1 /* 2 * linux/arch/alpha/kernel/smp.c 3 * 4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com) 5 * Renamed modified smp_call_function to smp_call_function_on_cpu() 6 * Created an function that conforms to the old calling convention 7 * of smp_call_function(). 8 * 9 * This is helpful for DCPI. 10 * 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/kernel.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/threads.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/spinlock.h> 26 #include <linux/irq.h> 27 #include <linux/cache.h> 28 #include <linux/profile.h> 29 #include <linux/bitops.h> 30 #include <linux/cpu.h> 31 32 #include <asm/hwrpb.h> 33 #include <asm/ptrace.h> 34 #include <asm/atomic.h> 35 36 #include <asm/io.h> 37 #include <asm/irq.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/mmu_context.h> 41 #include <asm/tlbflush.h> 42 43 #include "proto.h" 44 #include "irq_impl.h" 45 46 47 #define DEBUG_SMP 0 48 #if DEBUG_SMP 49 #define DBGS(args) printk args 50 #else 51 #define DBGS(args) 52 #endif 53 54 /* A collection of per-processor data. */ 55 struct cpuinfo_alpha cpu_data[NR_CPUS]; 56 EXPORT_SYMBOL(cpu_data); 57 58 /* A collection of single bit ipi messages. */ 59 static struct { 60 unsigned long bits ____cacheline_aligned; 61 } ipi_data[NR_CPUS] __cacheline_aligned; 62 63 enum ipi_message_type { 64 IPI_RESCHEDULE, 65 IPI_CALL_FUNC, 66 IPI_CALL_FUNC_SINGLE, 67 IPI_CPU_STOP, 68 }; 69 70 /* Set to a secondary's cpuid when it comes online. */ 71 static int smp_secondary_alive __devinitdata = 0; 72 73 int smp_num_probed; /* Internal processor count */ 74 int smp_num_cpus = 1; /* Number that came online. */ 75 EXPORT_SYMBOL(smp_num_cpus); 76 77 /* 78 * Called by both boot and secondaries to move global data into 79 * per-processor storage. 80 */ 81 static inline void __init 82 smp_store_cpu_info(int cpuid) 83 { 84 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy; 85 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION; 86 cpu_data[cpuid].need_new_asn = 0; 87 cpu_data[cpuid].asn_lock = 0; 88 } 89 90 /* 91 * Ideally sets up per-cpu profiling hooks. Doesn't do much now... 92 */ 93 static inline void __init 94 smp_setup_percpu_timer(int cpuid) 95 { 96 cpu_data[cpuid].prof_counter = 1; 97 cpu_data[cpuid].prof_multiplier = 1; 98 } 99 100 static void __init 101 wait_boot_cpu_to_stop(int cpuid) 102 { 103 unsigned long stop = jiffies + 10*HZ; 104 105 while (time_before(jiffies, stop)) { 106 if (!smp_secondary_alive) 107 return; 108 barrier(); 109 } 110 111 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid); 112 for (;;) 113 barrier(); 114 } 115 116 /* 117 * Where secondaries begin a life of C. 118 */ 119 void __cpuinit 120 smp_callin(void) 121 { 122 int cpuid = hard_smp_processor_id(); 123 124 if (cpu_online(cpuid)) { 125 printk("??, cpu 0x%x already present??