1 /* ptrace.c */ 2 /* By Ross Biro 1/23/92 */ 3 /* edited by Linus Torvalds */ 4 /* mangled further by Bob Manson (manson@santafe.edu) */ 5 /* more mutilation by David Mosberger (davidm@azstarnet.com) */ 6 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/smp.h> 11 #include <linux/errno.h> 12 #include <linux/ptrace.h> 13 #include <linux/user.h> 14 #include <linux/security.h> 15 #include <linux/signal.h> 16 17 #include <asm/uaccess.h> 18 #include <asm/pgtable.h> 19 #include <asm/system.h> 20 #include <asm/fpu.h> 21 22 #include "proto.h" 23 24 #define DEBUG DBG_MEM 25 #undef DEBUG 26 27 #ifdef DEBUG 28 enum { 29 DBG_MEM = (1<<0), 30 DBG_BPT = (1<<1), 31 DBG_MEM_ALL = (1<<2) 32 }; 33 #define DBG(fac,args) {if ((fac) & DEBUG) printk args;} 34 #else 35 #define DBG(fac,args) 36 #endif 37 38 #define BREAKINST 0x00000080 /* call_pal bpt */ 39 40 /* 41 * does not yet catch signals sent when the child dies. 42 * in exit.c or in signal.c. 43 */ 44 45 /* 46 * Processes always block with the following stack-layout: 47 * 48 * +================================+ <---- task + 2*PAGE_SIZE 49 * | PALcode saved frame (ps, pc, | ^ 50 * | gp, a0, a1, a2) | | 51 * +================================+ | struct pt_regs 52 * | | | 53 * | frame generated by SAVE_ALL | | 54 * | | v 55 * +================================+ 56 * | | ^ 57 * | frame saved by do_switch_stack | | struct switch_stack 58 * | | v 59 * +================================+ 60 */ 61 62 /* 63 * The following table maps a register index into the stack offset at 64 * which the register is saved. Register indices are 0-31 for integer 65 * regs, 32-63 for fp regs, and 64 for the pc. Notice that sp and 66 * zero have no stack-slot and need to be treated specially (see 67 * get_reg/put_reg below). 68 */ 69 enum { 70 REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64 71 }; 72 73 #define PT_REG(reg) \ 74 (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg)) 75 76 #define SW_REG(reg) \ 77 (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \ 78 + offsetof(struct switch_stack, reg)) 79 80 static int regoff[] = { 81 PT_REG( r0), PT_REG( r1), PT_REG( r2), PT_REG( r3), 82 PT_REG( r4), PT_REG( r5), PT_REG( r6), PT_REG( r7), 83 PT_REG( r8), SW_REG( r9), SW_REG( r10), SW_REG( r11), 84 SW_REG( r12), SW_REG( r13), SW_REG( r14), SW_REG( r15), 85 PT_REG( r16), PT_REG( r17), PT_REG( r18), PT_REG( r19), 86 PT_REG( r20), PT_REG( r21), PT_REG( r22), PT_REG( r23), 87 PT_REG( r24), PT_REG( r25), PT_REG( r26), PT_REG( r27), 88 PT_REG( r28), PT_REG( gp), -1, -1, 89 SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]), 90 SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]), 91 SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]), 92 SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]), 93 SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]), 94 SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]), 95 SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]), 96 SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]), 97 PT_REG( pc) 98 }; 99 100 static unsigned long zero; 101 102 /* 103 * Get address of register REGNO in task TASK. 104 */ 105 static unsigned long * 106 get_reg_addr(struct task_struct * task, unsigned long regno) 107 { 108 unsigned long *addr; 109 110 if (regno == 30) { 111 addr = &task_thread_info(task)->pcb.usp; 112 } else if (regno == 65) { 113 addr = &task_thread_info(task)->pcb.unique; 114 } else if (regno == 31 || regno > 65) { 115 zero = 0; 116 addr = &zero; 117 } else { 118 addr = task_stack_page(task) + regoff[regno]; 119 } 120 return addr; 121 } 122 123 /* 124 * Get contents of register REGNO in task TASK. 125 */ 126 static unsigned long 127 get_reg(struct task_struct * task, unsigned long regno) 128 { 129 /* Special hack for fpcr -- combine hardware and software bits. */ 130 if (regno == 63) { 131 unsigned long fpcr = *get_reg_addr(task, regno); 132 unsigned long swcr 133 = task_thread_info(task)->ieee_state & IEEE_SW_MASK; 134 swcr = swcr_update_status(swcr, fpcr); 135 return fpcr | swcr; 136 } 137 return *get_reg_addr(task, regno); 138 } 139 140 /* 141 * Write contents of register REGNO in task TASK. 142 */ 143 static int 144 put_reg(struct task_struct *task, unsigned long regno, unsigned long data) 145 { 146 if (regno == 63) { 147 task_thread_info(task)->ieee_state 148 = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK) 149 | (data & IEEE_SW_MASK)); 150 data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data); 151 } 152 *get_reg_addr(task, regno) = data; 153 return 0; 154 } 155 156 static inline int 157 read_int(struct task_struct *task, unsigned long addr, int * data) 158 { 159 int copied = access_process_vm(task, addr, data, sizeof(int), 0); 160 return (copied == sizeof(int)) ? 0 : -EIO; 161 } 162 163 static inline int 164 write_int(struct task_struct *task, unsigned long addr, int data) 165 { 166 int copied = access_process_vm(task, addr, &data, sizeof(int), 1); 167 return (copied == sizeof(int)) ? 