLinus Torvalds rpcc_after_update_in_progress(void)
3491da177e4SLinus Torvalds {
3501da177e4SLinus Torvalds 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
3511da177e4SLinus Torvalds 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
3521da177e4SLinus Torvalds 
3531da177e4SLinus Torvalds 	return rpcc();
3541da177e4SLinus Torvalds }
3551da177e4SLinus Torvalds 
3569ce34c8fSJohn Stultz #ifndef CONFIG_SMP
3579ce34c8fSJohn Stultz /* Until and unless we figure out how to get cpu cycle counters
3589ce34c8fSJohn Stultz    in sync and keep them there, we can't use the rpcc.  */
3599ce34c8fSJohn Stultz static cycle_t read_rpcc(struct clocksource *cs)
3609ce34c8fSJohn Stultz {
3619ce34c8fSJohn Stultz 	cycle_t ret = (cycle_t)rpcc();
3629ce34c8fSJohn Stultz 	return ret;
3639ce34c8fSJohn Stultz }
3649ce34c8fSJohn Stultz 
3659ce34c8fSJohn Stultz static struct clocksource clocksource_rpcc = {
3669ce34c8fSJohn Stultz 	.name                   = "rpcc",
3679ce34c8fSJohn Stultz 	.rating                 = 300,
3689ce34c8fSJohn Stultz 	.read                   = read_rpcc,
3699ce34c8fSJohn Stultz 	.mask                   = CLOCKSOURCE_MASK(32),
3709ce34c8fSJohn Stultz 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
3719ce34c8fSJohn Stultz };
3729ce34c8fSJohn Stultz 
3739ce34c8fSJohn Stultz static inline void register_rpcc_clocksource(long cycle_freq)
3749ce34c8fSJohn Stultz {
375f550806aSJohn Stultz 	clocksource_register_hz(&clocksource_rpcc, cycle_freq);
3769ce34c8fSJohn Stultz }
3779ce34c8fSJohn Stultz #else /* !CONFIG_SMP */
3789ce34c8fSJohn Stultz static inline void register_rpcc_clocksource(long cycle_freq)
3799ce34c8fSJohn Stultz {
3809ce34c8fSJohn Stultz }
3819ce34c8fSJohn Stultz #endif /* !CONFIG_SMP */
3829ce34c8fSJohn Stultz 
3831da177e4SLinus Torvalds void __init
3841da177e4SLinus Torvalds time_init(void)
3851da177e4SLinus Torvalds {
3861e871be1SJohn Stultz 	unsigned int cc1, cc2;
3871da177e4SLinus Torvalds 	unsigned long cycle_freq, tolerance;
3881da177e4SLinus Torvalds 	long diff;
3891da177e4SLinus Torvalds 
3901da177e4SLinus Torvalds 	/* Calibrate CPU clock -- attempt #1.  */
3911da177e4SLinus Torvalds 	if (!est_cycle_freq)
3921da177e4SLinus Torvalds 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
3931da177e4SLinus Torvalds 
3944c2e6f6aSMatt Mackall 	cc1 = rpcc();
3951da177e4SLinus Torvalds 
3961da177e4SLinus Torvalds 	/* Calibrate CPU clock -- attempt #2.  */
3971da177e4SLinus Torvalds 	if (!est_cycle_freq) {
3984c2e6f6aSMatt Mackall 		cc1 = rpcc_after_update_in_progress();
3991da177e4SLinus Torvalds 		cc2 = rpcc_after_update_in_progress();
4001da177e4SLinus Torvalds 		est_cycle_freq = validate_cc_value(cc2 - cc1);
4011da177e4SLinus Torvalds 		cc1 = cc2;
4021da177e4SLinus Torvalds 	}
4031da177e4SLinus Torvalds 
4041da177e4SLinus Torvalds 	cycle_freq = hwrpb->cycle_freq;
4051da177e4SLinus Torvalds 	if (est_cycle_freq) {
