xref: /openbmc/linux/arch/alpha/kernel/process.c (revision 643d1f7f)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/a.out.h>
23 #include <linux/utsname.h>
24 #include <linux/time.h>
25 #include <linux/major.h>
26 #include <linux/stat.h>
27 #include <linux/vt.h>
28 #include <linux/mman.h>
29 #include <linux/elfcore.h>
30 #include <linux/reboot.h>
31 #include <linux/tty.h>
32 #include <linux/console.h>
33 
34 #include <asm/reg.h>
35 #include <asm/uaccess.h>
36 #include <asm/system.h>
37 #include <asm/io.h>
38 #include <asm/pgtable.h>
39 #include <asm/hwrpb.h>
40 #include <asm/fpu.h>
41 
42 #include "proto.h"
43 #include "pci_impl.h"
44 
45 /*
46  * Power off function, if any
47  */
48 void (*pm_power_off)(void) = machine_power_off;
49 EXPORT_SYMBOL(pm_power_off);
50 
51 void
52 cpu_idle(void)
53 {
54 	set_thread_flag(TIF_POLLING_NRFLAG);
55 
56 	while (1) {
57 		/* FIXME -- EV6 and LCA45 know how to power down
58 		   the CPU.  */
59 
60 		while (!need_resched())
61 			cpu_relax();
62 		schedule();
63 	}
64 }
65 
66 
67 struct halt_info {
68 	int mode;
69 	char *restart_cmd;
70 };
71 
72 static void
73 common_shutdown_1(void *generic_ptr)
74 {
75 	struct halt_info *how = (struct halt_info *)generic_ptr;
76 	struct percpu_struct *cpup;
77 	unsigned long *pflags, flags;
78 	int cpuid = smp_processor_id();
79 
80 	/* No point in taking interrupts anymore. */
81 	local_irq_disable();
82 
83 	cpup = (struct percpu_struct *)
84 			((unsigned long)hwrpb + hwrpb->processor_offset
85 			 + hwrpb->processor_size * cpuid);
86 	pflags = &cpup->flags;
87 	flags = *pflags;
88 
89 	/* Clear reason to "default"; clear "bootstrap in progress". */
90 	flags &= ~0x00ff0001UL;
91 
92 #ifdef CONFIG_SMP
93 	/* Secondaries halt here. */
94 	if (cpuid != boot_cpuid) {
95 		flags |= 0x00040000UL; /* "remain halted" */
96 		*pflags = flags;
97 		cpu_clear(cpuid, cpu_present_map);
98 		halt();
99 	}
100 #endif
101 
102 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
103 		if (!how->restart_cmd) {
104 			flags |= 0x00020000UL; /* "cold bootstrap" */
105 		} else {
106 			/* For SRM, we could probably set environment
107 			   variables to get this to work.  We'd have to
108 			   delay this until after srm_paging_stop unless
109 			   we ever got srm_fixup working.
110 
111 			   At the moment, SRM will use the last boot device,
112 			   but the file and flags will be the defaults, when
113 			   doing a "warm" bootstrap.  */
114 			flags |= 0x00030000UL; /* "warm bootstrap" */
115 		}
116 	} else {
117 		flags |= 0x00040000UL; /* "remain halted" */
118 	}
119 	*pflags = flags;
120 
121 #ifdef CONFIG_SMP
122 	/* Wait for the secondaries to halt. */
123 	cpu_clear(boot_cpuid, cpu_present_map);
124 	while (cpus_weight(cpu_present_map))
125 		barrier();
126 #endif
127 
128 	/* If booted from SRM, reset some of the original environment. */
129 	if (alpha_using_srm) {
130 #ifdef CONFIG_DUMMY_CONSOLE
131 		/* If we've gotten here after SysRq-b, leave interrupt
132 		   context before taking over the console. */
133 		if (in_interrupt())
134 			irq_exit();
135 		/* This has the effect of resetting the VGA video origin.  */
136 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
137 #endif
138 		pci_restore_srm_config();
139 		set_hae(srm_hae);
140 	}
141 
142 	if (alpha_mv.kill_arch)
143 		alpha_mv.kill_arch(how->mode);
144 
145 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
146 		/* Unfortunately, since MILO doesn't currently understand
147 		   the hwrpb bits above, we can't reliably halt the
148 		   processor and keep it halted.  So just loop.  */
149 		return;
150 	}
151 
152 	if (alpha_using_srm)
153 		srm_paging_stop();
154 
155 	halt();
156 }
157 
158 static void
159 common_shutdown(int mode, char *restart_cmd)
160 {
161 	struct halt_info args;
162 	args.mode = mode;
163 	args.restart_cmd = restart_cmd;
164 	on_each_cpu(common_shutdown_1, &args, 1, 0);
165 }
166 
167 void
168 machine_restart(char *restart_cmd)
169 {
170 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
171 }
172 
173 
174 void
175 machine_halt(void)
176 {
177 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
178 }
179 
180 
181 void