\n", cpuid); 126 BUG(); 127 } 128 set_cpu_online(cpuid, true); 129 130 /* Turn on machine checks. */ 131 wrmces(7); 132 133 /* Set trap vectors. */ 134 trap_init(); 135 136 /* Set interrupt vector. */ 137 wrent(entInt, 0); 138 139 /* Get our local ticker going. */ 140 smp_setup_percpu_timer(cpuid); 141 142 /* Call platform-specific callin, if specified */ 143 if (alpha_mv.smp_callin) alpha_mv.smp_callin(); 144 145 /* All kernel threads share the same mm context. */ 146 atomic_inc(&init_mm.mm_count); 147 current->active_mm = &init_mm; 148 149 /* inform the notifiers about the new cpu */ 150 notify_cpu_starting(cpuid); 151 152 /* Must have completely accurate bogos. */ 153 local_irq_enable(); 154 155 /* Wait boot CPU to stop with irq enabled before running 156 calibrate_delay. */ 157 wait_boot_cpu_to_stop(cpuid); 158 mb(); 159 calibrate_delay(); 160 161 smp_store_cpu_info(cpuid); 162 /* Allow master to continue only after we written loops_per_jiffy. */ 163 wmb(); 164 smp_secondary_alive = 1; 165 166 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n", 167 cpuid, current, current->active_mm)); 168 169 /* Do nothing. */ 170 cpu_idle(); 171 } 172 173 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */ 174 static int __devinit 175 wait_for_txrdy (unsigned long cpumask) 176 { 177 unsigned long timeout; 178 179 if (!(hwrpb->txrdy & cpumask)) 180 return 0; 181 182 timeout = jiffies + 10*HZ; 183 while (time_before(jiffies, timeout)) { 184 if (!(hwrpb->txrdy & cpumask)) 185 return 0; 186 udelay(10); 187 barrier(); 188 } 189 190 return -1; 191 } 192 193 /* 194 * Send a message to a secondary's console. "START" is one such 195 * interesting message. ;-) 196 */ 197 static void __cpuinit 198 send_secondary_console_msg(char *str, int cpuid) 199 { 200 struct percpu_struct *cpu; 201 register char *cp1, *cp2; 202 unsigned long cpumask; 203 size_t len; 204 205 cpu = (struct percpu_struct *) 206 ((char*)hwrpb 207 + hwrpb->processor_offset 208 + cpuid * hwrpb->processor_size); 209 210 cpumask = (1UL << cpuid); 211 if (wait_for_txrdy(cpumask)) 212 goto timeout; 213 214 cp2 = str; 215 len = strlen(cp2); 216 *(unsigned int *)&cpu->ipc_buffer[0] = len; 217 cp1 = (char *) &cpu->ipc_buffer[1]; 218 memcpy(cp1, cp2, len); 219 220 /* atomic test and set */ 221 wmb(); 222 set_bit(cpuid, &hwrpb->rxrdy); 223 224 if (wait_for_txrdy(cpumask)) 225 goto timeout; 226 return; 227 228 timeout: 229 printk("Processor %x not ready\n", cpuid); 230 } 231 232 /* 233 * A secondary console wants to send a message. Receive it. 234 */ 235 static void 236 recv_secondary_console_msg(void) 237 { 238 int mycpu, i, cnt; 239 unsigned long txrdy = hwrpb->txrdy; 240 char *cp1, *cp2, buf[80]; 241 struct percpu_struct *cpu; 242 243 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy)); 244 245 mycpu = hard_smp_processor_id(); 246 247 for (i = 0; i < NR_CPUS; i++) { 248 if (!(txrdy & (1UL << i))) 249 continue; 250 251 DBGS(("recv_secondary_console_msg: " 252 "TXRDY contains CPU %d.\n", i)); 253 254 cpu = (struct percpu_struct *) 255 ((char*)hwrpb 256 + hwrpb->processor_offset 257 + i * hwrpb->processor_size); 258 259 DBGS(("recv_secondary_console_msg: on %d from %d" 260 " HALT_REASON 0x%lx FLAGS 0x%lx\n", 261 mycpu, i, cpu->halt_reason, cpu->flags)); 262 263 cnt = cpu->ipc_buffer[0] >> 32; 264 if (cnt <= 0 || cnt >= 80) 265 strcpy(buf, "<<< BOGUS MSG >>>"); 266 else { 267 cp1 = (char *) &cpu->ipc_buffer[11]; 268 cp2 = buf; 269 strcpy(cp2, cp1); 270 271 while ((cp2 = strchr(cp2, '\r')) != 0) { 272 *cp2 = ' '; 273 if (cp2[1] == '\n') 274 cp2[1] = ' '; 275 } 276 } 277 278 DBGS((KERN_INFO "recv_secondary_console_msg: on %d " 279 "message is '%s'\n", mycpu, buf)); 280 } 281 282 hwrpb->txrdy = 0; 283 } 284 285 /* 286 * Convince the console to have a secondary cpu begin execution. 