1 /* 2 * linux/arch/alpha/kernel/sys_noritake.c 3 * 4 * Copyright (C) 1995 David A Rusling 5 * Copyright (C) 1996 Jay A Estabrook 6 * Copyright (C) 1998, 1999 Richard Henderson 7 * 8 * Code supporting the NORITAKE (AlphaServer 1000A), 9 * CORELLE (AlphaServer 800), and ALCOR Primo (AlphaStation 600A). 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/types.h> 14 #include <linux/mm.h> 15 #include <linux/sched.h> 16 #include <linux/pci.h> 17 #include <linux/init.h> 18 #include <linux/bitops.h> 19 20 #include <asm/ptrace.h> 21 #include <asm/system.h> 22 #include <asm/dma.h> 23 #include <asm/irq.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io.h> 26 #include <asm/pgtable.h> 27 #include <asm/core_apecs.h> 28 #include <asm/core_cia.h> 29 #include <asm/tlbflush.h> 30 31 #include "proto.h" 32 #include "irq_impl.h" 33 #include "pci_impl.h" 34 #include "machvec_impl.h" 35 36 /* Note mask bit is true for ENABLED irqs. */ 37 static int cached_irq_mask; 38 39 static inline void 40 noritake_update_irq_hw(int irq, int mask) 41 { 42 int port = 0x54a; 43 if (irq >= 32) { 44 mask >>= 16; 45 port = 0x54c; 46 } 47 outw(mask, port); 48 } 49 50 static void 51 noritake_enable_irq(unsigned int irq) 52 { 53 noritake_update_irq_hw(irq, cached_irq_mask |= 1 << (irq - 16)); 54 } 55 56 static void 57 noritake_disable_irq(unsigned int irq) 58 { 59 noritake_update_irq_hw(irq, cached_irq_mask &= ~(1 << (irq - 16))); 60 } 61 62 static unsigned int 63 noritake_startup_irq(unsigned int irq) 64 { 65 noritake_enable_irq(irq); 66 return 0; 67 } 68 69 static void 70 noritake_end_irq(unsigned int irq) 71 { 72 if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS))) 73 noritake_enable_irq(irq); 74 } 75 76 static struct hw_interrupt_type noritake_irq_type = { 77 .typename = "NORITAKE", 78 .startup = noritake_startup_irq, 79 .shutdown = noritake_disable_irq, 80 .enable = noritake_enable_irq, 81 .disable = noritake_disable_irq, 82 .ack = noritake_disable_irq, 83 .end = noritake_end_irq, 84 }; 85 86 static void 87 noritake_device_interrupt(unsigned long vector) 88 { 89 unsigned long pld; 90 unsigned int i; 91 92 /* Read the interrupt summary registers of NORITAKE */ 93 pld = (((unsigned long) inw(0x54c) << 32) 94 | ((unsigned long) inw(0x54a) << 16) 95 | ((unsigned long) inb(0xa0) << 8) 96 | inb(0x20)); 97 98 /* 99 * Now for every possible bit set, work through them and call 100 * the appropriate interrupt handler. 101 */ 102 while (pld) { 103 i = ffz(~pld); 104 pld &= pld - 1; /* clear least bit set */ 105 if (i < 16) { 106 isa_device_interrupt(vector); 107 } else { 108 handle_irq(i); 109 } 110 } 111 } 112 113 static void 114 noritake_srm_device_interrupt(unsigned long vector) 115 { 116 int irq; 117 118 irq = (vector - 0x800) >> 4; 119 120 /* 121 * I really hate to do this, too, but the NORITAKE SRM console also 122 * reports PCI vectors *lower* than I expected from the bit numbers 123 * in the documentation. 