xref: /openbmc/linux/arch/alpha/kernel/process.c (revision c0605cd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/alpha/kernel/process.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling.
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/user.h>
25 #include <linux/time.h>
26 #include <linux/major.h>
27 #include <linux/stat.h>
28 #include <linux/vt.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
34 #include <linux/slab.h>
35 #include <linux/rcupdate.h>
36 
37 #include <asm/reg.h>
38 #include <linux/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/hwrpb.h>
41 #include <asm/fpu.h>
42 
43 #include "proto.h"
44 #include "pci_impl.h"
45 
46 /*
47  * Power off function, if any
48  */
49 void (*pm_power_off)(void) = machine_power_off;
50 EXPORT_SYMBOL(pm_power_off);
51 
52 #ifdef CONFIG_ALPHA_WTINT
53 /*
54  * Sleep the CPU.
55  * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
56  */
57 void arch_cpu_idle(void)
58 {
59 	wtint(0);
60 	raw_local_irq_enable();
61 }
62 
63 void arch_cpu_idle_dead(void)
64 {
65 	wtint(INT_MAX);
66 }
67 #endif /* ALPHA_WTINT */
68 
69 struct halt_info {
70 	int mode;
71 	char *restart_cmd;
72 };
73 
74 static void
75 common_shutdown_1(void *generic_ptr)
76 {
77 	struct halt_info *how = (struct halt_info *)generic_ptr;
78 	struct percpu_struct *cpup;
79 	unsigned long *pflags, flags;
80 	int cpuid = smp_processor_id();
81 
82 	/* No point in taking interrupts anymore. */
83 	local_irq_disable();
84 
85 	cpup = (struct percpu_struct *)
86 			((unsigned long)hwrpb + hwrpb->processor_offset
87 			 + hwrpb->processor_size * cpuid);
88 	pflags = &cpup->flags;
89 	flags = *pflags;
90 
91 	/* Clear reason to "default"; clear "bootstrap in progress". */
92 	flags &= ~0x00ff0001UL;
93 
94 #ifdef CONFIG_SMP
95 	/* Secondaries halt here. */
96 	if (cpuid != boot_cpuid) {
97 		flags |= 0x00040000UL; /* "remain halted" */
98 		*pflags = flags;
99 		set_cpu_present(cpuid, false);
100 		set_cpu_possible(cpuid, false);
101 		halt();
102 	}
103 #endif
104 
105 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
106 		if (!how->restart_cmd) {
107 			flags |= 0x00020000UL; /* "cold bootstrap" */
108 		} else {
109 			/* For SRM, we could probably set environment
110 			   variables to get this to work.  We'd have to
111 			   delay this until after srm_paging_stop unless
112 			   we ever got srm_fixup working.
113 
114 			   At the moment, SRM will use the last boot device,
115 			   but the file and flags will be the defaults, when
116 			   doing a "warm" bootstrap.  */
117 			flags |= 0x00030000UL; /* "warm bootstrap" */
118 		}
119 	} else {
120 		flags |= 0x00040000UL; /* "remain halted" */
121 	}
122 	*pflags = flags;
123 
124 #ifdef CONFIG_SMP
125 	/* Wait for the secondaries to halt. */
126 	set_cpu_present(boot_cpuid, false);
127 	set_cpu_possible(boot_cpuid, false);
128 	while (!cpumask_empty(cpu_present_mask))
129 		barrier();
130 #endif
131 
132 	/* If booted from SRM, reset some of the original environment. */
133 	if (alpha_using_srm) {
134 #ifdef CONFIG_DUMMY_CONSOLE
135 		/* If we've gotten here after SysRq-b, leave interrupt
136 		   context before taking over the console. */
137 		if (in_irq())
138 			irq_exit();
139 		/* This has the effect of resetting the VGA video origin.  */
140 		console_lock();
141 		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
142 		console_unlock();
143 #endif
144 		pci_restore_srm_config();
145 		set_hae(srm_hae);
146 	}
147 
148 	if (alpha_mv.kill_arch)
149 		alpha_mv.kill_arch(how->mode);
150 
151 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
