xref: /openbmc/linux/arch/alpha/kernel/process.c (revision 7b6d864b)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 #include <linux/rcupdate.h>
32 
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
39 
40 #include "proto.h"
41 #include "pci_impl.h"
42 
43 /*
44  * Power off function, if any
45  */
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
48 
49 struct halt_info {
50 	int mode;
51 	char *restart_cmd;
52 };
53 
54 static void
55 common_shutdown_1(void *generic_ptr)
56 {
57 	struct halt_info *how = (struct halt_info *)generic_ptr;
58 	struct percpu_struct *cpup;
59 	unsigned long *pflags, flags;
60 	int cpuid = smp_processor_id();
61 
62 	/* No point in taking interrupts anymore. */
63 	local_irq_disable();
64 
65 	cpup = (struct percpu_struct *)
66 			((unsigned long)hwrpb + hwrpb->processor_offset
67 			 + hwrpb->processor_size * cpuid);
68 	pflags = &cpup->flags;
69 	flags = *pflags;
70 
71 	/* Clear reason to "default"; clear "bootstrap in progress". */
72 	flags &= ~0x00ff0001UL;
73 
74 #ifdef CONFIG_SMP
75 	/* Secondaries halt here. */
76 	if (cpuid != boot_cpuid) {
77 		flags |= 0x00040000UL; /* "remain halted" */
78 		*pflags = flags;
79 		set_cpu_present(cpuid, false);
80 		set_cpu_possible(cpuid, false);
81 		halt();
82 	}
83 #endif
84 
85 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
86 		if (!how->restart_cmd) {
87 			flags |= 0x00020000UL; /* "cold bootstrap" */
88 		} else {
89 			/* For SRM, we could probably set environment
90 			   variables to get this to work.  We'd have to
91 			   delay this until after srm_paging_stop unless
92 			   we ever got srm_fixup working.
93 
94 			   At the moment, SRM will use the last boot device,
95 			   but the file and flags will be the defaults, when
96 			   doing a "warm" bootstrap.  */
97 			flags |= 0x00030000UL; /* "warm bootstrap" */
98 		}
99 	} else {
100 		flags |= 0x00040000UL; /* "remain halted" */
101 	}
102 	*pflags = flags;
103 
104 #ifdef CONFIG_SMP
105 	/* Wait for the secondaries to halt. */
106 	set_cpu_present(boot_cpuid, false);
107 	set_cpu_possible(boot_cpuid, false);
108 	while (cpumask_weight(cpu_present_mask))
109 		barrier();
110 #endif
111 
112 	/* If booted from SRM, reset some of the original environment. */
113 	if (alpha_using_srm) {
114 #ifdef CONFIG_DUMMY_CONSOLE
115 		/* If we've gotten here after SysRq-b, leave interrupt
116 		   context before taking over the console. */
117 		if (in_interrupt())
118 			irq_exit();
119 		/* This has the effect of resetting the VGA video origin.  */
120 		console_lock();
121 		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
122 		console_unlock();
123 #endif
124 		pci_restore_srm_config();
125 		set_hae(srm_hae);
126 	}
127 
128 	if (alpha_mv.kill_arch)
129 		alpha_mv.kill_arch(how->mode);
130 
131 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
132 		/* Unfortunately, since MILO doesn't currently understand
133 		   the hwrpb bits above, we can't reliably halt the
134 		   processor and keep it halted.  So just loop.  */
135 		return;
136 	}
137 
138 	if (alpha_using_srm)
139 		srm_paging_stop();
140 
141 	halt();
142 }
143 
144 static void
145 common_shutdown(int mode, char *restart_cmd)
146 {
147 	struct halt_info args;
148 	args.mode = mode;
149 	args.restart_cmd = restart_cmd;
150 	on_each_cpu(common_shutdown_1, &args, 0);
151 }
152 
153 void
154 machine_restart(char *restart_cmd)
155 {
156 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
157 }
158 
159 
160 void
161 machine_halt(void)
162 {
163 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
164 }
165 
166 
167 void
168 machine_power_off(void)
169 {
170 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
171 }
172 
173 
174 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
175    saved in the context it's used.  */
176 
177 void
178 show_regs(struct pt_regs *regs)
179 {
180 	show_regs_print_info(KERN_DEFAULT);
181 	dik_show_regs(regs, NULL);
182 }
183 
184 /*
185  * Re-start a thread when doing execve()
186  */
187 void
188 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
189 {
190 	regs->pc = pc;
191 	regs->ps = 8;
192 	wrusp(sp);
193 }
194 EXPORT_SYMBOL(start_thread);
195 
196 /*
197  * Free current thread data structures etc..
198  */
199 void
200 exit_thread(void)
201 {
202 }
203 
204 void
205 flush_thread(void)
206 {
207 	/* Arrange for each exec'ed process to start off with a clean slate
208 	   with respect to the FPU.  This is all exceptions disabled.  */
209 	current_thread_info()->ieee_state = 0;
210 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
211 
212 	/* Clean slate for TLS.  */
213 	current_thread_info()->pcb.unique = 0;
214 }
215 
216 void
217 release_thread(struct task_struct *dead_task)
218 {
219 }
220 
221 /*
222  * Copy an alpha thread..
