1 /* 2 * linux/arch/alpha/kernel/smp.c 3 * 4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com) 5 * Renamed modified smp_call_function to smp_call_function_on_cpu() 6 * Created an function that conforms to the old calling convention 7 * of smp_call_function(). 8 * 9 * This is helpful for DCPI. 10 * 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/kernel.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/threads.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/spinlock.h> 26 #include <linux/irq.h> 27 #include <linux/cache.h> 28 #include <linux/profile.h> 29 #include <linux/bitops.h> 30 31 #include <asm/hwrpb.h> 32 #include <asm/ptrace.h> 33 #include <asm/atomic.h> 34 35 #include <asm/io.h> 36 #include <asm/irq.h> 37 #include <asm/pgtable.h> 38 #include <asm/pgalloc.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 42 #include "proto.h" 43 #include "irq_impl.h" 44 45 46 #define DEBUG_SMP 0 47 #if DEBUG_SMP 48 #define DBGS(args) printk args 49 #else 50 #define DBGS(args) 51 #endif 52 53 /* A collection of per-processor data. */ 54 struct cpuinfo_alpha cpu_data[NR_CPUS]; 55 EXPORT_SYMBOL(cpu_data); 56 57 /* A collection of single bit ipi messages. */ 58 static struct { 59 unsigned long bits ____cacheline_aligned; 60 } ipi_data[NR_CPUS] __cacheline_aligned; 61 62 enum ipi_message_type { 63 IPI_RESCHEDULE, 64 IPI_CALL_FUNC, 65 IPI_CPU_STOP, 66 }; 67 68 /* Set to a secondary's cpuid when it comes online. */ 69 static int smp_secondary_alive __devinitdata = 0; 70 71 /* Which cpus ids came online. */ 72 cpumask_t cpu_online_map; 73 74 EXPORT_SYMBOL(cpu_online_map); 75 76 int smp_num_probed; /* Internal processor count */ 77 int smp_num_cpus = 1; /* Number that came online. */ 78 EXPORT_SYMBOL(smp_num_cpus); 79 80 /* 81 * Called by both boot and secondaries to move global data into 82 * per-processor storage. 83 */ 84 static inline void __init 85 smp_store_cpu_info(int cpuid) 86 { 87 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy; 88 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION; 89 cpu_data[cpuid].need_new_asn = 0; 90 cpu_data[cpuid].asn_lock = 0; 91 } 92 93 /* 94 * Ideally sets up per-cpu profiling hooks. Doesn't do much now... 95 */ 96 static inline void __init 97 smp_setup_percpu_timer(int cpuid) 98 { 99 cpu_data[cpuid].prof_counter = 1; 100 cpu_data[cpuid].prof_multiplier = 1; 101 } 102 103 static void __init 104 wait_boot_cpu_to_stop(int cpuid) 105 { 106 unsigned long stop = jiffies + 10*HZ; 107 108 while (time_before(jiffies, stop)) { 109 if (!smp_secondary_alive) 110 return; 111 barrier(); 112 } 113 114 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid); 115 for (;;) 116 barrier(); 117 } 118 119 /* 120 * Where secondaries begin a life of C. 121 */ 122 void __init 123 smp_callin(void) 124 { 125 int cpuid = hard_smp_processor_id(); 126 127 if (cpu_test_and_set(cpuid, cpu_online_map)) { 128 printk("??, cpu 0x%x already present??\n", cpuid); 129 BUG(); 130 } 131 132 /* Turn on machine checks. */ 133 wrmces(7); 134 135 /* Set trap vectors. */ 136 trap_init(); 137 138 /* Set interrupt vector. */ 139 wrent(entInt, 0); 140 141 /* Get our local ticker going. */ 142 smp_setup_percpu_timer(cpuid); 143 144 /* Call platform-specific callin, if specified */ 145 if (alpha_mv.smp_callin) alpha_mv.smp_callin(); 146 147 /* All kernel threads share the same mm context. */ 148 atomic_inc(&init_mm.mm_count); 149 current->active_mm = &init_mm; 150 151 /* Must have