287 */ 288 static int __cpuinit 289 secondary_cpu_start(int cpuid, struct task_struct *idle) 290 { 291 struct percpu_struct *cpu; 292 struct pcb_struct *hwpcb, *ipcb; 293 unsigned long timeout; 294 295 cpu = (struct percpu_struct *) 296 ((char*)hwrpb 297 + hwrpb->processor_offset 298 + cpuid * hwrpb->processor_size); 299 hwpcb = (struct pcb_struct *) cpu->hwpcb; 300 ipcb = &task_thread_info(idle)->pcb; 301 302 /* Initialize the CPU's HWPCB to something just good enough for 303 us to get started. Immediately after starting, we'll swpctx 304 to the target idle task's pcb. Reuse the stack in the mean 305 time. Precalculate the target PCBB. */ 306 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16; 307 hwpcb->usp = 0; 308 hwpcb->ptbr = ipcb->ptbr; 309 hwpcb->pcc = 0; 310 hwpcb->asn = 0; 311 hwpcb->unique = virt_to_phys(ipcb); 312 hwpcb->flags = ipcb->flags; 313 hwpcb->res1 = hwpcb->res2 = 0; 314 315 #if 0 316 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n", 317 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique)); 318 #endif 319 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n", 320 cpuid, idle->state, ipcb->flags)); 321 322 /* Setup HWRPB fields that SRM uses to activate secondary CPU */ 323 hwrpb->CPU_restart = __smp_callin; 324 hwrpb->CPU_restart_data = (unsigned long) __smp_callin; 325 326 /* Recalculate and update the HWRPB checksum */ 327 hwrpb_update_checksum(hwrpb); 328 329 /* 330 * Send a "start" command to the specified processor. 331 */ 332 333 /* SRM III 3.4.1.3 */ 334 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */ 335 cpu->flags &= ~1; /* turn off Bootstrap In Progress */ 336 wmb(); 337 338 send_secondary_console_msg("START\r\n", cpuid); 339 340 /* Wait 10 seconds for an ACK from the console. */ 341 timeout = jiffies + 10*HZ; 342 while (time_before(jiffies, timeout)) { 343 if (cpu->flags & 1) 344 goto started; 345 udelay(10); 346 barrier(); 347 } 348 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid); 349 return -1; 350 351 started: 352 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid)); 353 return 0; 354 } 355 356 /* 357 * Bring one cpu online. 358 */ 359 static int __cpuinit 360 smp_boot_one_cpu(int cpuid) 361 { 362 struct task_struct *idle; 363 unsigned long timeout; 364 365 /* Cook up an idler for this guy. Note that the address we 366 give to kernel_thread is irrelevant -- it's going to start 367 where HWRPB.CPU_restart says to start. But this gets all 368 the other task-y sort of data structures set up like we 369 wish. We can't use kernel_thread since we must avoid 370 rescheduling the child. */ 371 idle = fork_idle(cpuid); 372 if (IS_ERR(idle)) 373 panic("failed fork for CPU %d", cpuid); 374 375 DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n", 376 cpuid, idle->state, idle->flags)); 377 378 /* Signal the secondary to wait a moment. */ 379 smp_secondary_alive = -1; 380 381 /* Whirrr, whirrr, whirrrrrrrrr... */ 382 if (secondary_cpu_start(cpuid, idle)) 383 return -1; 384 385 /* Notify the secondary CPU it can run calibrate_delay. */ 386 mb(); 387 smp_secondary_alive = 0; 388 389 /* We've been acked by the console; wait one second for 390 the task to start up for real. */ 391 timeout = jiffies + 1*HZ; 392 while (time_before(jiffies, timeout)) { 393 if (smp_secondary_alive == 1) 394 goto alive; 395 udelay(10); 396 barrier(); 397 } 398 399 /* We failed to boot the CPU. */ 400 401 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid); 402 return -1; 403 404 alive: 405 /* Another "Red Snapper". */ 406 return 0; 407 } 408 409 /* 410 * Called from setup_arch. Detect an SMP system and which processors 411 * are present. 