223  */
224 
225 int
226 copy_thread(unsigned long clone_flags, unsigned long usp,
227 	    unsigned long arg,
228 	    struct task_struct *p)
229 {
230 	extern void ret_from_fork(void);
231 	extern void ret_from_kernel_thread(void);
232 
233 	struct thread_info *childti = task_thread_info(p);
234 	struct pt_regs *childregs = task_pt_regs(p);
235 	struct pt_regs *regs = current_pt_regs();
236 	struct switch_stack *childstack, *stack;
237 
238 	childstack = ((struct switch_stack *) childregs) - 1;
239 	childti->pcb.ksp = (unsigned long) childstack;
240 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
241 
242 	if (unlikely(p->flags & PF_KTHREAD)) {
243 		/* kernel thread */
244 		memset(childstack, 0,
245 			sizeof(struct switch_stack) + sizeof(struct pt_regs));
246 		childstack->r26 = (unsigned long) ret_from_kernel_thread;
247 		childstack->r9 = usp;	/* function */
248 		childstack->r10 = arg;
249 		childregs->hae = alpha_mv.hae_cache,
250 		childti->pcb.usp = 0;
251 		return 0;
252 	}
253 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
254 	   value from the parent, which will have been set by the block
255 	   copy in dup_task_struct.  This is non-intuitive, but is
256 	   required for proper operation in the case of a threaded
257 	   application calling fork.  */
258 	if (clone_flags & CLONE_SETTLS)
259 		childti->pcb.unique = regs->r20;
260 	childti->pcb.usp = usp ?: rdusp();
261 	*childregs = *regs;
262 	childregs->r0 = 0;
263 	childregs->r19 = 0;
264 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
265 	regs->r20 = 0;
266 	stack = ((struct switch_stack *) regs) - 1;
267 	*childstack = *stack;
268 	childstack->r26 = (unsigned long) ret_from_fork;
269 	return 0;
270 }
271 
272 /*
273  * Fill in the user structure for a ELF core dump.
274  */
275 void
276 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
277 {
278 	/* switch stack follows right below pt_regs: */
279 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
280 
281 	dest[ 0] = pt->r0;
282 	dest[ 1] = pt->r1;
283 	dest[ 2] = pt->r2;
284 	dest[ 3] = pt->r3;
285 	dest[ 4] = pt->r4;
286 	dest[ 5] = pt->r5;
287 	dest[ 6] = pt->r6;
288 	dest[ 7] = pt->r7;
289 	dest[ 8] = pt->r8;
290 	dest[ 9] = sw->r9;
291 	dest[10] = sw->r10;
292 	dest[11] = sw->r11;
293 	dest[12] = sw->r12;
294 	dest[13] = sw->r13;
295 	dest[14] = sw->r14;
296 	dest[15] = sw->r15;
297 	dest[16] = pt->r16;
298 	dest[17] = pt->r17;
299 	dest[18] = pt->r18;
300 	dest[19] = pt->r19;
301 	dest[20] = pt->r20;
302 	dest[21] = pt->r21;
303 	dest[22] = pt->r22;
304 	dest[23] = pt->r23;
305 	dest[24] = pt->r24;
306 	dest[25] = pt->r25;
307 	dest[26] = pt->r26;
308 	dest[27] = pt->r27;
309 	dest[28] = pt->r28;
310 	dest[29] = pt->gp;
311 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
312 	dest[31] = pt->pc;
313 
314 	/* Once upon a time this was the PS value.  Which is stupid
315 	   since that is always 8 for usermode.  Usurped for the more
316 	   useful value of the thread's UNIQUE field.  */
317 	dest[32] = ti->pcb.unique;
318 }
319 EXPORT_SYMBOL(dump_elf_thread);
320 
321 int
322 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
323 {
324 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
325 	return 1;
326 }
327 EXPORT_SYMBOL(dump_elf_task);
328 
329 int
330 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
331 {
332 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
333 	memcpy(dest, sw->fp, 32 * 8);
334 	return 1;
335 }
336 EXPORT_SYMBOL(dump_elf_task_fp);
337 
338 /*
339  * Return saved PC of a blocked thread.  This assumes the frame
340  * pointer is the 6th saved long on the kernel stack and that the
341  * saved return address is the first long in the frame.  This all
342  * holds provided the thread blocked through a call to schedule() ($15
343  * is the frame pointer in schedule() and $15 is saved at offset 48 by
344  * entry.S:do_switch_stack).
345  *
346  * Under heavy swap load I've seen this lose in an ugly way.  So do
347  * some extra sanity checking on the ranges we expect these pointers
348  * to be in so that we can fail gracefully.  This is just for ps after
349  * all.  -- r~
350  */
351 
352 unsigned long
353 thread_saved_pc(struct task_struct *t)
354 {
355 	unsigned long base = (unsigned long)task_stack_page(t);
356 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
357 
358 	if (sp > base && sp+6*8 < base + 16*1024) {
359 		fp = ((unsigned long*)sp)[6];
360 		if (fp > sp && fp < base + 16*1024)
361 			return *(unsigned long *)fp;
362 	}
363 
364 	return 0;
365 }
366 
367 unsigned long
368 get_wchan(struct task_struct *p)
369 {
370 	unsigned long schedule_frame;
371 	unsigned long pc;
372 	if (!p || p == current || p->state == TASK_RUNNING)
373 		return 0;
374 	/*
375 	 * This one depends on the frame size of schedule().  Do a
376 	 * "disass schedule" in gdb to find the frame size.  Also, the
377 	 * code assumes that sleep_on() follows immediately after
378 	 * interruptible_sleep_on() and that add_timer() follows
379 	 * immediately after interruptible_sleep().  Ugly, isn't it?
380 	 * Maybe adding a wchan field to task_struct would be better,
381 	 * after all...
382 	 */
383 
384 	pc = thread_saved_pc(p);
385 	if (in_sched_functions(pc)) {
386 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
387 		return ((unsigned long *)schedule_frame)[12];
388 	}
389 	return pc;
390 }
391