completely accurate bogos. */ 152 local_irq_enable(); 153 154 /* Wait boot CPU to stop with irq enabled before running 155 calibrate_delay. */ 156 wait_boot_cpu_to_stop(cpuid); 157 mb(); 158 calibrate_delay(); 159 160 smp_store_cpu_info(cpuid); 161 /* Allow master to continue only after we written loops_per_jiffy. */ 162 wmb(); 163 smp_secondary_alive = 1; 164 165 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n", 166 cpuid, current, current->active_mm)); 167 168 /* Do nothing. */ 169 cpu_idle(); 170 } 171 172 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */ 173 static int __devinit 174 wait_for_txrdy (unsigned long cpumask) 175 { 176 unsigned long timeout; 177 178 if (!(hwrpb->txrdy & cpumask)) 179 return 0; 180 181 timeout = jiffies + 10*HZ; 182 while (time_before(jiffies, timeout)) { 183 if (!(hwrpb->txrdy & cpumask)) 184 return 0; 185 udelay(10); 186 barrier(); 187 } 188 189 return -1; 190 } 191 192 /* 193 * Send a message to a secondary's console. "START" is one such 194 * interesting message. ;-) 195 */ 196 static void __init 197 send_secondary_console_msg(char *str, int cpuid) 198 { 199 struct percpu_struct *cpu; 200 register char *cp1, *cp2; 201 unsigned long cpumask; 202 size_t len; 203 204 cpu = (struct percpu_struct *) 205 ((char*)hwrpb 206 + hwrpb->processor_offset 207 + cpuid * hwrpb->processor_size); 208 209 cpumask = (1UL << cpuid); 210 if (wait_for_txrdy(cpumask)) 211 goto timeout; 212 213 cp2 = str; 214 len = strlen(cp2); 215 *(unsigned int *)&cpu->ipc_buffer[0] = len; 216 cp1 = (char *) &cpu->ipc_buffer[1]; 217 memcpy(cp1, cp2, len); 218 219 /* atomic test and set */ 220 wmb(); 221 set_bit(cpuid, &hwrpb->rxrdy); 222 223 if (wait_for_txrdy(cpumask)) 224 goto timeout; 225 return; 226 227 timeout: 228 printk("Processor %x not ready\n", cpuid); 229 } 230 231 /* 232 * A secondary console wants to send a message. Receive it. 233 */ 234 static void 235 recv_secondary_console_msg(void) 236 { 237 int mycpu, i, cnt; 238 unsigned long txrdy = hwrpb->txrdy; 239 char *cp1, *cp2, buf[80]; 240 struct percpu_struct *cpu; 241 242 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy)); 243 244 mycpu = hard_smp_processor_id(); 245 246 for (i = 0; i < NR_CPUS; i++) { 247 if (!(txrdy & (1UL << i))) 248 continue; 249 250 DBGS(("recv_secondary_console_msg: " 251 "TXRDY contains CPU %d.\n", i)); 252 253 cpu = (struct percpu_struct *) 254 ((char*)hwrpb 255 + hwrpb->processor_offset 256 + i * hwrpb->processor_size); 257 258 DBGS(("recv_secondary_console_msg: on %d from %d" 259 " HALT_REASON 0x%lx FLAGS 0x%lx\n", 260 mycpu, i, cpu->halt_reason, cpu->flags)); 261 262 cnt = cpu->ipc_buffer[0] >> 32; 263 if (cnt <= 0 || cnt >= 80) 264 strcpy(buf, "<<< BOGUS MSG >>>"); 265 else { 266 cp1 = (char *) &cpu->ipc_buffer[11]; 267 cp2 = buf; 268 strcpy(cp2, cp1); 269 270 while ((cp2 = strchr(cp2, '\r')) != 0) { 271 *cp2 = ' '; 272 if (cp2[1] == '\n') 273 cp2[1] = ' '; 274 } 275 } 276 277 DBGS((KERN_INFO "recv_secondary_console_msg: on %d " 278 "message is '%s'\n", mycpu, buf)); 279 } 280 281 hwrpb->txrdy = 0; 282 } 283 284 /* 285 * Convince the console to have a secondary cpu begin execution. 