412 */ 413 void __init 414 setup_smp(void) 415 { 416 struct percpu_struct *cpubase, *cpu; 417 unsigned long i; 418 419 if (boot_cpuid != 0) { 420 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n", 421 boot_cpuid); 422 } 423 424 if (hwrpb->nr_processors > 1) { 425 int boot_cpu_palrev; 426 427 DBGS(("setup_smp: nr_processors %ld\n", 428 hwrpb->nr_processors)); 429 430 cpubase = (struct percpu_struct *) 431 ((char*)hwrpb + hwrpb->processor_offset); 432 boot_cpu_palrev = cpubase->pal_revision; 433 434 for (i = 0; i < hwrpb->nr_processors; i++) { 435 cpu = (struct percpu_struct *) 436 ((char *)cpubase + i*hwrpb->processor_size); 437 if ((cpu->flags & 0x1cc) == 0x1cc) { 438 smp_num_probed++; 439 set_cpu_possible(i, true); 440 set_cpu_present(i, true); 441 cpu->pal_revision = boot_cpu_palrev; 442 } 443 444 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n", 445 i, cpu->flags, cpu->type)); 446 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n", 447 i, cpu->pal_revision)); 448 } 449 } else { 450 smp_num_probed = 1; 451 } 452 453 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_map = %lx\n", 454 smp_num_probed, cpu_present_map.bits[0]); 455 } 456 457 /* 458 * Called by smp_init prepare the secondaries 459 */ 460 void __init 461 smp_prepare_cpus(unsigned int max_cpus) 462 { 463 /* Take care of some initial bookkeeping. */ 464 memset(ipi_data, 0, sizeof(ipi_data)); 465 466 current_thread_info()->cpu = boot_cpuid; 467 468 smp_store_cpu_info(boot_cpuid); 469 smp_setup_percpu_timer(boot_cpuid); 470 471 /* Nothing to do on a UP box, or when told not to. */ 472 if (smp_num_probed == 1 || max_cpus == 0) { 473 init_cpu_possible(cpumask_of(boot_cpuid)); 474 init_cpu_present(cpumask_of(boot_cpuid)); 475 printk(KERN_INFO "SMP mode deactivated.\n"); 476 return; 477 } 478 479 printk(KERN_INFO "SMP starting up secondaries.\n"); 480 481 smp_num_cpus = smp_num_probed; 482 } 483 484 void __devinit 485 smp_prepare_boot_cpu(void) 486 { 487 } 488 489 int __cpuinit 490 __cpu_up(unsigned int cpu) 491 { 492 smp_boot_one_cpu(cpu); 493 494 return cpu_online(cpu) ? 0 : -ENOSYS; 495 } 496 497 void __init 498 smp_cpus_done(unsigned int max_cpus) 499 { 500 int cpu; 501 unsigned long bogosum = 0; 502 503 for(cpu = 0; cpu < NR_CPUS; cpu++) 504 if (cpu_online(cpu)) 505 bogosum += cpu_data[cpu].loops_per_jiffy; 506 507 printk(KERN_INFO "SMP: Total of %d processors activated " 508 "(%lu.%02lu BogoMIPS).\n", 509 num_online_cpus(), 510 (bogosum + 2500) / (500000/HZ), 511 ((bogosum + 2500) / (5000/HZ)) % 100); 512 } 513 514 515 void 516 smp_percpu_timer_interrupt(struct pt_regs *regs) 517 { 518 struct pt_regs *old_regs; 519 int cpu = smp_processor_id(); 520 unsigned long user = user_mode(regs); 521 struct cpuinfo_alpha *data = &cpu_data[cpu]; 522 523 old_regs = set_irq_regs(regs); 524 525 /* Record kernel PC. */ 526 profile_tick(CPU_PROFILING); 527 528 if (!