xref: /openbmc/linux/arch/alpha/kernel/process.c (revision e2f1cf25)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 #include <linux/rcupdate.h>
32 
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
39 
40 #include "proto.h"
41 #include "pci_impl.h"
42 
43 /*
44  * Power off function, if any
45  */
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
48 
49 #ifdef CONFIG_ALPHA_WTINT
50 /*
51  * Sleep the CPU.
52  * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
53  */
54 void arch_cpu_idle(void)
55 {
56 	wtint(0);
57 	local_irq_enable();
58 }
59 
60 void arch_cpu_idle_dead(void)
61 {
62 	wtint(INT_MAX);
63 }
64 #endif /* ALPHA_WTINT */
65 
66 struct halt_info {
67 	int mode;
68 	char *restart_cmd;
69 };
70 
71 static void
72 common_shutdown_1(void *generic_ptr)
73 {
74 	struct halt_info *how = (struct halt_info *)generic_ptr;
75 	struct percpu_struct *cpup;
76 	unsigned long *pflags, flags;
77 	int cpuid = smp_processor_id();
78 
79 	/* No point in taking interrupts anymore. */
80 	local_irq_disable();
81 
82 	cpup = (struct percpu_struct *)
83 			((unsigned long)hwrpb + hwrpb->processor_offset
84 			 + hwrpb->processor_size * cpuid);
85 	pflags = &cpup->flags;
86 	flags = *pflags;
87 
88 	/* Clear reason to "default"; clear "bootstrap in progress". */
89 	flags &= ~0x00ff0001UL;
90 
91 #ifdef CONFIG_SMP
92 	/* Secondaries halt here. */
93 	if (cpuid != boot_cpuid) {
94 		flags |= 0x00040000UL; /* "remain halted" */
95 		*pflags = flags;
96 		set_cpu_present(cpuid, false);
97 		set_cpu_possible(cpuid, false);
98 		halt();
99 	}
100 #endif
101 
102 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
103 		if (!how->restart_cmd) {
104 			flags |= 0x00020000UL; /* "cold bootstrap" */
105 		} else {
106 			/* For SRM, we could probably set environment
107 			   variables to get this to work.  We'd have to
108 			   delay this until after srm_paging_stop unless
109 			   we ever got srm_fixup working.
110 
111 			   At the moment, SRM will use the last boot device,
112 			   but the file and flags will be the defaults, when
113 			   doing a "warm" bootstrap.  */
114 			flags |= 0x00030000UL; /* "warm bootstrap" */
115 		}
116 	} else {
117 		flags |= 0x00040000UL; /* "remain halted" */
118 	}
119 	*pflags = flags;
120 
121 #ifdef CONFIG_SMP
122 	/* Wait for the secondaries to halt. */
123 	set_cpu_present(boot_cpuid, false);
124 	set_cpu_possible(boot_cpuid, false);
125 	while (cpumask_weight(cpu_present_mask))
126 		barrier();
127 #endif
128 
129 	/* If booted from SRM, reset some of the original environment. */
130 	if (alpha_using_srm) {
131 #ifdef CONFIG_DUMMY_CONSOLE
132 		/* If we've gotten here after SysRq-b, leave interrupt
133 		   context before taking over the console. */
134 		if (in_interrupt())
135 			irq_exit();
136 		/* This has the effect of resetting the VGA video origin.  */
137 		console_lock();
138 		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
139 		console_unlock();
140 #endif
141 		pci_restore_srm_config();
142 		set_hae(srm_hae);
143 	}
144 
145 	if (alpha_mv.kill_arch)
146 		alpha_mv.kill_arch(how->mode);
147 
148 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
149 		/* Unfortunately, since MILO doesn't currently understand
150 		   the hwrpb bits above, we can't reliably halt the
151 		   processor and keep it halted.  So just loop.  */
152 		return;
153 	}
154 
155 	if (alpha_using_srm)
156 		srm_paging_stop();
157 
158 	halt();
159 }
160 
161 static void
162 common_shutdown(int mode, char *restart_cmd)
163 {
164 	struct halt_info args;
165 	args.mode = mode;
166 	args.restart_cmd = restart_cmd;
167 	on_each_cpu(common_shutdown_1, &args, 0);
168 }
169 
170 void
171 machine_restart(char *restart_cmd)
172 {
173 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
174 }
175 
176 
177 void
178 machine_halt(void)
179 {
180 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
181 }
182 
183 
184 void
185 machine_power_off(void)
186 {
187 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
188 }
189 
190 
191 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
192    saved in the context it's used.  */
193 
194 void
195 show_regs(struct pt_regs *regs)
196 {
197 	show_regs_print_info(KERN_DEFAULT);
198 	dik_show_regs(regs, NULL);
199 }
200 
201 /*
202  * Re-start a thread when doing execve()
203  */
204 void
205 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
206 {
207 	regs->pc = pc;
208 	regs->ps = 8;
209 	wrusp(sp);
210 }
211 EXPORT_SYMBOL(start_thread);
212 
213 /*
214  * Free current thread data structures etc..