286 */ 287 static int __init 288 secondary_cpu_start(int cpuid, struct task_struct *idle) 289 { 290 struct percpu_struct *cpu; 291 struct pcb_struct *hwpcb, *ipcb; 292 unsigned long timeout; 293 294 cpu = (struct percpu_struct *) 295 ((char*)hwrpb 296 + hwrpb->processor_offset 297 + cpuid * hwrpb->processor_size); 298 hwpcb = (struct pcb_struct *) cpu->hwpcb; 299 ipcb = &task_thread_info(idle)->pcb; 300 301 /* Initialize the CPU's HWPCB to something just good enough for 302 us to get started. Immediately after starting, we'll swpctx 303 to the target idle task's pcb. Reuse the stack in the mean 304 time. Precalculate the target PCBB. */ 305 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16; 306 hwpcb->usp = 0; 307 hwpcb->ptbr = ipcb->ptbr; 308 hwpcb->pcc = 0; 309 hwpcb->asn = 0; 310 hwpcb->unique = virt_to_phys(ipcb); 311 hwpcb->flags = ipcb->flags; 312 hwpcb->res1 = hwpcb->res2 = 0; 313 314 #if 0 315 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n", 316 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique)); 317 #endif 318 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n", 319 cpuid, idle->state, ipcb->flags)); 320 321 /* Setup HWRPB fields that SRM uses to activate secondary CPU */ 322 hwrpb->CPU_restart = __smp_callin; 323 hwrpb->CPU_restart_data = (unsigned long) __smp_callin; 324 325 /* Recalculate and update the HWRPB checksum */ 326 hwrpb_update_checksum(hwrpb); 327 328 /* 329 * Send a "start" command to the specified processor. 330 */ 331 332 /* SRM III 3.4.1.3 */ 333 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */ 334 cpu->flags &= ~1; /* turn off Bootstrap In Progress */ 335 wmb(); 336 337 send_secondary_console_msg("START\r\n", cpuid); 338 339 /* Wait 10 seconds for an ACK from the console. */ 340 timeout = jiffies + 10*HZ; 341 while (time_before(jiffies, timeout)) { 342 if (cpu->flags & 1) 343 goto started; 344 udelay(10); 345 barrier(); 346 } 347 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid); 348 return -1; 349 350 started: 351 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid)); 352 return 0; 353 } 354 355 /* 356 * Bring one cpu online. 357 */ 358 static int __cpuinit 359 smp_boot_one_cpu(int cpuid) 360 { 361 struct task_struct *idle; 362 unsigned long timeout; 363 364 /* Cook up an idler for this guy. Note that the address we 365 give to kernel_thread is irrelevant -- it's going to start 366 where HWRPB.CPU_restart says to start. But this gets all 367 the other task-y sort of data structures set up like we 368 wish. We can't use kernel_thread since we must avoid 369 rescheduling the child. */ 370 idle = fork_idle(cpuid); 371 if (IS_ERR(idle)) 372 panic("failed fork for CPU %d", cpuid); 373 374 DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n", 375 cpuid, idle->state, idle->flags)); 376 377 /* Signal the secondary to wait a moment. */ 378 smp_secondary_alive = -1; 379 380 /* Whirrr, whirrr, whirrrrrrrrr... */ 381 if (secondary_cpu_start(cpuid, idle)) 382 return -1; 383 384 /* Notify the secondary CPU it can run calibrate_delay. */ 385 mb(); 386 smp_secondary_alive = 0; 387 388 /* We've been acked by the console; wait one second for 389 the task to start up for real. */ 390 timeout = jiffies + 1*HZ; 391 while (time_before(jiffies, timeout)) { 392 if (smp_secondary_alive == 1) 393 goto alive; 394 udelay(10); 395 barrier(); 396 } 397 398 /* We failed to boot the CPU. */ 399 400 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid); 401 return -1; 402 403 alive: 404 /* Another "Red Snapper". */ 405 return 0; 406 } 407 408 /* 409 * Called from setup_arch. Detect an SMP system and which processors 410 * are present. 