4061da177e4SLinus Torvalds 		/* If the given value is within 250 PPM of what we calculated,
4071da177e4SLinus Torvalds 		   accept it.  Otherwise, use what we found.  */
4081da177e4SLinus Torvalds 		tolerance = cycle_freq / 4000;
4091da177e4SLinus Torvalds 		diff = cycle_freq - est_cycle_freq;
4101da177e4SLinus Torvalds 		if (diff < 0)
4111da177e4SLinus Torvalds 			diff = -diff;
4121da177e4SLinus Torvalds 		if ((unsigned long)diff > tolerance) {
4131da177e4SLinus Torvalds 			cycle_freq = est_cycle_freq;
4141da177e4SLinus Torvalds 			printk("HWRPB cycle frequency bogus.  "
4151da177e4SLinus Torvalds 			       "Estimated %lu Hz\n", cycle_freq);
4161da177e4SLinus Torvalds 		} else {
4171da177e4SLinus Torvalds 			est_cycle_freq = 0;
4181da177e4SLinus Torvalds 		}
4191da177e4SLinus Torvalds 	} else if (! validate_cc_value (cycle_freq)) {
4201da177e4SLinus Torvalds 		printk("HWRPB cycle frequency bogus, "
4211da177e4SLinus Torvalds 		       "and unable to estimate a proper value!\n");
4221da177e4SLinus Torvalds 	}
4231da177e4SLinus Torvalds 
4241da177e4SLinus Torvalds 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
4251da177e4SLinus Torvalds 	   to settle, as the Update-In-Progress bit going low isn't good
4261da177e4SLinus Torvalds 	   enough on some hardware.  2ms is our guess; we haven't found
4271da177e4SLinus Torvalds 	   bogomips yet, but this is close on a 500Mhz box.  */
4281da177e4SLinus Torvalds 	__delay(1000000);
4291da177e4SLinus Torvalds 
4301da177e4SLinus Torvalds 
4311da177e4SLinus Torvalds 	if (HZ > (1<<16)) {
4321da177e4SLinus Torvalds 		extern void __you_loose (void);
4331da177e4SLinus Torvalds 		__you_loose();
4341da177e4SLinus Torvalds 	}
4351da177e4SLinus Torvalds 
4369ce34c8fSJohn Stultz 	register_rpcc_clocksource(cycle_freq);
4379ce34c8fSJohn Stultz 
4381da177e4SLinus Torvalds 	state.last_time = cc1;
4391da177e4SLinus Torvalds 	state.scaled_ticks_per_cycle
4401da177e4SLinus Torvalds 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
4411da177e4SLinus Torvalds 	state.partial_tick = 0L;
4421da177e4SLinus Torvalds 
4431da177e4SLinus Torvalds 	/* Startup the timer source. */
4441da177e4SLinus Torvalds 	alpha_mv.init_rtc();
4451da177e4SLinus Torvalds }
4461da177e4SLinus Torvalds 
4471da177e4SLinus Torvalds /*
4481da177e4SLinus Torvalds  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
4491da177e4SLinus Torvalds  * called 500 ms after the second nowtime has started, because when
4501da177e4SLinus Torvalds  * nowtime is written into the registers of the CMOS clock, it will
4511da177e4SLinus Torvalds  * jump to the next second precisely 500 ms later. Check the Motorola
4521da177e4SLinus Torvalds  * MC146818A or Dallas DS12887 data sheet for details.
4531da177e4SLinus Torvalds  *
4541da177e4SLinus Torvalds  * BUG: This routine does not handle hour overflow properly; it just
4551da177e4SLinus Torvalds  *      sets the minutes. Usually you won't notice until after reboot!