215  */
216 void
217 exit_thread(void)
218 {
219 }
220 
221 void
222 flush_thread(void)
223 {
224 	/* Arrange for each exec'ed process to start off with a clean slate
225 	   with respect to the FPU.  This is all exceptions disabled.  */
226 	current_thread_info()->ieee_state = 0;
227 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
228 
229 	/* Clean slate for TLS.  */
230 	current_thread_info()->pcb.unique = 0;
231 }
232 
233 void
234 release_thread(struct task_struct *dead_task)
235 {
236 }
237 
238 /*
239  * Copy architecture-specific thread state
240  */
241 int
242 copy_thread(unsigned long clone_flags, unsigned long usp,
243 	    unsigned long kthread_arg,
244 	    struct task_struct *p)
245 {
246 	extern void ret_from_fork(void);
247 	extern void ret_from_kernel_thread(void);
248 
249 	struct thread_info *childti = task_thread_info(p);
250 	struct pt_regs *childregs = task_pt_regs(p);
251 	struct pt_regs *regs = current_pt_regs();
252 	struct switch_stack *childstack, *stack;
253 
254 	childstack = ((struct switch_stack *) childregs) - 1;
255 	childti->pcb.ksp = (unsigned long) childstack;
256 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
257 
258 	if (unlikely(p->flags & PF_KTHREAD)) {
259 		/* kernel thread */
260 		memset(childstack, 0,
261 			sizeof(struct switch_stack) + sizeof(struct pt_regs));
262 		childstack->r26 = (unsigned long) ret_from_kernel_thread;
263 		childstack->r9 = usp;	/* function */
264 		childstack->r10 = kthread_arg;
265 		childregs->hae = alpha_mv.hae_cache,
266 		childti->pcb.usp = 0;
267 		return 0;
268 	}
269 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
270 	   value from the parent, which will have been set by the block
271 	   copy in dup_task_struct.  This is non-intuitive, but is
272 	   required for proper operation in the case of a threaded
273 	   application calling fork.  */
274 	if (clone_flags & CLONE_SETTLS)
275 		childti->pcb.unique = regs->r20;
276 	childti->pcb.usp = usp ?: rdusp();
277 	*childregs = *regs;
278 	childregs->r0 = 0;
279 	childregs->r19 = 0;
280 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
281 	regs->r20 = 0;
282 	stack = ((struct switch_stack *) regs) - 1;
283 	*childstack = *stack;
284 	childstack->r26 = (unsigned long) ret_from_fork;
285 	return 0;
286 }
287 
288 /*
289  * Fill in the user structure for a ELF core dump.
