1 /* 2 * linux/arch/alpha/kernel/process.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the architecture-dependent parts of process handling. 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/smp.h> 17 #include <linux/stddef.h> 18 #include <linux/unistd.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/time.h> 22 #include <linux/major.h> 23 #include <linux/stat.h> 24 #include <linux/vt.h> 25 #include <linux/mman.h> 26 #include <linux/elfcore.h> 27 #include <linux/reboot.h> 28 #include <linux/tty.h> 29 #include <linux/console.h> 30 #include <linux/slab.h> 31 #include <linux/rcupdate.h> 32 33 #include <asm/reg.h> 34 #include <asm/uaccess.h> 35 #include <asm/io.h> 36 #include <asm/pgtable.h> 37 #include <asm/hwrpb.h> 38 #include <asm/fpu.h> 39 40 #include "proto.h" 41 #include "pci_impl.h" 42 43 /* 44 * Power off function, if any 45 */ 46 void (*pm_power_off)(void) = machine_power_off; 47 EXPORT_SYMBOL(pm_power_off); 48 49 #ifdef CONFIG_ALPHA_WTINT 50 /* 51 * Sleep the CPU. 52 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts. 53 */ 54 void arch_cpu_idle(void) 55 { 56 wtint(0); 57 local_irq_enable(); 58 } 59 60 void arch_cpu_idle_dead(void) 61 { 62 wtint(INT_MAX); 63 } 64 #endif /* ALPHA_WTINT */ 65 66 struct halt_info { 67 int mode; 68 char *restart_cmd; 69 }; 70 71 static void 72 common_shutdown_1(void *generic_ptr) 73 { 74 struct halt_info *how = (struct halt_info *)generic_ptr; 75 struct percpu_struct *cpup; 76 unsigned long *pflags, flags; 77 int cpuid = smp_processor_id(); 78 79 /* No point in taking interrupts anymore. */ 80 local_irq_disable(); 81 82 cpup = (struct percpu_struct *) 83 ((unsigned long)hwrpb + hwrpb->processor_offset 84 + hwrpb->processor_size * cpuid); 85 pflags = &cpup->flags; 86 flags = *pflags; 87 88 /* Clear reason to "default"; clear "bootstrap in progress". */ 89 flags &= ~0x00ff0001UL; 90 91 #ifdef CONFIG_SMP 92 /* Secondaries halt here. */ 93 if (cpuid != boot_cpuid) { 94 flags |= 0x00040000UL; /* "remain halted" */ 95 *pflags = flags; 96 set_cpu_present(cpuid, false); 97 set_cpu_possible(cpuid, false); 98 halt(); 99 } 100 #endif 101 102 if (how->mode == LINUX_REBOOT_CMD_RESTART) { 103 if (!how->restart_cmd) { 104 flags |= 0x00020000UL; /* "cold bootstrap" */ 105 } else { 106 /* For SRM, we could probably set environment 107 variables to get this to work. We'd have to 108 delay this until after srm_paging_stop unless 109 we ever got srm_fixup working. 110 111 At the moment, SRM will use the last boot device, 112 but the file and flags will be the defaults, when 113 doing a "warm" bootstrap. */ 114 flags |= 0x00030000UL; /* "warm bootstrap" */ 115 } 116 } else { 117 flags |= 0x00040000UL; /* "remain halted" */ 118 } 119 *pflags = flags; 120 121 #ifdef CONFIG_SMP 122 /* Wait for the secondaries to halt. */ 123 set_cpu_present(boot_cpuid, false); 124 set_cpu_possible(boot_cpuid, false); 125 while (cpumask_weight(cpu_present_mask)) 126 barrier(); 127 #endif 128 129 /* If booted from SRM, reset some of the original environment. */ 130 if (alpha_using_srm) { 131 #ifdef CONFIG_DUMMY_CONSOLE 132 /* If we've gotten here after SysRq-b, leave interrupt 133 context before taking over the console. */ 134 if (in_interrupt()) 135 irq_exit(); 136 /* This has the effect of resetting the VGA video origin. */ 137 console_lock(); 138 do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1); 139 console_unlock(); 140 #endif 141 pci_restore_srm_config(); 142 set_hae(srm_hae); 143 } 144 145 if (alpha_mv.kill_arch) 146 alpha_mv.kill_arch(how->mode); 147 148 