411 */ 412 void __init 413 setup_smp(void) 414 { 415 struct percpu_struct *cpubase, *cpu; 416 unsigned long i; 417 418 if (boot_cpuid != 0) { 419 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n", 420 boot_cpuid); 421 } 422 423 if (hwrpb->nr_processors > 1) { 424 int boot_cpu_palrev; 425 426 DBGS(("setup_smp: nr_processors %ld\n", 427 hwrpb->nr_processors)); 428 429 cpubase = (struct percpu_struct *) 430 ((char*)hwrpb + hwrpb->processor_offset); 431 boot_cpu_palrev = cpubase->pal_revision; 432 433 for (i = 0; i < hwrpb->nr_processors; i++) { 434 cpu = (struct percpu_struct *) 435 ((char *)cpubase + i*hwrpb->processor_size); 436 if ((cpu->flags & 0x1cc) == 0x1cc) { 437 smp_num_probed++; 438 cpu_set(i, cpu_present_map); 439 cpu->pal_revision = boot_cpu_palrev; 440 } 441 442 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n", 443 i, cpu->flags, cpu->type)); 444 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n", 445 i, cpu->pal_revision)); 446 } 447 } else { 448 smp_num_probed = 1; 449 } 450 451 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_map = %lx\n", 452 smp_num_probed, cpu_present_map.bits[0]); 453 } 454 455 /* 456 * Called by smp_init prepare the secondaries 457 */ 458 void __init 459 smp_prepare_cpus(unsigned int max_cpus) 460 { 461 /* Take care of some initial bookkeeping. */ 462 memset(ipi_data, 0, sizeof(ipi_data)); 463 464 current_thread_info()->cpu = boot_cpuid; 465 466 smp_store_cpu_info(boot_cpuid); 467 smp_setup_percpu_timer(boot_cpuid); 468 469 /* Nothing to do on a UP box, or when told not to. */ 470 if (smp_num_probed == 1 || max_cpus == 0) { 471 cpu_present_map = cpumask_of_cpu(boot_cpuid); 472 printk(KERN_INFO "SMP mode deactivated.\n"); 473 return; 474 } 475 476 printk(KERN_INFO "SMP starting up secondaries.\n"); 477 478 smp_num_cpus = smp_num_probed; 479 } 480 481 void __devinit 482 smp_prepare_boot_cpu(void) 483 { 484 } 485 486 int __cpuinit 487 __cpu_up(unsigned int cpu) 488 { 489 smp_boot_one_cpu(cpu); 490 491 return cpu_online(cpu) ? 0 : -ENOSYS; 492 } 493 494 void __init 495 smp_cpus_done(unsigned int max_cpus) 496 { 497 int cpu; 498 unsigned long bogosum = 0; 499 500 for(cpu = 0; cpu < NR_CPUS; cpu++) 501 if (cpu_online(cpu)) 502 bogosum += cpu_data[cpu].loops_per_jiffy; 503 504 printk(KERN_INFO "SMP: Total of %d processors activated " 505 "(%lu.%02lu BogoMIPS).\n", 506 num_online_cpus(), 507 (bogosum + 2500) / (500000/HZ), 508 ((bogosum + 2500) / (5000/HZ)) % 100); 509 } 510 511 512 void 513 smp_percpu_timer_interrupt(struct pt_regs *regs) 514 { 515 struct pt_regs *old_regs; 516 int cpu = smp_processor_id(); 517 unsigned long user = user_mode(regs); 518 struct cpuinfo_alpha *data = &cpu_data[cpu]; 519 520 old_regs = set_irq_regs(regs); 521 522 /* Record kernel PC. */ 523 profile_tick(CPU_PROFILING); 524 525 if (!--data->prof_counter) { 526 /* We need to make like a normal interrupt -- otherwise 527 timer interrupts ignore the global interrupt lock, 528 which would be a Bad Thing. */ 529 irq_enter(); 530 531 update_process_times(user); 532 533 data->prof_counter = data->prof_multiplier; 534 535 irq_exit(); 536 } 537 set_irq_regs(old_regs); 538 } 539 540 int 541 setup_profiling_timer(unsigned int multiplier) 542 { 543 return -EINVAL; 544 } 545 546 547 static void 548 send_ipi_message(cpumask_t to_whom, enum ipi_message_type operation) 549 { 550 int i; 551 552 mb(); 553 for_each_cpu_mask(i, to_whom) 554 set_bit(operation, &ipi_data[i].bits); 555 556 mb(); 557 for_each_cpu_mask(i, to_whom) 558 wripir(i); 559 } 560 561 /* Structure and data for smp_call_function. This is