xref: /openbmc/linux/arch/alpha/kernel/process.c (revision 95e9fd10)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 
32 #include <asm/reg.h>
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/pgtable.h>
36 #include <asm/hwrpb.h>
37 #include <asm/fpu.h>
38 
39 #include "proto.h"
40 #include "pci_impl.h"
41 
42 /*
43  * Power off function, if any
44  */
45 void (*pm_power_off)(void) = machine_power_off;
46 EXPORT_SYMBOL(pm_power_off);
47 
48 void
49 cpu_idle(void)
50 {
51 	set_thread_flag(TIF_POLLING_NRFLAG);
52 
53 	while (1) {
54 		/* FIXME -- EV6 and LCA45 know how to power down
55 		   the CPU.  */
56 
57 		while (!need_resched())
58 			cpu_relax();
59 		schedule();
60 	}
61 }
62 
63 
64 struct halt_info {
65 	int mode;
66 	char *restart_cmd;
67 };
68 
69 static void
70 common_shutdown_1(void *generic_ptr)
71 {
72 	struct halt_info *how = (struct halt_info *)generic_ptr;
73 	struct percpu_struct *cpup;
74 	unsigned long *pflags, flags;
75 	int cpuid = smp_processor_id();
76 
77 	/* No point in taking interrupts anymore. */
78 	local_irq_disable();
79 
80 	cpup = (struct percpu_struct *)
81 			((unsigned long)hwrpb + hwrpb->processor_offset
82 			 + hwrpb->processor_size * cpuid);
83 	pflags = &cpup->flags;
84 	flags = *pflags;
85 
86 	/* Clear reason to "default"; clear "bootstrap in progress". */
87 	flags &= ~0x00ff0001UL;
88 
89 #ifdef CONFIG_SMP
90 	/* Secondaries halt here. */
91 	if (cpuid != boot_cpuid) {
92 		flags |= 0x00040000UL; /* "remain halted" */
93 		*pflags = flags;
94 		set_cpu_present(cpuid, false);
95 		set_cpu_possible(cpuid, false);
96 		halt();
97 	}
98 #endif
99 
100 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
101 		if (!how->restart_cmd) {
102 			flags |= 0x00020000UL; /* "cold bootstrap" */
103 		} else {
104 			/* For SRM, we could probably set environment
105 			   variables to get this to work.  We'd have to
106 			   delay this until after srm_paging_stop unless
107 			   we ever got srm_fixup working.
108 
109 			   At the moment, SRM will use the last boot device,
110 			   but the file and flags will be the defaults, when
111 			   doing a "warm" bootstrap.  */
112 			flags |= 0x00030000UL; /* "warm bootstrap" */
113 		}
114 	} else {
115 		flags |= 0x00040000UL; /* "remain halted" */
116 	}
117 	*pflags = flags;
118 
119 #ifdef CONFIG_SMP
120 	/* Wait for the secondaries to halt. */
121 	set_cpu_present(boot_cpuid, false);
122 	set_cpu_possible(boot_cpuid, false);
123 	while (cpumask_weight(cpu_present_mask))
124 		barrier();
125 #endif
126 
127 	/* If booted from SRM, reset some of the original environment. */
128 	if (alpha_using_srm) {
129 #ifdef CONFIG_DUMMY_CONSOLE
130 		/* If we've gotten here after SysRq-b, leave interrupt
131 		   context before taking over the console. */
132 		if (in_interrupt())
133 			irq_exit();
134 		/* This has the effect of resetting the VGA video origin.  */
135 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
136 #endif
137 		pci_restore_srm_config();
138 		set_hae(srm_hae);
139 	}
140 
141 	if (alpha_mv.kill_arch)
142 		alpha_mv.kill_arch(how->mode);
143 
144 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
145 		/* Unfortunately, since MILO doesn't currently understand
146 		   the hwrpb bits above, we can't reliably halt the
147 		   processor and keep it halted.  So just loop.  */
148 		return;
149 	}
150 
151 	if (alpha_using_srm)
152 		srm_paging_stop();
153 
154 	halt();
155 }
156 
157 static void
158 common_shutdown(int mode, char *restart_cmd)
159 {
160 	struct halt_info args;
161 	args.mode = mode;
162 	args.restart_cmd = restart_cmd;
163 	on_each_cpu(common_shutdown_1, &args, 0);
164 }
165 
166 void
167 machine_restart(char *restart_cmd)
168 {
169 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
170 }
171 
172 
173 void
174 machine_halt(void)
175 {
176 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
177 }
178 
179 
180 void
181 machine_power_off(void)
182 {
183 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
184 }
185 
186 
187 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
188    saved in the context it's used.  */
189 
190 void
191 show_regs(struct pt_regs *regs)
192 {
193 	dik_show_regs(regs, NULL);
194 }
195 
196 /*
197  * Re-start a thread when doing execve()
198  */
199 void
200 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
201 {
202 	regs->pc = pc;
203 	regs->ps = 8;
204 	wrusp(sp);
205 }
206 EXPORT_SYMBOL(start_thread);
207 
208 /*
209  * Free current thread data structures etc..