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) { 149 /* Unfortunately, since MILO doesn't currently understand 150 the hwrpb bits above, we can't reliably halt the 151 processor and keep it halted. So just loop. */ 152 return; 153 } 154 155 if (alpha_using_srm) 156 srm_paging_stop(); 157 158 halt(); 159 } 160 161 static void 162 common_shutdown(int mode, char *restart_cmd) 163 { 164 struct halt_info args; 165 args.mode = mode; 166 args.restart_cmd = restart_cmd; 167 on_each_cpu(common_shutdown_1, &args, 0); 168 } 169 170 void 171 machine_restart(char *restart_cmd) 172 { 173 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd); 174 } 175 176 177 void 178 machine_halt(void) 179 { 180 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL); 181 } 182 183 184 void 185 machine_power_off(void) 186 { 187 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL); 188 } 189 190 191 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever 192 saved in the context it's used. */ 193 194 void 195 show_regs(struct pt_regs *regs) 196 { 197 show_regs_print_info(KERN_DEFAULT); 198 dik_show_regs(regs, NULL); 199 } 200 201 /* 202 * Re-start a thread when doing execve() 203 */ 204 void 205 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) 206 { 207 regs->pc = pc; 208 regs->ps = 8; 209 wrusp(sp); 210 } 211 EXPORT_SYMBOL(start_thread); 212 213 /* 214 * Free current thread data structures etc.. 215 */ 216 void 217 exit_thread(void) 218 { 219 } 220 221 void 222 flush_thread(void) 223 { 224 /* Arrange for each exec'ed process to start off with a clean slate 225 with respect to the FPU. This is all exceptions disabled. */ 226 current_thread_info()->ieee_state = 0; 227 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0)); 228 229 /* Clean slate for TLS. */ 230 current_thread_info()->pcb.unique = 0; 231 } 232 233 void 234 release_thread(struct task_struct *dead_task) 235 { 236 } 237 238 /* 239 * Copy an alpha thread.. 240 */ 241 242 int 243 copy_thread(unsigned long clone_flags, unsigned long usp, 244 unsigned long arg, 245 struct task_struct *p) 246 { 247 extern void ret_from_fork(void); 248 extern void ret_from_kernel_thread(void); 249 250 struct thread_info *childti = task_thread_info(p); 251 struct pt_regs *childregs = task_pt_regs(p); 252 struct pt_regs *regs = current_pt_regs(); 253 struct switch_stack *childstack, *stack; 254 255 childstack = ((struct switch_stack *) childregs) - 1; 256 childti->pcb.ksp = (unsigned long) childstack; 257 childti->pcb.flags = 1; /* set FEN, clear everything else */ 258 259 if (unlikely(p->flags & PF_KTHREAD)) { 260 /* kernel thread */ 261 memset(childstack, 0, 262 sizeof(struct switch_stack) + sizeof(struct pt_regs)); 263 childstack->r26 = (unsigned long) ret_from_kernel_thread; 264 childstack->r9 = usp; /* function */ 265 childstack->r10 = arg; 266 childregs->hae = alpha_mv.hae_cache, 267 childti->pcb.usp = 0; 268 return 0; 269 } 270 /* Note: if CLONE_SETTLS is not set, then we must inherit the 271 value from the parent, which will have been set by the block 272 copy in dup_task_struct. This is non-intuitive, but is 273 required for proper operation in the case of a threaded 274 application calling fork. */ 275 if (clone_flags & CLONE_SETTLS) 276 childti->pcb.unique = regs->r20; 277 childti->pcb.usp = usp ?: rdusp(); 278 *childregs = *regs; 279 childregs->r0 = 0; 280 childregs->r19 = 0; 281 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */ 282 regs->r20 = 0; 283 stack = ((struct switch_stack *) regs) - 1; 284 *childstack = *stack; 285 childstack->r26 = (unsigned long) ret_from_fork; 286 return 0; 