designed to 562 minimize static memory requirements. Plus it looks cleaner. */ 563 564 struct smp_call_struct { 565 void (*func) (void *info); 566 void *info; 567 long wait; 568 atomic_t unstarted_count; 569 atomic_t unfinished_count; 570 }; 571 572 static struct smp_call_struct *smp_call_function_data; 573 574 /* Atomicly drop data into a shared pointer. The pointer is free if 575 it is initially locked. If retry, spin until free. */ 576 577 static int 578 pointer_lock (void *lock, void *data, int retry) 579 { 580 void *old, *tmp; 581 582 mb(); 583 again: 584 /* Compare and swap with zero. */ 585 asm volatile ( 586 "1: ldq_l %0,%1\n" 587 " mov %3,%2\n" 588 " bne %0,2f\n" 589 " stq_c %2,%1\n" 590 " beq %2,1b\n" 591 "2:" 592 : "=&r"(old), "=m"(*(void **)lock), "=&r"(tmp) 593 : "r"(data) 594 : "memory"); 595 596 if (old == 0) 597 return 0; 598 if (! retry) 599 return -EBUSY; 600 601 while (*(void **)lock) 602 barrier(); 603 goto again; 604 } 605 606 void 607 handle_ipi(struct pt_regs *regs) 608 { 609 int this_cpu = smp_processor_id(); 610 unsigned long *pending_ipis = &ipi_data[this_cpu].bits; 611 unsigned long ops; 612 613 #if 0 614 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n", 615 this_cpu, *pending_ipis, regs->pc)); 616 #endif 617 618 mb(); /* Order interrupt and bit testing. */ 619 while ((ops = xchg(pending_ipis, 0)) != 0) { 620 mb(); /* Order bit clearing and data access. */ 621 do { 622 unsigned long which; 623 624 which = ops & -ops; 625 ops &= ~which; 626 which = __ffs(which); 627 628 switch (which) { 629 case IPI_RESCHEDULE: 630 /* Reschedule callback. Everything to be done 631 is done by the interrupt return path. */ 632 break; 633 634 case IPI_CALL_FUNC: 635 { 636 struct smp_call_struct *data; 637 void (*func)(void *info); 638 void *info; 639 int wait; 640 641 data = smp_call_function_data; 642 func = data->func; 643 info = data->info; 644 wait = data->wait; 645 646 /* Notify the sending CPU that the data has been 647 received, and execution is about to begin. */ 648 mb(); 649 atomic_dec (&data->unstarted_count); 650 651 /* At this point the structure may be gone unless 652 wait is true. */ 653 (*func)(info); 654 655 /* Notify the sending CPU that the task is done. */ 656 mb(); 657 if (wait) atomic_dec (&data->unfinished_count); 658 break; 659 } 660 661 case IPI_CPU_STOP: 662 halt(); 663 664 default: 665 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", 666 this_cpu, which); 667 break; 668 } 669 } while (ops); 670 671 mb(); /* Order data access and bit testing. */ 672 } 673 674 cpu_data[this_cpu].ipi_count++; 675 676 if (hwrpb->txrdy) 677 recv_secondary_console_msg(); 678 } 679 680 void 681 smp_send_reschedule(int cpu) 682 { 683 #ifdef DEBUG_IPI_MSG 684 if (cpu == hard_smp_processor_id()) 685 printk(KERN_WARNING 686 "smp_send_reschedule: Sending IPI to self.\n"); 687 #endif 688 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 689 } 690 691 void 692 smp_send_stop(void) 693 { 694 cpumask_t to_whom = cpu_possible_map; 695 cpu_clear(smp_processor_id(), to_whom); 696 #ifdef DEBUG_IPI_MSG 697 if (hard_smp_processor_id() != boot_cpu_id) 698 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n"); 699 #endif 700 send_ipi_message(to_whom, IPI_CPU_STOP); 701 } 702 703 /* 704 * Run a function on all other CPUs. 705 * <func> The function to run. This must be fast and non-blocking. 706 * <info> An arbitrary pointer to pass to the function. 707 * <retry> If true, keep retrying until ready. 