290  */
291 void
292 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
293 {
294 	/* switch stack follows right below pt_regs: */
295 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
296 
297 	dest[ 0] = pt->r0;
298 	dest[ 1] = pt->r1;
299 	dest[ 2] = pt->r2;
300 	dest[ 3] = pt->r3;
301 	dest[ 4] = pt->r4;
302 	dest[ 5] = pt->r5;
303 	dest[ 6] = pt->r6;
304 	dest[ 7] = pt->r7;
305 	dest[ 8] = pt->r8;
306 	dest[ 9] = sw->r9;
307 	dest[10] = sw->r10;
308 	dest[11] = sw->r11;
309 	dest[12] = sw->r12;
310 	dest[13] = sw->r13;
311 	dest[14] = sw->r14;
312 	dest[15] = sw->r15;
313 	dest[16] = pt->r16;
314 	dest[17] = pt->r17;
315 	dest[18] = pt->r18;
316 	dest[19] = pt->r19;
317 	dest[20] = pt->r20;
318 	dest[21] = pt->r21;
319 	dest[22] = pt->r22;
320 	dest[23] = pt->r23;
321 	dest[24] = pt->r24;
322 	dest[25] = pt->r25;
323 	dest[26] = pt->r26;
324 	dest[27] = pt->r27;
325 	dest[28] = pt->r28;
326 	dest[29] = pt->gp;
327 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
328 	dest[31] = pt->pc;
329 
330 	/* Once upon a time this was the PS value.  Which is stupid
331 	   since that is always 8 for usermode.  Usurped for the more
332 	   useful value of the thread's UNIQUE field.  */
333 	dest[32] = ti->pcb.unique;
334 }
335 EXPORT_SYMBOL(dump_elf_thread);
336 
337 int
338 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
339 {
340 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
341 	return 1;
342 }
343 EXPORT_SYMBOL(dump_elf_task);
344 
345 int
346 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
347 {
348 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
349 	memcpy(dest, sw->fp, 32 * 8);
350 	return 1;
351 }
352 EXPORT_SYMBOL(dump_elf_task_fp);
353 
354 /*
355  * Return saved PC of a blocked thread.  This assumes the frame
356  * pointer is the 6th saved long on the kernel stack and that the
357  * saved return address is the first long in the frame.  This all
358  * holds provided the thread blocked through a call to schedule() ($15
359  * is the frame pointer in schedule() and $15 is saved at offset 48 by
360  * entry.S:do_switch_stack).
361  *
362  * Under heavy swap load I've seen this lose in an ugly way.  So do
363  * some extra sanity checking on the ranges we expect these pointers
364  * to be in so that we can fail gracefully.  This is just for ps after
365  * all.  -- r~
366  */
367 
368 unsigned long
369 thread_saved_pc(struct task_struct *t)
370 {
371 	unsigned long base = (unsigned long)task_stack_page(t);
372 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
373 
374 	if (sp > base && sp+6*8 < base + 16*1024) {
375 		fp = ((unsigned long*)sp)[6];
376 		if (fp > sp && fp < base + 16*1024)
377 			return *(unsigned long *)fp;
378 	}
379 
380 	return 0;
381 }
382 
383 unsigned long
384 get_wchan(struct task_struct *p)
385 {
386 	unsigned long schedule_frame;
387 	unsigned long pc;
388 	if (!p || p == current || p->state == TASK_RUNNING)
389 		return 0;
390 	/*
391 	 * This one depends on the frame size of schedule().  Do a
392 	 * "disass schedule" in gdb to find the frame size.  Also, the
393 	 * code assumes that sleep_on() follows immediately after
394 	 * interruptible_sleep_on() and that add_timer() follows
395 	 * immediately after interruptible_sleep().  Ugly, isn't it?
396 	 * Maybe adding a wchan field to task_struct would be better,
397 	 * after all...
398 	 */
399 
400 	pc = thread_saved_pc(p);
401 	if (in_sched_functions(pc)) {
402 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
403 		return ((unsigned long *)schedule_frame)[12];
404 	}
405 	return pc;
406 }
407