182 machine_power_off(void)
183 {
184 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
185 }
186 
187 
188 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
189    saved in the context it's used.  */
190 
191 void
192 show_regs(struct pt_regs *regs)
193 {
194 	dik_show_regs(regs, NULL);
195 }
196 
197 /*
198  * Re-start a thread when doing execve()
199  */
200 void
201 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
202 {
203 	set_fs(USER_DS);
204 	regs->pc = pc;
205 	regs->ps = 8;
206 	wrusp(sp);
207 }
208 EXPORT_SYMBOL(start_thread);
209 
210 /*
211  * Free current thread data structures etc..
212  */
213 void
214 exit_thread(void)
215 {
216 }
217 
218 void
219 flush_thread(void)
220 {
221 	/* Arrange for each exec'ed process to start off with a clean slate
222 	   with respect to the FPU.  This is all exceptions disabled.  */
223 	current_thread_info()->ieee_state = 0;
224 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
225 
226 	/* Clean slate for TLS.  */
227 	current_thread_info()->pcb.unique = 0;
228 }
229 
230 void
231 release_thread(struct task_struct *dead_task)
232 {
233 }
234 
235 /*
236  * "alpha_clone()".. By the time we get here, the
237  * non-volatile registers have also been saved on the
238  * stack. We do some ugly pointer stuff here.. (see
239  * also copy_thread)
240  *
241  * Notice that "fork()" is implemented in terms of clone,
242  * with parameters (SIGCHLD, 0).
243  */
244 int
245 alpha_clone(unsigned long clone_flags, unsigned long usp,
246 	    int __user *parent_tid, int __user *child_tid,
247 	    unsigned long tls_value, struct pt_regs *regs)
248 {
249 	if (!usp)
250 		usp = rdusp();
251 
252 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
253 }
254 
255 int
256 alpha_vfork(struct pt_regs *regs)
257 {
258 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
259 		       regs, 0, NULL, NULL);
260 }
261 
262 /*
263  * Copy an alpha thread..
264  *
265  * Note the "stack_offset" stuff: when returning to kernel mode, we need
266  * to have some extra stack-space for the kernel stack that still exists
267  * after the "ret_from_fork".  When returning to user mode, we only want
268  * the space needed by the syscall stack frame (ie "struct pt_regs").
269  * Use the passed "regs" pointer to determine how much space we need
270  * for a kernel fork().
271  */
272 
273 int
274 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
275 	    unsigned long unused,
276 	    struct task_struct * p, struct pt_regs * regs)
277 {
278 	extern void ret_from_fork(void);
279 
280 	struct thread_info *childti = task_thread_info(p);
281 	struct pt_regs * childregs;
282 	struct switch_stack * childstack, *stack;
283 	unsigned long stack_offset, settls;
284 
285 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
286 	if (!(regs->ps & 8))
287 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
288 	childregs = (struct pt_regs *)
289 	  (stack_offset + PAGE_SIZE + task_stack_page(p));
290 
291 	*childregs = *regs;
292 	settls = regs->r20;
293 	childregs->r0 = 0;
294 	childregs->r19 = 0;
295 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
296 	regs->r20 = 0;
297 	stack = ((struct switch_stack *) regs) - 1;
298 	childstack = ((struct switch_stack *) childregs) - 1;
299 	*childstack = *stack;
300 	childstack->r26 = (unsigned long) ret_from_fork;
301 	childti->pcb.usp = usp;
302 	childti->pcb.ksp = (unsigned long) childstack;
303 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
304 
305 	/* Set a new TLS for the child thread?  Peek back into the
306 	   syscall arguments that we saved on syscall entry.  Oops,
307 	   except we'd have clobbered it with the parent/child set
308 	   of r20.  Read the saved copy.  */
309 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
310 	   value from the parent, which will have been set by the block
311 	   copy in dup_task_struct.  This is non-intuitive, but is
312 	   required for proper operation in the case of a threaded
313 	   application calling fork.  */
314 	if (clone_flags & CLONE_SETTLS)
315 		childti->pcb.unique = settls;
316 
317 	return 0;
318 }
319 
320 /*
321  * Fill in the user structure for an ECOFF core dump.