4561da177e4SLinus Torvalds  */
4571da177e4SLinus Torvalds 
4581da177e4SLinus Torvalds 
4591da177e4SLinus Torvalds static int
4601da177e4SLinus Torvalds set_rtc_mmss(unsigned long nowtime)
4611da177e4SLinus Torvalds {
4621da177e4SLinus Torvalds 	int retval = 0;
4631da177e4SLinus Torvalds 	int real_seconds, real_minutes, cmos_minutes;
4641da177e4SLinus Torvalds 	unsigned char save_control, save_freq_select;
4651da177e4SLinus Torvalds 
4661da177e4SLinus Torvalds 	/* irq are locally disabled here */
4671da177e4SLinus Torvalds 	spin_lock(&rtc_lock);
4681da177e4SLinus Torvalds 	/* Tell the clock it's being set */
4691da177e4SLinus Torvalds 	save_control = CMOS_READ(RTC_CONTROL);
4701da177e4SLinus Torvalds 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
4711da177e4SLinus Torvalds 
4721da177e4SLinus Torvalds 	/* Stop and reset prescaler */
4731da177e4SLinus Torvalds 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
4741da177e4SLinus Torvalds 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
4751da177e4SLinus Torvalds 
4761da177e4SLinus Torvalds 	cmos_minutes = CMOS_READ(RTC_MINUTES);
4771da177e4SLinus Torvalds 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
47818b1bd05SAdrian Bunk 		cmos_minutes = bcd2bin(cmos_minutes);
4791da177e4SLinus Torvalds 
4801da177e4SLinus Torvalds 	/*
4811da177e4SLinus Torvalds 	 * since we're only adjusting minutes and seconds,
4821da177e4SLinus Torvalds 	 * don't interfere with hour overflow. This avoids
4831da177e4SLinus Torvalds 	 * messing with unknown time zones but requires your
4841da177e4SLinus Torvalds 	 * RTC not to be off by more than 15 minutes
4851da177e4SLinus Torvalds 	 */
4861da177e4SLinus Torvalds 	real_seconds = nowtime % 60;
4871da177e4SLinus Torvalds 	real_minutes = nowtime / 60;
4881da177e4SLinus Torvalds 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
4891da177e4SLinus Torvalds 		/* correct for half hour time zone */
4901da177e4SLinus Torvalds 		real_minutes += 30;
4911da177e4SLinus Torvalds 	}
4921da177e4SLinus Torvalds 	real_minutes %= 60;
4931da177e4SLinus Torvalds 
4941da177e4SLinus Torvalds 	if (abs(real_minutes - cmos_minutes) < 30) {
4951da177e4SLinus Torvalds 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
49618b1bd05SAdrian Bunk 			real_seconds = bin2bcd(real_seconds);
49718b1bd05SAdrian Bunk 			real_minutes = bin2bcd(real_minutes);
4981da177e4SLinus Torvalds 		}
4991da177e4SLinus Torvalds 		CMOS_WRITE(real_seconds,RTC_SECONDS);
5001da177e4SLinus Torvalds 		CMOS_WRITE(real_minutes,RTC_MINUTES);
5011da177e4SLinus Torvalds 	} else {
5023e5c1240SStephen Hemminger 		printk_once(KERN_NOTICE
5031da177e4SLinus Torvalds 		       "set_rtc_mmss: can't update from %d to %d\n",
5041da177e4SLinus Torvalds 		       cmos_minutes, real_minutes);
5051da177e4SLinus Torvalds  		retval = -1;
5061da177e4SLinus Torvalds 	}
5071da177e4SLinus Torvalds 
5081da177e4SLinus Torvalds 	/* The following flags have to be released exactly in this order,
5091da177e4SLinus Torvalds 	 * otherwise the DS12887 (popular MC146818A clone with integrated
5101da177e4SLinus Torvalds 	 * battery and quartz) will not reset the oscillator and will not
5111da177e4SLinus Torvalds 	 * update precisely 500 ms later. You won't find this mentioned in
5121da177e4SLinus Torvalds 	 * the Dallas Semiconductor data sheets, but who believes data
5131da177e4SLinus Torvalds 	 * sheets anyway ...                           -- Markus Kuhn
5141da177e4SLinus Torvalds 	 */
5151da177e4SLinus Torvalds 	CMOS_WRITE(save_control, RTC_CONTROL);
5161da177e4SLinus Torvalds 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
5171da177e4SLinus Torvalds 	spin_unlock(&rtc_lock);
5181da177e4SLinus Torvalds 
5191da177e4SLinus Torvalds 	return retval;
5201da177e4SLinus Torvalds }
521