0 : -EIO; 168 } 169 170 /* 171 * Set breakpoint. 172 */ 173 int 174 ptrace_set_bpt(struct task_struct * child) 175 { 176 int displ, i, res, reg_b, nsaved = 0; 177 unsigned int insn, op_code; 178 unsigned long pc; 179 180 pc = get_reg(child, REG_PC); 181 res = read_int(child, pc, (int *) &insn); 182 if (res < 0) 183 return res; 184 185 op_code = insn >> 26; 186 if (op_code >= 0x30) { 187 /* 188 * It's a branch: instead of trying to figure out 189 * whether the branch will be taken or not, we'll put 190 * a breakpoint at either location. This is simpler, 191 * more reliable, and probably not a whole lot slower 192 * than the alternative approach of emulating the 193 * branch (emulation can be tricky for fp branches). 194 */ 195 displ = ((s32)(insn << 11)) >> 9; 196 task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; 197 if (displ) /* guard against unoptimized code */ 198 task_thread_info(child)->bpt_addr[nsaved++] 199 = pc + 4 + displ; 200 DBG(DBG_BPT, ("execing branch\n")); 201 } else if (op_code == 0x1a) { 202 reg_b = (insn >> 16) & 0x1f; 203 task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b); 204 DBG(DBG_BPT, ("execing jump\n")); 205 } else { 206 task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; 207 DBG(DBG_BPT, ("execing normal insn\n")); 208 } 209 210 /* install breakpoints: */ 211 for (i = 0; i < nsaved; ++i) { 212 res = read_int(child, task_thread_info(child)->bpt_addr[i], 213 (int *) &insn); 214 if (res < 0) 215 return res; 216 task_thread_info(child)->bpt_insn[i] = insn; 217 DBG(DBG_BPT, (" -> next_pc=%lx\n", 218 task_thread_info(child)->bpt_addr[i])); 219 res = write_int(child, task_thread_info(child)->bpt_addr[i], 220 BREAKINST); 221 if (res < 0) 222 return res; 223 } 224 task_thread_info(child)->bpt_nsaved = nsaved; 225 return 0; 226 } 227 228 /* 229 * Ensure no single-step breakpoint is pending. Returns non-zero 230 * value if child was being single-stepped. 231 */ 232 int 233 ptrace_cancel_bpt(struct task_struct * child) 234 { 235 int i, nsaved = task_thread_info(child)->bpt_nsaved; 236 237 task_thread_info(child)->bpt_nsaved = 0; 238 239 if (nsaved > 2) { 240 printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); 241 nsaved = 2; 242 } 243 244 for (i = 0; i < nsaved; ++i) { 245 write_int(child, task_thread_info(child)->bpt_addr[i], 246 task_thread_info(child)->bpt_insn[i]); 247 } 248 return (nsaved != 0); 249 } 250 251 void user_enable_single_step(struct task_struct *child) 252 { 253 /* Mark single stepping. */ 254 task_thread_info(child)->bpt_nsaved = -1; 255 } 256 257 void user_disable_single_step(struct task_struct *child) 258 { 259 ptrace_cancel_bpt(child); 260 } 261 262 /* 263 * Called by kernel/ptrace.c when detaching.. 264 * 265 * Make sure the single step bit is not set. 266 */ 267 void ptrace_disable(struct task_struct *child) 268 { 269 user_disable_single_step(child); 270 } 271 272 long arch_ptrace(struct task_struct *child, long request, 273 unsigned long addr, unsigned long data) 274 { 275 unsigned long tmp; 276 size_t copied; 277 long ret; 278 279 switch (request) { 280 /* When I and D space are separate, these will need to be fixed. */ 281 case PTRACE_PEEKTEXT: /* read word at location addr. */ 282 case PTRACE_PEEKDATA: 283 copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); 284 ret = -EIO; 285 if (copied != sizeof(tmp)) 286 break; 287 288 force_successful_syscall_return(); 289 ret = tmp; 290 break; 291 292 /* Read register number ADDR. */ 293 case PTRACE_PEEKUSR: 294 force_successful_syscall_return(); 295 ret = get_reg(child, addr); 296 DBG(DBG_MEM, ("peek $%lu->%#lx\n", addr, ret)); 297 break; 298 299 /* When I and D space are separate, this will have to be fixed. */ 300 case PTRACE_POKETEXT: /* write the word at location addr. */ 301 case PTRACE_POKEDATA: 302 ret = generic_ptrace_pokedata(child, addr, data); 303 break; 304 305 case PTRACE_POKEUSR: /* write the specified register */ 306 DBG(DBG_MEM, ("poke $%lu<-%#lx\n", addr, data)); 307 ret = put_reg(child, addr, data); 308 break; 309 default: 310 ret = ptrace_request(child, request, addr, data); 311 break; 312 } 313 return ret; 314 } 315 316 asmlinkage void 317 syscall_trace(void) 318 { 319 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 320 return; 321 if (!(current->ptrace & PT_PTRACED)) 322 return; 323 /* The 0x80 provides a way for the tracing parent to distinguish 324 between a syscall stop and SIGTRAP delivery */ 325 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) 326 ? 0x80 : 0)); 327 328 /* 329 * This isn't the same as continuing with a signal, but it will do 330 * for normal use. strace only continues with a signal if the 331 * stopping signal is not SIGTRAP. -brl 332 */ 333 if (current->exit_code) { 334 send_sig(current->exit_code, current, 1); 335 current->exit_code = 0; 336 } 337 } 338