708 * <wait> If true, wait until function has completed on other CPUs. 709 * [RETURNS] 0 on success, else a negative status code. 710 * 711 * Does not return until remote CPUs are nearly ready to execute <func> 712 * or are or have executed. 713 * You must not call this function with disabled interrupts or from a 714 * hardware interrupt handler or from a bottom half handler. 715 */ 716 717 int 718 smp_call_function_on_cpu (void (*func) (void *info), void *info, int retry, 719 int wait, cpumask_t to_whom) 720 { 721 struct smp_call_struct data; 722 unsigned long timeout; 723 int num_cpus_to_call; 724 725 /* Can deadlock when called with interrupts disabled */ 726 WARN_ON(irqs_disabled()); 727 728 data.func = func; 729 data.info = info; 730 data.wait = wait; 731 732 cpu_clear(smp_processor_id(), to_whom); 733 num_cpus_to_call = cpus_weight(to_whom); 734 735 atomic_set(&data.unstarted_count, num_cpus_to_call); 736 atomic_set(&data.unfinished_count, num_cpus_to_call); 737 738 /* Acquire the smp_call_function_data mutex. */ 739 if (pointer_lock(&smp_call_function_data, &data, retry)) 740 return -EBUSY; 741 742 /* Send a message to the requested CPUs. */ 743 send_ipi_message(to_whom, IPI_CALL_FUNC); 744 745 /* Wait for a minimal response. */ 746 timeout = jiffies + HZ; 747 while (atomic_read (&data.unstarted_count) > 0 748 && time_before (jiffies, timeout)) 749 barrier(); 750 751 /* If there's no response yet, log a message but allow a longer 752 * timeout period -- if we get a response this time, log 753 * a message saying when we got it.. 754 */ 755 if (atomic_read(&data.unstarted_count) > 0) { 756 long start_time = jiffies; 757 printk(KERN_ERR "%s: initial timeout -- trying long wait\n", 758 __FUNCTION__); 759 timeout = jiffies + 30 * HZ; 760 while (atomic_read(&data.unstarted_count) > 0 761 && time_before(jiffies, timeout)) 762 barrier(); 763 if (atomic_read(&data.unstarted_count) <= 0) { 764 long delta = jiffies - start_time; 765 printk(KERN_ERR 766 "%s: response %ld.%ld seconds into long wait\n", 767 __FUNCTION__, delta / HZ, 768 (100 * (delta - ((delta / HZ) * HZ))) / HZ); 769 } 770 } 771 772 /* We either got one or timed out -- clear the lock. */ 773 mb(); 774 smp_call_function_data = NULL; 775 776 /* 777 * If after both the initial and long timeout periods we still don't 778 * have a response, something is very wrong... 779 */ 780 BUG_ON(atomic_read (&data.unstarted_count) > 0); 781 782 /* Wait for a complete response, if needed. */ 783 if (wait) { 784 while (atomic_read (&data.unfinished_count) > 0) 785 barrier(); 786 } 787 788 return 0; 789 } 790 EXPORT_SYMBOL(smp_call_function_on_cpu); 791 792 int 793 smp_call_function (void (*func) (void *info), void *info, int retry, int wait) 794 { 795 return smp_call_function_on_cpu (func, info, retry, wait, 796 cpu_online_map); 797 } 798 EXPORT_SYMBOL(smp_call_function); 799 800 static void 801 ipi_imb(void *ignored) 802 { 803 imb(); 804 } 805 806 void 807 smp_imb(void) 808 { 809 /* Must wait other processors to flush their icache before continue. */ 810 if (on_each_cpu(ipi_imb, NULL, 1, 1)) 811 printk(KERN_CRIT "smp_imb: timed out\n"); 812 } 813 EXPORT_SYMBOL(smp_imb); 814 815 static void 816 ipi_flush_tlb_all(void *ignored) 817 { 818 tbia(); 819 } 820 821 void 822 flush_tlb_all(void) 823 { 824 /* Although we don't have any data to pass, we do want to 825 synchronize with the other processors. */ 826 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1)) { 