210  */
211 void
212 exit_thread(void)
213 {
214 }
215 
216 void
217 flush_thread(void)
218 {
219 	/* Arrange for each exec'ed process to start off with a clean slate
220 	   with respect to the FPU.  This is all exceptions disabled.  */
221 	current_thread_info()->ieee_state = 0;
222 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
223 
224 	/* Clean slate for TLS.  */
225 	current_thread_info()->pcb.unique = 0;
226 }
227 
228 void
229 release_thread(struct task_struct *dead_task)
230 {
231 }
232 
233 /*
234  * "alpha_clone()".. By the time we get here, the
235  * non-volatile registers have also been saved on the
236  * stack. We do some ugly pointer stuff here.. (see
237  * also copy_thread)
238  *
239  * Notice that "fork()" is implemented in terms of clone,
240  * with parameters (SIGCHLD, 0).
241  */
242 int
243 alpha_clone(unsigned long clone_flags, unsigned long usp,
244 	    int __user *parent_tid, int __user *child_tid,
245 	    unsigned long tls_value, struct pt_regs *regs)
246 {
247 	if (!usp)
248 		usp = rdusp();
249 
250 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
251 }
252 
253 int
254 alpha_vfork(struct pt_regs *regs)
255 {
256 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
257 		       regs, 0, NULL, NULL);
258 }
259 
260 /*
261  * Copy an alpha thread..
262  *
263  * Note the "stack_offset" stuff: when returning to kernel mode, we need
264  * to have some extra stack-space for the kernel stack that still exists
265  * after the "ret_from_fork".  When returning to user mode, we only want
266  * the space needed by the syscall stack frame (ie "struct pt_regs").
267  * Use the passed "regs" pointer to determine how much space we need
268  * for a kernel fork().
269  */
270 
271 int
272 copy_thread(unsigned long clone_flags, unsigned long usp,
273 	    unsigned long unused,
274 	    struct task_struct * p, struct pt_regs * regs)
275 {
276 	extern void ret_from_fork(void);
277 
278 	struct thread_info *childti = task_thread_info(p);
279 	struct pt_regs * childregs;
280 	struct switch_stack * childstack, *stack;
281 	unsigned long stack_offset, settls;
282 
283 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
284 	if (!(regs->ps & 8))
285 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
286 	childregs = (struct pt_regs *)
287 	  (stack_offset + PAGE_SIZE + task_stack_page(p));
288 
289 	*childregs = *regs;
290 	settls = regs->r20;
291 	childregs->r0 = 0;
292 	childregs->r19 = 0;
293 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
294 	regs->r20 = 0;
295 	stack = ((struct switch_stack *) regs) - 1;
296 	childstack = ((struct switch_stack *) childregs) - 1;
297 	*childstack = *stack;
298 	childstack->r26 = (unsigned long) ret_from_fork;
299 	childti->pcb.usp = usp;
300 	childti->pcb.ksp = (unsigned long) childstack;
301 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
302 
303 	/* Set a new TLS for the child thread?  Peek back into the
304 	   syscall arguments that we saved on syscall entry.  Oops,
305 	   except we'd have clobbered it with the parent/child set
306 	   of r20.  Read the saved copy.  */
307 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
308 	   value from the parent, which will have been set by the block
309 	   copy in dup_task_struct.  This is non-intuitive, but is
310 	   required for proper operation in the case of a threaded
311 	   application calling fork.  */
312 	if (clone_flags & CLONE_SETTLS)
313 		childti->pcb.unique = settls;
314 
315 	return 0;
316 }
317 
318 /*
319  * Fill in the user structure for a ELF core dump.
