1 // SPDX-License-Identifier: GPL-2.0 2 /* ptrace.c */ 3 /* By Ross Biro 1/23/92 */ 4 /* edited by Linus Torvalds */ 5 /* mangled further by Bob Manson (manson@santafe.edu) */ 6 /* more mutilation by David Mosberger (davidm@azstarnet.com) */ 7 8 #include <linux/kernel.h> 9 #include <linux/sched.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/mm.h> 12 #include <linux/smp.h> 13 #include <linux/errno.h> 14 #include <linux/ptrace.h> 15 #include <linux/user.h> 16 #include <linux/security.h> 17 #include <linux/signal.h> 18 #include <linux/audit.h> 19 20 #include <linux/uaccess.h> 21 #include <asm/fpu.h> 22 23 #include "proto.h" 24 25 #define DEBUG DBG_MEM 26 #undef DEBUG 27 28 #ifdef DEBUG 29 enum { 30 DBG_MEM = (1<<0), 31 DBG_BPT = (1<<1), 32 DBG_MEM_ALL = (1<<2) 33 }; 34 #define DBG(fac,args) {if ((fac) & DEBUG) printk args;} 35 #else 36 #define DBG(fac,args) 37 #endif 38 39 #define BREAKINST 0x00000080 /* call_pal bpt */ 40 41 /* 42 * does not yet catch signals sent when the child dies. 43 * in exit.c or in signal.c. 44 */ 45 46 /* 47 * Processes always block with the following stack-layout: 48 * 49 * +================================+ <---- task + 2*PAGE_SIZE 50 * | PALcode saved frame (ps, pc, | ^ 51 * | gp, a0, a1, a2) | | 52 * +================================+ | struct pt_regs 53 * | | | 54 * | frame generated by SAVE_ALL | | 55 * | | v 56 * +================================+ 57 * | | ^ 58 * | frame saved by do_switch_stack | | struct switch_stack 59 * | | v 60 * +================================+ 61 */ 62 63 /* 64 * The following table maps a register index into the stack offset at 65 * which the register is saved. Register indices are 0-31 for integer 66 * regs, 32-63 for fp regs, and 64 for the pc. Notice that sp and 67 * zero have no stack-slot and need to be treated specially (see 68 * get_reg/put_reg below). 69 */ 70 enum { 71 REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64 72 }; 73 74 #define PT_REG(reg) \ 75 (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg)) 76 77 #define SW_REG(reg) \ 78 (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \ 79 + offsetof(struct switch_stack, reg)) 80 81 static int regoff[] = { 82 PT_REG( r0), PT_REG( r1), PT_REG( r2), PT_REG( r3), 83 PT_REG( r4), PT_REG( r5), PT_REG( r6), PT_REG( r7), 84 PT_REG( r8), SW_REG( r9), SW_REG( r10), SW_REG( r11), 85 SW_REG( r12), SW_REG( r13), SW_REG( r14), SW_REG( r15), 86 PT_REG( r16), PT_REG( r17), PT_REG( r18), PT_REG( r19), 87 PT_REG( r20), PT_REG( r21), PT_REG( r22), PT_REG( r23), 88 PT_REG( r24), PT_REG( r25), PT_REG( r26), PT_REG( r27), 89 PT_REG( r28), PT_REG( gp), -1, -1, 90 SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]), 91 SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]), 92 SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]), 93 SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]), 94 SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]), 95 SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]), 96 SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]), 97 SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]), 98 PT_REG( pc) 99 }; 100 101 static unsigned long zero; 102 103 /* 104 * Get address of register REGNO in task TASK. 105 */ 106 static unsigned long * 107 get_reg_addr(struct task_struct * task, unsigned long regno) 108 { 109 unsigned long *addr; 110 111 if (regno == 30) { 112 addr = &task_thread_info(task)->pcb.usp; 113 } else if (regno == 65) { 114 addr = &task_thread_info(task)->pcb.unique; 115 } else if (regno == 31 || regno > 65) { 116 zero = 0; 117 addr = &zero; 118 } else { 119 addr = task_stack_page(task) + regoff[regno]; 120 } 121 return addr; 122 } 123 124 /* 125 * Get contents of register REGNO in task TASK. 126 */ 127 static unsigned long 128 get_reg(struct task_struct * task, unsigned long regno) 129 { 130 /* Special hack for fpcr -- combine hardware and software bits. */ 131 if (regno == 63) { 132 unsigned long fpcr = *get_reg_addr(task, regno); 133 unsigned long swcr 134 = task_thread_info(task)->ieee_state & IEEE_SW_MASK; 135 swcr = swcr_update_status(swcr, fpcr); 136 return fpcr | swcr; 137 } 138 return *get_reg_addr(task, regno); 139 } 140 141 /* 142 * Write contents of register REGNO in task TASK. 143 */ 144 static int 145 put_reg(struct task_struct *task, unsigned long regno, unsigned long data) 146 { 147 if (regno == 63) { 148 task_thread_info(task)->ieee_state 149 = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK) 150 | (data & IEEE_SW_MASK)); 151 data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data); 152 } 153 *get_reg_addr(task, regno) = data; 154 return 0; 155 } 156 157 static inline int 158 read_int(struct task_struct *task, unsigned long addr, int * data) 159 { 160 int copied = access_process_vm(task, addr, data, sizeof(int), 161 FOLL_FORCE); 162 return (copied == sizeof(int)) ? 