322  */
323 void
324 dump_thread(struct pt_regs * pt, struct user * dump)
325 {
326 	/* switch stack follows right below pt_regs: */
327 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
328 
329 	dump->magic = CMAGIC;
330 	dump->start_code  = current->mm->start_code;
331 	dump->start_data  = current->mm->start_data;
332 	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
333 	dump->u_tsize = ((current->mm->end_code - dump->start_code)
334 			 >> PAGE_SHIFT);
335 	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
336 			 >> PAGE_SHIFT);
337 	dump->u_ssize = (current->mm->start_stack - dump->start_stack
338 			 + PAGE_SIZE-1) >> PAGE_SHIFT;
339 
340 	/*
341 	 * We store the registers in an order/format that is
342 	 * compatible with DEC Unix/OSF/1 as this makes life easier
343 	 * for gdb.
344 	 */
345 	dump->regs[EF_V0]  = pt->r0;
346 	dump->regs[EF_T0]  = pt->r1;
347 	dump->regs[EF_T1]  = pt->r2;
348 	dump->regs[EF_T2]  = pt->r3;
349 	dump->regs[EF_T3]  = pt->r4;
350 	dump->regs[EF_T4]  = pt->r5;
351 	dump->regs[EF_T5]  = pt->r6;
352 	dump->regs[EF_T6]  = pt->r7;
353 	dump->regs[EF_T7]  = pt->r8;
354 	dump->regs[EF_S0]  = sw->r9;
355 	dump->regs[EF_S1]  = sw->r10;
356 	dump->regs[EF_S2]  = sw->r11;
357 	dump->regs[EF_S3]  = sw->r12;
358 	dump->regs[EF_S4]  = sw->r13;
359 	dump->regs[EF_S5]  = sw->r14;
360 	dump->regs[EF_S6]  = sw->r15;
361 	dump->regs[EF_A3]  = pt->r19;
362 	dump->regs[EF_A4]  = pt->r20;
363 	dump->regs[EF_A5]  = pt->r21;
364 	dump->regs[EF_T8]  = pt->r22;
365 	dump->regs[EF_T9]  = pt->r23;
366 	dump->regs[EF_T10] = pt->r24;
367 	dump->regs[EF_T11] = pt->r25;
368 	dump->regs[EF_RA]  = pt->r26;
369 	dump->regs[EF_T12] = pt->r27;
370 	dump->regs[EF_AT]  = pt->r28;
371 	dump->regs[EF_SP]  = rdusp();
372 	dump->regs[EF_PS]  = pt->ps;
373 	dump->regs[EF_PC]  = pt->pc;
374 	dump->regs[EF_GP]  = pt->gp;
375 	dump->regs[EF_A0]  = pt->r16;
376 	dump->regs[EF_A1]  = pt->r17;
377 	dump->regs[EF_A2]  = pt->r18;
378 	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
379 }
380 EXPORT_SYMBOL(dump_thread);
381 
382 /*
383  * Fill in the user structure for a ELF core dump.