124 * But I really don't want to change the fixup code for allocation 125 * of IRQs, nor the alpha_irq_mask maintenance stuff, both of which 126 * look nice and clean now. 127 * So, here's this additional grotty hack... :-( 128 */ 129 if (irq >= 16) 130 irq = irq + 1; 131 132 handle_irq(irq); 133 } 134 135 static void __init 136 noritake_init_irq(void) 137 { 138 long i; 139 140 if (alpha_using_srm) 141 alpha_mv.device_interrupt = noritake_srm_device_interrupt; 142 143 outw(0, 0x54a); 144 outw(0, 0x54c); 145 146 for (i = 16; i < 48; ++i) { 147 irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL; 148 irq_desc[i].chip = &noritake_irq_type; 149 } 150 151 init_i8259a_irqs(); 152 common_init_isa_dma(); 153 } 154 155 156 /* 157 * PCI Fixup configuration. 158 * 159 * Summary @ 0x542, summary register #1: 160 * Bit Meaning 161 * 0 All valid ints from summary regs 2 & 3 162 * 1 QLOGIC ISP1020A SCSI 163 * 2 Interrupt Line A from slot 0 164 * 3 Interrupt Line B from slot 0 165 * 4 Interrupt Line A from slot 1 166 * 5 Interrupt line B from slot 1 167 * 6 Interrupt Line A from slot 2 168 * 7 Interrupt Line B from slot 2 169 * 8 Interrupt Line A from slot 3 170 * 9 Interrupt Line B from slot 3 171 *10 Interrupt Line A from slot 4 172 *11 Interrupt Line B from slot 4 173 *12 Interrupt Line A from slot 5 174 *13 Interrupt Line B from slot 5 175 *14 Interrupt Line A from slot 6 176 *15 Interrupt Line B from slot 6 177 * 178 * Summary @ 0x544, summary register #2: 179 * Bit Meaning 180 * 0 OR of all unmasked ints in SR #2 181 * 1 OR of secondary bus ints 182 * 2 Interrupt Line C from slot 0 183 * 3 Interrupt Line D from slot 0 184 * 4 Interrupt Line C from slot 1 185 * 5 Interrupt line D from slot 1 186 * 6 Interrupt Line C from slot 2 187 * 7 Interrupt Line D from slot 2 188 * 8 Interrupt Line C from slot 3 189 * 9 Interrupt Line D from slot 3 190 *10 Interrupt Line C from slot 4 191 *11 Interrupt Line D from slot 4 192 *12 Interrupt Line C from slot 5 193 *13 Interrupt Line D from slot 5 194 *14 Interrupt Line C from slot 6 195 *15 Interrupt Line D from slot 6 196 * 197 * The device to slot mapping looks like: 198 * 199 * Slot Device 200 * 7 Intel PCI-EISA bridge chip 201 * 8 DEC PCI-PCI bridge chip 202 * 11 PCI on board slot 0 203 * 12 PCI on board slot 1 204 * 13 PCI on board slot 2 205 * 206 * 207 * This two layered interrupt approach means that we allocate IRQ 16 and 208 * above for PCI interrupts. The IRQ relates to which bit the interrupt 209 * comes in on. This makes interrupt processing much easier. 210 */ 211 212 static int __init 213 noritake_map_irq(struct pci_dev *dev, u8 slot, u8 pin) 214 { 215 static char irq_tab[15][5] __initdata = { 216 /*INT INTA INTB INTC INTD */ 217 /* note: IDSELs 16, 17, and 25 are CORELLE only */ 218 { 16+1, 16+1, 16+1, 16+1, 16+1}, /* IdSel 16, QLOGIC */ 219 { -1, -1, -1, -1, -1}, /* IdSel 17, S3 Trio64 */ 220 { -1, -1, -1, -1, -1}, /* IdSel 18, PCEB */ 221 { -1, -1, -1, -1, -1}, /* IdSel 19, PPB */ 222 { -1, -1, -1, -1, -1}, /* IdSel 20, ???? */ 223 { -1, -1, -1, -1, -1}, /* IdSel 21, ???? */ 224 { 16+2, 16+2, 16+3, 32+2, 32+3}, /* IdSel 22, slot 0 */ 225 { 16+4, 16+4, 16+5, 32+4, 32+5}, /* IdSel 23, slot 1 */ 226 { 16+6, 16+6, 16+7, 32+6, 32+7}, /* IdSel 24, slot 2 */ 227 { 16+8, 16+8, 16+9, 32+8, 32+9}, /* IdSel 25, slot 3 */ 228 /* The following 5 are actually on PCI bus 1, which is 229 across the built-in bridge of the NORITAKE only. */ 230 { 16+1, 16+1, 16+1, 16+1, 16+1}, /* IdSel 16, QLOGIC */ 231 { 16+8, 16+8, 16+9, 32+8, 32+9}, /* IdSel 17, slot 3 */ 232 {16+10, 16+10, 16+11, 32+10, 32+11}, /* IdSel 18, slot 4 */ 233 {16+12, 16+12, 16+13, 32+12, 32+13}, /* IdSel 19, slot 5 */ 234 {16+14, 16+14, 16+15, 32+14, 32+15}, /* IdSel 20, slot 6 */ 235 }; 236 const long min_idsel = 5, max_idsel = 19, irqs_per_slot = 5; 237 return COMMON_TABLE_LOOKUP; 238 } 239 240 static u8 __init 241 noritake_swizzle(struct pci_dev *dev, u8 *pinp) 242 { 243 int slot, pin = *pinp; 244 245 if (dev->bus->number == 0) { 246 slot = PCI_SLOT(dev->devfn); 247 } 248 /* Check for the built-in bridge */ 249 else if (PCI_SLOT(dev->bus->self->devfn) == 8) { 250 slot = PCI_SLOT(dev->devfn) + 15; /* WAG! */ 251 } 252 else 253 { 254 /* Must be a card-based bridge. */ 255 do { 256 if (PCI_SLOT(dev->bus->self->devfn) == 8) { 257 slot = PCI_SLOT(dev->devfn) + 15; 258 break; 259 } 260 pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn)) ; 261 262 /* Move up the chain of bridges. */ 263 dev = dev->bus->self; 264 /* Slot of the next bridge. */ 265 slot = PCI_SLOT(dev->devfn); 266 } while (dev->bus->self); 267 } 268 *pinp = pin; 269 return slot; 270 } 271 272 #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO) 273 static void 274 noritake_apecs_machine_check(unsigned long vector, unsigned long la_ptr) 275 { 276 #define MCHK_NO_DEVSEL 0x205U 277 #define MCHK_NO_TABT 0x204U 278 279 struct el_common *mchk_header; 280 unsigned int code; 281 282 mchk_header = (struct el_common *)la_ptr; 283 284 /* Clear the error before any reporting. */ 285 mb(); 286 mb(); /* magic */ 287 draina(); 288 apecs_pci_clr_err(); 289 wrmces(0x7); 290 mb(); 291 292 code = mchk_header->code; 293 process_mcheck_info(vector, la_ptr, "NORITAKE APECS", 294 (mcheck_expected(0) 295 && (code == MCHK_NO_DEVSEL 296 || code == MCHK_NO_TABT))); 297 } 298 #endif 299 300 301 /* 302 * The System Vectors 303 */ 304 305 #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO) 306 struct alpha_machine_vector noritake_mv __initmv = { 307 .vector_name = "Noritake", 308 DO_EV4_MMU, 309 DO_DEFAULT_RTC, 310 DO_APECS_IO, 311 .machine_check = noritake_apecs_machine_check, 312 .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, 313 .min_io_address = EISA_DEFAULT_IO_BASE, 314 .min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE, 315 316 .nr_irqs = 48, 317 .device_interrupt = noritake_device_interrupt, 318 319 .init_arch = apecs_init_arch, 320 .init_irq = noritake_init_irq, 321 .init_rtc = common_init_rtc, 322 .init_pci = common_init_pci, 323 .pci_map_irq = noritake_map_irq, 324 .pci_swizzle = noritake_swizzle, 325 }; 326 ALIAS_MV(noritake) 327 #endif 328 329 #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_PRIMO) 330 struct alpha_machine_vector noritake_primo_mv __initmv = { 331 .vector_name = "Noritake-Primo", 332 DO_EV5_MMU, 333 DO_DEFAULT_RTC, 334 DO_CIA_IO, 335 .machine_check = cia_machine_check, 336 .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, 337 .min_io_address = EISA_DEFAULT_IO_BASE, 338 .min_mem_address = CIA_DEFAULT_MEM_BASE, 339 340 .nr_irqs = 48, 341 .device_interrupt = noritake_device_interrupt, 342 343 .init_arch = cia_init_arch, 344 .init_irq = noritake_init_irq, 345 .init_rtc = common_init_rtc, 346 .init_pci = cia_init_pci, 347 .kill_arch = cia_kill_arch, 348 .pci_map_irq = noritake_map_irq, 349 .pci_swizzle = noritake_swizzle, 350 }; 351 ALIAS_MV(noritake_primo) 352 #endif 353