827 printk(KERN_CRIT "flush_tlb_all: timed out\n"); 828 } 829 } 830 831 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock) 832 833 static void 834 ipi_flush_tlb_mm(void *x) 835 { 836 struct mm_struct *mm = (struct mm_struct *) x; 837 if (mm == current->active_mm && !asn_locked()) 838 flush_tlb_current(mm); 839 else 840 flush_tlb_other(mm); 841 } 842 843 void 844 flush_tlb_mm(struct mm_struct *mm) 845 { 846 preempt_disable(); 847 848 if (mm == current->active_mm) { 849 flush_tlb_current(mm); 850 if (atomic_read(&mm->mm_users) <= 1) { 851 int cpu, this_cpu = smp_processor_id(); 852 for (cpu = 0; cpu < NR_CPUS; cpu++) { 853 if (!cpu_online(cpu) || cpu == this_cpu) 854 continue; 855 if (mm->context[cpu]) 856 mm->context[cpu] = 0; 857 } 858 preempt_enable(); 859 return; 860 } 861 } 862 863 if (smp_call_function(ipi_flush_tlb_mm, mm, 1, 1)) { 864 printk(KERN_CRIT "flush_tlb_mm: timed out\n"); 865 } 866 867 preempt_enable(); 868 } 869 EXPORT_SYMBOL(flush_tlb_mm); 870 871 struct flush_tlb_page_struct { 872 struct vm_area_struct *vma; 873 struct mm_struct *mm; 874 unsigned long addr; 875 }; 876 877 static void 878 ipi_flush_tlb_page(void *x) 879 { 880 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x; 881 struct mm_struct * mm = data->mm; 882 883 if (mm == current->active_mm && !asn_locked()) 884 flush_tlb_current_page(mm, data->vma, data->addr); 885 else 886 flush_tlb_other(mm); 887 } 888 889 void 890 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) 891 { 892 struct flush_tlb_page_struct data; 893 struct mm_struct *mm = vma->vm_mm; 894 895 preempt_disable(); 896 897 if (mm == current->active_mm) { 898 flush_tlb_current_page(mm, vma, addr); 899 if (atomic_read(&mm->mm_users) <= 1) { 900 int cpu, this_cpu = smp_processor_id(); 901 for (cpu = 0; cpu < NR_CPUS; cpu++) { 902 if (!cpu_online(cpu) || cpu == this_cpu) 903 continue; 904 if (mm->context[cpu]) 905 mm->context[cpu] = 0; 906 } 907 preempt_enable(); 908 return; 909 } 910 } 911 912 data.vma = vma; 913 data.mm = mm; 914 data.addr = addr; 915 916 if (smp_call_function(ipi_flush_tlb_page, &data, 1, 1)) { 917 printk(KERN_CRIT "flush_tlb_page: timed out\n"); 918 } 919 920 preempt_enable(); 921 } 922 EXPORT_SYMBOL(flush_tlb_page); 923 924 void 925 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 926 { 927 /* On the Alpha we always flush the whole user tlb. */ 928 flush_tlb_mm(vma->vm_mm); 929 } 930 EXPORT_SYMBOL(flush_tlb_range); 931 932 static void 933 ipi_flush_icache_page(void *x) 934 { 935 struct mm_struct *mm = (struct mm_struct *) x; 936 if (mm == current->active_mm && !asn_locked()) 937 __load_new_mm_context(mm); 938 else 939 flush_tlb_other(mm); 940 } 941 942 void 943 flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 944 unsigned long addr, int len) 945 { 946 struct mm_struct *mm = vma->vm_mm; 947 948 if ((vma->vm_flags & VM_EXEC) == 0) 949 return; 950 951 preempt_disable(); 952 953 if (mm == current->active_mm) { 954 __load_new_mm_context(mm); 955 if (atomic_read(&mm->mm_users) <= 1) { 956 int cpu, this_cpu = smp_processor_id(); 957 for (cpu = 0; cpu < NR_CPUS; cpu++) { 958 if (!cpu_online(cpu) || cpu == this_cpu) 959 continue; 960 if (mm->context[cpu]) 961 mm->context[cpu] = 0; 962 } 963 preempt_enable(); 964 return; 965 } 966 } 967 968 if (smp_call_function(ipi_flush_icache_page, mm, 1, 1)) { 969 printk(KERN_CRIT "flush_icache_page: timed out\n"); 970 } 971 972 preempt_enable(); 973 } 974