0 : -EIO; 163 } 164 165 static inline int 166 write_int(struct task_struct *task, unsigned long addr, int data) 167 { 168 int copied = access_process_vm(task, addr, &data, sizeof(int), 169 FOLL_FORCE | FOLL_WRITE); 170 return (copied == sizeof(int)) ? 0 : -EIO; 171 } 172 173 /* 174 * Set breakpoint. 175 */ 176 int 177 ptrace_set_bpt(struct task_struct * child) 178 { 179 int displ, i, res, reg_b, nsaved = 0; 180 unsigned int insn, op_code; 181 unsigned long pc; 182 183 pc = get_reg(child, REG_PC); 184 res = read_int(child, pc, (int *) &insn); 185 if (res < 0) 186 return res; 187 188 op_code = insn >> 26; 189 if (op_code >= 0x30) { 190 /* 191 * It's a branch: instead of trying to figure out 192 * whether the branch will be taken or not, we'll put 193 * a breakpoint at either location. This is simpler, 194 * more reliable, and probably not a whole lot slower 195 * than the alternative approach of emulating the 196 * branch (emulation can be tricky for fp branches). 197 */ 198 displ = ((s32)(insn << 11)) >> 9; 199 task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; 200 if (displ) /* guard against unoptimized code */ 201 task_thread_info(child)->bpt_addr[nsaved++] 202 = pc + 4 + displ; 203 DBG(DBG_BPT, ("execing branch\n")); 204 } else if (op_code == 0x1a) { 205 reg_b = (insn >> 16) & 0x1f; 206 task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b); 207 DBG(DBG_BPT, ("execing jump\n")); 208 } else { 209 task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; 210 DBG(DBG_BPT, ("execing normal insn\n")); 211 } 212 213 /* install breakpoints: */ 214 for (i = 0; i < nsaved; ++i) { 215 res = read_int(child, task_thread_info(child)->bpt_addr[i], 216 (int *) &insn); 217 if (res < 0) 218 return res; 219 task_thread_info(child)->bpt_insn[i] = insn; 220 DBG(DBG_BPT, (" -> next_pc=%lx\n", 221 task_thread_info(child)->bpt_addr[i])); 222 res = write_int(child, task_thread_info(child)->bpt_addr[i], 223 BREAKINST); 224 if (res < 0) 225 return res; 226 } 227 task_thread_info(child)->bpt_nsaved = nsaved; 228 return 0; 229 } 230 231 /* 232 * Ensure no single-step breakpoint is pending. Returns non-zero 233 * value if child was being single-stepped. 234 */ 235 int 236 ptrace_cancel_bpt(struct task_struct * child) 237 { 238 int i, nsaved = task_thread_info(child)->bpt_nsaved; 239 240 task_thread_info(child)->bpt_nsaved = 0; 241 242 if (nsaved > 2) { 243 printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); 244 nsaved = 2; 245 } 246 247 for (i = 0; i < nsaved; ++i) { 248 write_int(child, task_thread_info(child)->bpt_addr[i], 249 task_thread_info(child)->bpt_insn[i]); 250 } 251 return (nsaved != 0); 252 } 253 254 void user_enable_single_step(struct task_struct *child) 255 { 256 /* Mark single stepping. */ 257 task_thread_info(child)->bpt_nsaved = -1; 258 } 259 260 void user_disable_single_step(struct task_struct *child) 261 { 262 ptrace_cancel_bpt(child); 263 } 264 265 /* 266 * Called by kernel/ptrace.c when detaching.. 267 * 268 * Make sure the single step bit is not set. 269 */ 270 void ptrace_disable(struct task_struct *child) 271 { 272 user_disable_single_step(child); 273 } 274 275 long arch_ptrace(struct task_struct *child, long request, 276 unsigned long addr, unsigned long data) 277 { 278 unsigned long tmp; 279 size_t copied; 280 long ret; 281 282 switch (request) { 283 /* When I and D space are separate, these will need to be fixed. */ 284 case PTRACE_PEEKTEXT: /* read word at location addr. */ 285 case PTRACE_PEEKDATA: 286 copied = ptrace_access_vm(child, addr, &tmp, sizeof(tmp), 287 FOLL_FORCE); 288 ret = -EIO; 289 if (copied != sizeof(tmp)) 290 break; 291 292 force_successful_syscall_return(); 293 ret = tmp; 294 break; 295 296 /* Read register number ADDR. */ 297 case PTRACE_PEEKUSR: 298 force_successful_syscall_return(); 299 ret = get_reg(child, addr); 300 DBG(DBG_MEM, ("peek $%lu->%#lx\n", addr, ret)); 301 break; 302 303 /* When I and D space are separate, this will have to be fixed. */ 304 case PTRACE_POKETEXT: /* write the word at location addr. */ 305 case PTRACE_POKEDATA: 306 ret = generic_ptrace_pokedata(child, addr, data); 307 break; 308 309 case PTRACE_POKEUSR: /* write the specified register */ 310 DBG(DBG_MEM, ("poke $%lu<-%#lx\n", addr, data)); 311 ret = put_reg(child, addr, data); 312 break; 313 default: 314 ret = ptrace_request(child, request, addr, data); 315 break; 316 } 317 return ret; 318 } 319 320 asmlinkage unsigned long syscall_trace_enter(void) 321 { 322 unsigned long ret = 0; 323 struct pt_regs *regs = current_pt_regs(); 324 if (test_thread_flag(TIF_SYSCALL_TRACE) && 325 ptrace_report_syscall_entry(current_pt_regs())) 326 ret = -1UL; 327 audit_syscall_entry(regs->r0, regs->r16, regs->r17, regs->r18, regs->r19); 328 return ret ?: current_pt_regs()->r0; 329 } 330 331 asmlinkage void 332 syscall_trace_leave(void) 333 { 334 audit_syscall_exit(current_pt_regs()); 335 if (test_thread_flag(TIF_SYSCALL_TRACE)) 336 ptrace_report_syscall_exit(current_pt_regs(), 0); 337 } 338