152 		/* Unfortunately, since MILO doesn't currently understand
153 		   the hwrpb bits above, we can't reliably halt the
154 		   processor and keep it halted.  So just loop.  */
155 		return;
156 	}
157 
158 	if (alpha_using_srm)
159 		srm_paging_stop();
160 
161 	halt();
162 }
163 
164 static void
165 common_shutdown(int mode, char *restart_cmd)
166 {
167 	struct halt_info args;
168 	args.mode = mode;
169 	args.restart_cmd = restart_cmd;
170 	on_each_cpu(common_shutdown_1, &args, 0);
171 }
172 
173 void
174 machine_restart(char *restart_cmd)
175 {
176 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
177 }
178 
179 
180 void
181 machine_halt(void)
182 {
183 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
184 }
185 
186 
187 void
188 machine_power_off(void)
189 {
190 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
191 }
192 
193 
194 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
195    saved in the context it's used.  */
196 
197 void
198 show_regs(struct pt_regs *regs)
199 {
200 	show_regs_print_info(KERN_DEFAULT);
201 	dik_show_regs(regs, NULL);
202 }
203 
204 /*
205  * Re-start a thread when doing execve()
206  */
207 void
208 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
209 {
210 	regs->pc = pc;
211 	regs->ps = 8;
212 	wrusp(sp);
213 }
214 EXPORT_SYMBOL(start_thread);
215 
216 void
217 flush_thread(void)
218 {
219 	/* Arrange for each exec'ed process to start off with a clean slate
220 	   with respect to the FPU.  This is all exceptions disabled.  */
221 	current_thread_info()->ieee_state = 0;
222 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
223 
224 	/* Clean slate for TLS.  */
225 	current_thread_info()->pcb.unique = 0;
226 }
227 
228 /*
229  * Copy architecture-specific thread state
230  */
231 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
232 {
233 	unsigned long clone_flags = args->flags;
234 	unsigned long usp = args->stack;
235 	unsigned long tls = args->tls;
236 	extern void ret_from_fork(void);
237 	extern void ret_from_kernel_thread(void);
238 
239 	struct thread_info *childti = task_thread_info(p);
240 	struct pt_regs *childregs = task_pt_regs(p);
241 	struct pt_regs *regs = current_pt_regs();
242 	struct switch_stack *childstack, *stack;
243 
244 	childstack = ((struct switch_stack *) childregs) - 1;
245 	childti->pcb.ksp = (unsigned long) childstack;
246 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
247 
248 	if (unlikely(args->fn)) {
249 		/* kernel thread */
250 		memset(childstack, 0,
251 			sizeof(struct switch_stack) + sizeof(struct pt_regs));
252 		childstack->r26 = (unsigned long) ret_from_kernel_thread;
253 		childstack->r9 = (unsigned long) args->fn;
254 		childstack->r10 = (unsigned long) args->fn_arg;
255 		childregs->hae = alpha_mv.hae_cache;
256 		childti->pcb.usp = 0;
257 		return 0;
258 	}
259 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
260 	   value from the parent, which will have been set by the block
261 	   copy in dup_task_struct.  This is non-intuitive, but is
262 	   required for proper operation in the case of a threaded
263 	   application calling fork.  */
264 	if (clone_flags & CLONE_SETTLS)
265 		childti->pcb.unique = tls;
266 	else
267 		regs->r20 = 0;	/* OSF/1 has some strange fork() semantics.  */
268 	childti->pcb.usp = usp ?: rdusp();
269 	*childregs = *regs;
270 	childregs->r0 = 0;
271 	childregs->r19 = 0;
272 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
273 	stack = ((struct switch_stack *) regs) - 1;
274 	*childstack = *stack;
275 	childstack->r26 = (unsigned long) ret_from_fork;
276 	return 0;
277 }
278 
279 /*
280  * Fill in the user structure for a ELF core dump.