384  */
385 void
386 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
387 {
388 	/* switch stack follows right below pt_regs: */
389 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
390 
391 	dest[ 0] = pt->r0;
392 	dest[ 1] = pt->r1;
393 	dest[ 2] = pt->r2;
394 	dest[ 3] = pt->r3;
395 	dest[ 4] = pt->r4;
396 	dest[ 5] = pt->r5;
397 	dest[ 6] = pt->r6;
398 	dest[ 7] = pt->r7;
399 	dest[ 8] = pt->r8;
400 	dest[ 9] = sw->r9;
401 	dest[10] = sw->r10;
402 	dest[11] = sw->r11;
403 	dest[12] = sw->r12;
404 	dest[13] = sw->r13;
405 	dest[14] = sw->r14;
406 	dest[15] = sw->r15;
407 	dest[16] = pt->r16;
408 	dest[17] = pt->r17;
409 	dest[18] = pt->r18;
410 	dest[19] = pt->r19;
411 	dest[20] = pt->r20;
412 	dest[21] = pt->r21;
413 	dest[22] = pt->r22;
414 	dest[23] = pt->r23;
415 	dest[24] = pt->r24;
416 	dest[25] = pt->r25;
417 	dest[26] = pt->r26;
418 	dest[27] = pt->r27;
419 	dest[28] = pt->r28;
420 	dest[29] = pt->gp;
421 	dest[30] = rdusp();
422 	dest[31] = pt->pc;
423 
424 	/* Once upon a time this was the PS value.  Which is stupid
425 	   since that is always 8 for usermode.  Usurped for the more
426 	   useful value of the thread's UNIQUE field.  */
427 	dest[32] = ti->pcb.unique;
428 }
429 EXPORT_SYMBOL(dump_elf_thread);
430 
431 int
432 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
433 {
434 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
435 	return 1;
436 }
437 EXPORT_SYMBOL(dump_elf_task);
438 
439 int
440 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
441 {
442 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
443 	memcpy(dest, sw->fp, 32 * 8);
444 	return 1;
445 }
446 EXPORT_SYMBOL(dump_elf_task_fp);
447 
448 /*
449  * sys_execve() executes a new program.
450  */
451 asmlinkage int
452 do_sys_execve(char __user *ufilename, char __user * __user *argv,
453 	      char __user * __user *envp, struct pt_regs *regs)
454 {
455 	int error;
456 	char *filename;
457 
458 	filename = getname(ufilename);
459 	error = PTR_ERR(filename);
460 	if (IS_ERR(filename))
461 		goto out;
462 	error = do_execve(filename, argv, envp, regs);
463 	putname(filename);
464 out:
465 	return error;
466 }
467 
468 /*
469  * Return saved PC of a blocked thread.  This assumes the frame
470  * pointer is the 6th saved long on the kernel stack and that the
471  * saved return address is the first long in the frame.  This all
472  * holds provided the thread blocked through a call to schedule() ($15
473  * is the frame pointer in schedule() and $15 is saved at offset 48 by
474  * entry.S:do_switch_stack).
475  *
476  * Under heavy swap load I've seen this lose in an ugly way.  So do
477  * some extra sanity checking on the ranges we expect these pointers
478  * to be in so that we can fail gracefully.  This is just for ps after
479  * all.  -- r~
480  */
481 
482 unsigned long
483 thread_saved_pc(struct task_struct *t)
484 {
485 	unsigned long base = (unsigned long)task_stack_page(t);
486 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
487 
488 	if (sp > base && sp+6*8 < base + 16*1024) {
489 		fp = ((unsigned long*)sp)[6];
490 		if (fp > sp && fp < base + 16*1024)
491 			return *(unsigned long *)fp;
492 	}
493 
494 	return 0;
495 }
496 
497 unsigned long
498 get_wchan(struct task_struct *p)
499 {
500 	unsigned long schedule_frame;
501 	unsigned long pc;
502 	if (!p || p == current || p->state == TASK_RUNNING)
503 		return 0;
504 	/*
505 	 * This one depends on the frame size of schedule().  Do a
506 	 * "disass schedule" in gdb to find the frame size.  Also, the
507 	 * code assumes that sleep_on() follows immediately after
508 	 * interruptible_sleep_on() and that add_timer() follows
509 	 * immediately after interruptible_sleep().  Ugly, isn't it?
510 	 * Maybe adding a wchan field to task_struct would be better,
511 	 * after all...
512 	 */
513 
514 	pc = thread_saved_pc(p);
515 	if (in_sched_functions(pc)) {
516 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
517 		return ((unsigned long *)schedule_frame)[12];
518 	}
519 	return pc;
520 }
521