--data->prof_counter) { 529 /* We need to make like a normal interrupt -- otherwise 530 timer interrupts ignore the global interrupt lock, 531 which would be a Bad Thing. */ 532 irq_enter(); 533 534 update_process_times(user); 535 536 data->prof_counter = data->prof_multiplier; 537 538 irq_exit(); 539 } 540 set_irq_regs(old_regs); 541 } 542 543 int 544 setup_profiling_timer(unsigned int multiplier) 545 { 546 return -EINVAL; 547 } 548 549 550 static void 551 send_ipi_message(const struct cpumask *to_whom, enum ipi_message_type operation) 552 { 553 int i; 554 555 mb(); 556 for_each_cpu(i, to_whom) 557 set_bit(operation, &ipi_data[i].bits); 558 559 mb(); 560 for_each_cpu(i, to_whom) 561 wripir(i); 562 } 563 564 void 565 handle_ipi(struct pt_regs *regs) 566 { 567 int this_cpu = smp_processor_id(); 568 unsigned long *pending_ipis = &ipi_data[this_cpu].bits; 569 unsigned long ops; 570 571 #if 0 572 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n", 573 this_cpu, *pending_ipis, regs->pc)); 574 #endif 575 576 mb(); /* Order interrupt and bit testing. */ 577 while ((ops = xchg(pending_ipis, 0)) != 0) { 578 mb(); /* Order bit clearing and data access. */ 579 do { 580 unsigned long which; 581 582 which = ops & -ops; 583 ops &= ~which; 584 which = __ffs(which); 585 586 switch (which) { 587 case IPI_RESCHEDULE: 588 /* Reschedule callback. Everything to be done 589 is done by the interrupt return path. */ 590 break; 591 592 case IPI_CALL_FUNC: 593 generic_smp_call_function_interrupt(); 594 break; 595 596 case IPI_CALL_FUNC_SINGLE: 597 generic_smp_call_function_single_interrupt(); 598 break; 599 600 case IPI_CPU_STOP: 601 halt(); 602 603 default: 604 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", 605 this_cpu, which); 606 break; 607 } 608 } while (ops); 609 610 mb(); /* Order data access and bit testing. */ 611 } 612 613 cpu_data[this_cpu].ipi_count++; 614 615 if (hwrpb->txrdy) 616 recv_secondary_console_msg(); 617 } 618 619 void 620 smp_send_reschedule(int cpu) 621 { 622 #ifdef DEBUG_IPI_MSG 623 if (cpu == hard_smp_processor_id()) 624 printk(KERN_WARNING 625 "smp_send_reschedule: Sending IPI to self.\n"); 626 #endif 627 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE); 628 } 629 630 void 631 smp_send_stop(void) 632 { 633 cpumask_t to_whom = cpu_possible_map; 634 cpu_clear(smp_processor_id(), to_whom); 635 #ifdef DEBUG_IPI_MSG 636 if (hard_smp_processor_id() != boot_cpu_id) 637 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n"); 638 #endif 639 send_ipi_message(&to_whom, IPI_CPU_STOP); 640 } 641 642 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 643 { 644 send_ipi_message(mask, IPI_CALL_FUNC); 645 } 646 647 void arch_send_call_function_single_ipi(int cpu) 648 { 649 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 650 } 651 652 static void 653 ipi_imb(void *ignored) 654 { 655 imb(); 656 } 657 658 void 659 smp_imb(void) 660 { 661 /* Must wait other processors to flush their icache before continue. */ 662 if (on_each_cpu(ipi_imb, NULL, 1)) 663 printk(KERN_CRIT "smp_imb: timed out\n"); 664 } 665 EXPORT_SYMBOL(smp_imb); 666 667 static void 668 ipi_flush_tlb_all(void *ignored) 669 { 670 tbia(); 671 } 672 673 void 674 flush_tlb_all(void) 675 { 676 /* Although we don't have any data to pass, we do want to 677 synchronize with the other processors. */ 678 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) { 679 printk(KERN_CRIT "flush_tlb_all: timed out\n"); 680 } 681 } 682 683 