281  */
282 void
283 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
284 {
285 	/* switch stack follows right below pt_regs: */
286 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
287 
288 	dest[ 0] = pt->r0;
289 	dest[ 1] = pt->r1;
290 	dest[ 2] = pt->r2;
291 	dest[ 3] = pt->r3;
292 	dest[ 4] = pt->r4;
293 	dest[ 5] = pt->r5;
294 	dest[ 6] = pt->r6;
295 	dest[ 7] = pt->r7;
296 	dest[ 8] = pt->r8;
297 	dest[ 9] = sw->r9;
298 	dest[10] = sw->r10;
299 	dest[11] = sw->r11;
300 	dest[12] = sw->r12;
301 	dest[13] = sw->r13;
302 	dest[14] = sw->r14;
303 	dest[15] = sw->r15;
304 	dest[16] = pt->r16;
305 	dest[17] = pt->r17;
306 	dest[18] = pt->r18;
307 	dest[19] = pt->r19;
308 	dest[20] = pt->r20;
309 	dest[21] = pt->r21;
310 	dest[22] = pt->r22;
311 	dest[23] = pt->r23;
312 	dest[24] = pt->r24;
313 	dest[25] = pt->r25;
314 	dest[26] = pt->r26;
315 	dest[27] = pt->r27;
316 	dest[28] = pt->r28;
317 	dest[29] = pt->gp;
318 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
319 	dest[31] = pt->pc;
320 
321 	/* Once upon a time this was the PS value.  Which is stupid
322 	   since that is always 8 for usermode.  Usurped for the more
323 	   useful value of the thread's UNIQUE field.  */
324 	dest[32] = ti->pcb.unique;
325 }
326 EXPORT_SYMBOL(dump_elf_thread);
327 
328 int
329 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
330 {
331 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
332 	return 1;
333 }
334 EXPORT_SYMBOL(dump_elf_task);
335 
336 int
337 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
338 {
339 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
340 	memcpy(dest, sw->fp, 32 * 8);
341 	return 1;
342 }
343 EXPORT_SYMBOL(dump_elf_task_fp);
344 
345 /*
346  * Return saved PC of a blocked thread.  This assumes the frame
347  * pointer is the 6th saved long on the kernel stack and that the
348  * saved return address is the first long in the frame.  This all
349  * holds provided the thread blocked through a call to schedule() ($15
350  * is the frame pointer in schedule() and $15 is saved at offset 48 by
351  * entry.S:do_switch_stack).
352  *
353  * Under heavy swap load I've seen this lose in an ugly way.  So do
354  * some extra sanity checking on the ranges we expect these pointers
355  * to be in so that we can fail gracefully.  This is just for ps after
356  * all.  -- r~
357  */
358 
359 static unsigned long
360 thread_saved_pc(struct task_struct *t)
361 {
362 	unsigned long base = (unsigned long)task_stack_page(t);
363 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
364 
365 	if (sp > base && sp+6*8 < base + 16*1024) {
366 		fp = ((unsigned long*)sp)[6];
367 		if (fp > sp && fp < base + 16*1024)
368 			return *(unsigned long *)fp;
369 	}
370 
371 	return 0;
372 }
373 
374 unsigned long
375 __get_wchan(struct task_struct *p)
376 {
377 	unsigned long schedule_frame;
378 	unsigned long pc;
379 
380 	/*
381 	 * This one depends on the frame size of schedule().  Do a
382 	 * "disass schedule" in gdb to find the frame size.  Also, the
383 	 * code assumes that sleep_on() follows immediately after
384 	 * interruptible_sleep_on() and that add_timer() follows
385 	 * immediately after interruptible_sleep().  Ugly, isn't it?
386 	 * Maybe adding a wchan field to task_struct would be better,
387 	 * after all...
388 	 */
389 
390 	pc = thread_saved_pc(p);
391 	if (in_sched_functions(pc)) {
392 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
393 		return ((unsigned long *)schedule_frame)[12];
394 	}
395 	return pc;
396 }
397