320  */
321 void
322 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
323 {
324 	/* switch stack follows right below pt_regs: */
325 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
326 
327 	dest[ 0] = pt->r0;
328 	dest[ 1] = pt->r1;
329 	dest[ 2] = pt->r2;
330 	dest[ 3] = pt->r3;
331 	dest[ 4] = pt->r4;
332 	dest[ 5] = pt->r5;
333 	dest[ 6] = pt->r6;
334 	dest[ 7] = pt->r7;
335 	dest[ 8] = pt->r8;
336 	dest[ 9] = sw->r9;
337 	dest[10] = sw->r10;
338 	dest[11] = sw->r11;
339 	dest[12] = sw->r12;
340 	dest[13] = sw->r13;
341 	dest[14] = sw->r14;
342 	dest[15] = sw->r15;
343 	dest[16] = pt->r16;
344 	dest[17] = pt->r17;
345 	dest[18] = pt->r18;
346 	dest[19] = pt->r19;
347 	dest[20] = pt->r20;
348 	dest[21] = pt->r21;
349 	dest[22] = pt->r22;
350 	dest[23] = pt->r23;
351 	dest[24] = pt->r24;
352 	dest[25] = pt->r25;
353 	dest[26] = pt->r26;
354 	dest[27] = pt->r27;
355 	dest[28] = pt->r28;
356 	dest[29] = pt->gp;
357 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
358 	dest[31] = pt->pc;
359 
360 	/* Once upon a time this was the PS value.  Which is stupid
361 	   since that is always 8 for usermode.  Usurped for the more
362 	   useful value of the thread's UNIQUE field.  */
363 	dest[32] = ti->pcb.unique;
364 }
365 EXPORT_SYMBOL(dump_elf_thread);
366 
367 int
368 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
369 {
370 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
371 	return 1;
372 }
373 EXPORT_SYMBOL(dump_elf_task);
374 
375 int
376 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
377 {
378 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
379 	memcpy(dest, sw->fp, 32 * 8);
380 	return 1;
381 }
382 EXPORT_SYMBOL(dump_elf_task_fp);
383 
384 /*
385  * sys_execve() executes a new program.
386  */
387 asmlinkage int
388 do_sys_execve(const char __user *ufilename,
389 	      const char __user *const __user *argv,
390 	      const char __user *const __user *envp, struct pt_regs *regs)
391 {
392 	int error;
393 	char *filename;
394 
395 	filename = getname(ufilename);
396 	error = PTR_ERR(filename);
397 	if (IS_ERR(filename))
398 		goto out;
399 	error = do_execve(filename, argv, envp, regs);
400 	putname(filename);
401 out:
402 	return error;
403 }
404 
405 /*
406  * Return saved PC of a blocked thread.  This assumes the frame
407  * pointer is the 6th saved long on the kernel stack and that the
408  * saved return address is the first long in the frame.  This all
409  * holds provided the thread blocked through a call to schedule() ($15
410  * is the frame pointer in schedule() and $15 is saved at offset 48 by
411  * entry.S:do_switch_stack).
412  *
413  * Under heavy swap load I've seen this lose in an ugly way.  So do
414  * some extra sanity checking on the ranges we expect these pointers
415  * to be in so that we can fail gracefully.  This is just for ps after
416  * all.  -- r~
417  */
418 
419 unsigned long
420 thread_saved_pc(struct task_struct *t)
421 {
422 	unsigned long base = (unsigned long)task_stack_page(t);
423 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
424 
425 	if (sp > base && sp+6*8 < base + 16*1024) {
426 		fp = ((unsigned long*)sp)[6];
427 		if (fp > sp && fp < base + 16*1024)
428 			return *(unsigned long *)fp;
429 	}
430 
431 	return 0;
432 }
433 
434 unsigned long
435 get_wchan(struct task_struct *p)
436 {
437 	unsigned long schedule_frame;
438 	unsigned long pc;
439 	if (!p || p == current || p->state == TASK_RUNNING)
440 		return 0;
441 	/*
442 	 * This one depends on the frame size of schedule().  Do a
443 	 * "disass schedule" in gdb to find the frame size.  Also, the
444 	 * code assumes that sleep_on() follows immediately after
445 	 * interruptible_sleep_on() and that add_timer() follows
446 	 * immediately after interruptible_sleep().  Ugly, isn't it?
447 	 * Maybe adding a wchan field to task_struct would be better,
448 	 * after all...
449 	 */
450 
451 	pc = thread_saved_pc(p);
452 	if (in_sched_functions(pc)) {
453 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
454 		return ((unsigned long *)schedule_frame)[12];
455 	}
456 	return pc;
457 }
458 
459 int kernel_execve(const char *path, const char *const argv[], const char *const envp[])
460 {
461 	/* Avoid the HAE being gratuitously wrong, which would cause us
462 	   to do the whole turn off interrupts thing and restore it.  */
463 	struct pt_regs regs = {.hae = alpha_mv.hae_cache};
464 	int err = do_execve(path, argv, envp, &regs);
465 	if (!err) {
466 		struct pt_regs *p = current_pt_regs();
467 		/* copy regs to normal position and off to userland we go... */
468 		*p = regs;
469 		__asm__ __volatile__ (
470 			"mov	%0, $sp;"
471 			"br	$31, ret_from_sys_call"
472 			: : "r"(p));
473 	}
474 	return err;
475 }
476 EXPORT_SYMBOL(kernel_execve);
477