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock) 684 685 static void 686 ipi_flush_tlb_mm(void *x) 687 { 688 struct mm_struct *mm = (struct mm_struct *) x; 689 if (mm == current->active_mm && !asn_locked()) 690 flush_tlb_current(mm); 691 else 692 flush_tlb_other(mm); 693 } 694 695 void 696 flush_tlb_mm(struct mm_struct *mm) 697 { 698 preempt_disable(); 699 700 if (mm == current->active_mm) { 701 flush_tlb_current(mm); 702 if (atomic_read(&mm->mm_users) <= 1) { 703 int cpu, this_cpu = smp_processor_id(); 704 for (cpu = 0; cpu < NR_CPUS; cpu++) { 705 if (!cpu_online(cpu) || cpu == this_cpu) 706 continue; 707 if (mm->context[cpu]) 708 mm->context[cpu] = 0; 709 } 710 preempt_enable(); 711 return; 712 } 713 } 714 715 if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) { 716 printk(KERN_CRIT "flush_tlb_mm: timed out\n"); 717 } 718 719 preempt_enable(); 720 } 721 EXPORT_SYMBOL(flush_tlb_mm); 722 723 struct flush_tlb_page_struct { 724 struct vm_area_struct *vma; 725 struct mm_struct *mm; 726 unsigned long addr; 727 }; 728 729 static void 730 ipi_flush_tlb_page(void *x) 731 { 732 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x; 733 struct mm_struct * mm = data->mm; 734 735 if (mm == current->active_mm && !asn_locked()) 736 flush_tlb_current_page(mm, data->vma, data->addr); 737 else 738 flush_tlb_other(mm); 739 } 740 741 void 742 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) 743 { 744 struct flush_tlb_page_struct data; 745 struct mm_struct *mm = vma->vm_mm; 746 747 preempt_disable(); 748 749 if (mm == current->active_mm) { 750 flush_tlb_current_page(mm, vma, addr); 751 if (atomic_read(&mm->mm_users) <= 1) { 752 int cpu, this_cpu = smp_processor_id(); 753 for (cpu = 0; cpu < NR_CPUS; cpu++) { 754 if (!cpu_online(cpu) || cpu == this_cpu) 755 continue; 756 if (mm->context[cpu]) 757 mm->context[cpu] = 0; 758 } 759 preempt_enable(); 760 return; 761 } 762 } 763 764 data.vma = vma; 765 data.mm = mm; 766 data.addr = addr; 767 768 if (smp_call_function(ipi_flush_tlb_page, &data, 1)) { 769 printk(KERN_CRIT "flush_tlb_page: timed out\n"); 770 } 771 772 preempt_enable(); 773 } 774 EXPORT_SYMBOL(flush_tlb_page); 775 776 void 777 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 778 { 779 /* On the Alpha we always flush the whole user tlb. */ 780 flush_tlb_mm(vma->vm_mm); 781 } 782 EXPORT_SYMBOL(flush_tlb_range); 783 784 static void 785 ipi_flush_icache_page(void *x) 786 { 787 struct mm_struct *mm = (struct mm_struct *) x; 788 if (mm == current->active_mm && !asn_locked()) 789 __load_new_mm_context(mm); 790 else 791 flush_tlb_other(mm); 792 } 793 794 void 795 flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 796 unsigned long addr, int len) 797 { 798 struct mm_struct *mm = vma->vm_mm; 799 800 if ((vma->vm_flags & VM_EXEC) == 0) 801 return; 802 803 preempt_disable(); 804 805 if (mm == current->active_mm) { 806 __load_new_mm_context(mm); 807 if (atomic_read(&mm->mm_users) <= 1) { 808 int cpu, this_cpu = smp_processor_id(); 809 for (cpu = 0; cpu < NR_CPUS; cpu++) { 810 if (!cpu_online(cpu) || cpu == this_cpu) 811 continue; 812 if (mm->context[cpu]) 813 mm->context[cpu] = 0; 814 } 815 preempt_enable(); 816 return; 817 } 818 } 819 820 if (smp_call_function(ipi_flush_icache_page, mm, 1)) { 821 printk(KERN_CRIT "flush_icache_page: timed out\n"); 822 } 823 824 preempt_enable(); 825 } 826