287 } 288 289 /* 290 * Fill in the user structure for a ELF core dump. 291 */ 292 void 293 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti) 294 { 295 /* switch stack follows right below pt_regs: */ 296 struct switch_stack * sw = ((struct switch_stack *) pt) - 1; 297 298 dest[ 0] = pt->r0; 299 dest[ 1] = pt->r1; 300 dest[ 2] = pt->r2; 301 dest[ 3] = pt->r3; 302 dest[ 4] = pt->r4; 303 dest[ 5] = pt->r5; 304 dest[ 6] = pt->r6; 305 dest[ 7] = pt->r7; 306 dest[ 8] = pt->r8; 307 dest[ 9] = sw->r9; 308 dest[10] = sw->r10; 309 dest[11] = sw->r11; 310 dest[12] = sw->r12; 311 dest[13] = sw->r13; 312 dest[14] = sw->r14; 313 dest[15] = sw->r15; 314 dest[16] = pt->r16; 315 dest[17] = pt->r17; 316 dest[18] = pt->r18; 317 dest[19] = pt->r19; 318 dest[20] = pt->r20; 319 dest[21] = pt->r21; 320 dest[22] = pt->r22; 321 dest[23] = pt->r23; 322 dest[24] = pt->r24; 323 dest[25] = pt->r25; 324 dest[26] = pt->r26; 325 dest[27] = pt->r27; 326 dest[28] = pt->r28; 327 dest[29] = pt->gp; 328 dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp; 329 dest[31] = pt->pc; 330 331 /* Once upon a time this was the PS value. Which is stupid 332 since that is always 8 for usermode. Usurped for the more 333 useful value of the thread's UNIQUE field. */ 334 dest[32] = ti->pcb.unique; 335 } 336 EXPORT_SYMBOL(dump_elf_thread); 337 338 int 339 dump_elf_task(elf_greg_t *dest, struct task_struct *task) 340 { 341 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task)); 342 return 1; 343 } 344 EXPORT_SYMBOL(dump_elf_task); 345 346 int 347 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task) 348 { 349 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1; 350 memcpy(dest, sw->fp, 32 * 8); 351 return 1; 352 } 353 EXPORT_SYMBOL(dump_elf_task_fp); 354 355 /* 356 * Return saved PC of a blocked thread. This assumes the frame 357 * pointer is the 6th saved long on the kernel stack and that the 358 * saved return address is the first long in the frame. This all 359 * holds provided the thread blocked through a call to schedule() ($15 360 * is the frame pointer in schedule() and $15 is saved at offset 48 by 361 * entry.S:do_switch_stack). 362 * 363 * Under heavy swap load I've seen this lose in an ugly way. So do 364 * some extra sanity checking on the ranges we expect these pointers 365 * to be in so that we can fail gracefully. This is just for ps after 366 * all. -- r~ 367 */ 368 369 unsigned long 370 thread_saved_pc(struct task_struct *t) 371 { 372 unsigned long base = (unsigned long)task_stack_page(t); 373 unsigned long fp, sp = task_thread_info(t)->pcb.ksp; 374 375 if (sp > base && sp+6*8 < base + 16*1024) { 376 fp = ((unsigned long*)sp)[6]; 377 if (fp > sp && fp < base + 16*1024) 378 return *(unsigned long *)fp; 379 } 380 381 return 0; 382 } 383 384 unsigned long 385 get_wchan(struct task_struct *p) 386 { 387 unsigned long schedule_frame; 388 unsigned long pc; 389 if (!p || p == current || p->state == TASK_RUNNING) 390 return 0; 391 /* 392 * This one depends on the frame size of schedule(). Do a 393 * "disass schedule" in gdb to find the frame size. Also, the 394 * code assumes that sleep_on() follows immediately after 395 * interruptible_sleep_on() and that add_timer() follows 396 * immediately after interruptible_sleep(). Ugly, isn't it? 397 * Maybe adding a wchan field to task_struct would be better, 398 * after all... 399 */ 400 401 pc = thread_saved_pc(p); 402 if (in_sched_functions(pc)) { 403 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6]; 404 return ((unsigned long *)schedule_frame)[12]; 405 } 406 return pc; 407 } 408