xref: /openbmc/linux/arch/alpha/kernel/perf_event.c (revision d3402925)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Hardware performance events for the Alpha.
4  *
5  * We implement HW counts on the EV67 and subsequent CPUs only.
6  *
7  * (C) 2010 Michael J. Cree
8  *
9  * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
10  * ARM code, which are copyright by their respective authors.
11  */
12 
13 #include <linux/perf_event.h>
14 #include <linux/kprobes.h>
15 #include <linux/kernel.h>
16 #include <linux/kdebug.h>
17 #include <linux/mutex.h>
18 #include <linux/init.h>
19 
20 #include <asm/hwrpb.h>
21 #include <linux/atomic.h>
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
24 #include <asm/pal.h>
25 #include <asm/wrperfmon.h>
26 #include <asm/hw_irq.h>
27 
28 
29 /* The maximum number of PMCs on any Alpha CPU whatsoever. */
30 #define MAX_HWEVENTS 3
31 #define PMC_NO_INDEX -1
32 
33 /* For tracking PMCs and the hw events they monitor on each CPU. */
34 struct cpu_hw_events {
35 	int			enabled;
36 	/* Number of events scheduled; also number entries valid in arrays below. */
37 	int			n_events;
38 	/* Number events added since last hw_perf_disable(). */
39 	int			n_added;
40 	/* Events currently scheduled. */
41 	struct perf_event	*event[MAX_HWEVENTS];
42 	/* Event type of each scheduled event. */
43 	unsigned long		evtype[MAX_HWEVENTS];
44 	/* Current index of each scheduled event; if not yet determined
45 	 * contains PMC_NO_INDEX.
46 	 */
47 	int			current_idx[MAX_HWEVENTS];
48 	/* The active PMCs' config for easy use with wrperfmon(). */
49 	unsigned long		config;
50 	/* The active counters' indices for easy use with wrperfmon(). */
51 	unsigned long		idx_mask;
52 };
53 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
54 
55 
56 
57 /*
58  * A structure to hold the description of the PMCs available on a particular
59  * type of Alpha CPU.
60  */
61 struct alpha_pmu_t {
62 	/* Mapping of the perf system hw event types to indigenous event types */
63 	const int *event_map;
64 	/* The number of entries in the event_map */
65 	int  max_events;
66 	/* The number of PMCs on this Alpha */
67 	int  num_pmcs;
68 	/*
69 	 * All PMC counters reside in the IBOX register PCTR.  This is the
70 	 * LSB of the counter.
71 	 */
72 	int  pmc_count_shift[MAX_HWEVENTS];
73 	/*
74 	 * The mask that isolates the PMC bits when the LSB of the counter
75 	 * is shifted to bit 0.
76 	 */
77 	unsigned long pmc_count_mask[MAX_HWEVENTS];
78 	/* The maximum period the PMC can count. */
79 	unsigned long pmc_max_period[MAX_HWEVENTS];
80 	/*
81 	 * The maximum value that may be written to the counter due to
82 	 * hardware restrictions is pmc_max_period - pmc_left.
83 	 */
84 	long pmc_left[3];
85 	 /* Subroutine for allocation of PMCs.  Enforces constraints. */
86 	int (*check_constraints)(struct perf_event **, unsigned long *, int);
87 	/* Subroutine for checking validity of a raw event for this PMU. */
88 	int (*raw_event_valid)(u64 config);
89 };
90 
91 /*
92  * The Alpha CPU PMU description currently in operation.  This is set during
93  * the boot process to the specific CPU of the machine.
94  */
95 static const struct alpha_pmu_t *alpha_pmu;
96 
97 
98 #define HW_OP_UNSUPPORTED -1
99 
100 /*
101  * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
102  * follow. Since they are identical we refer to them collectively as the
103  * EV67 henceforth.
104  */
105 
106 /*
107  * EV67 PMC event types
108  *
109  * There is no one-to-one mapping of the possible hw event types to the
110  * actual codes that are used to program the PMCs hence we introduce our
111  * own hw event type identifiers.
112  */
113 enum ev67_pmc_event_type {
114 	EV67_CYCLES = 1,
115 	EV67_INSTRUCTIONS,
116 	EV67_BCACHEMISS,
117 	EV67_MBOXREPLAY,
118 	EV67_LAST_ET
119 };
120 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
121 
122 
123 /* Mapping of the hw event types to the perf tool interface */
124 static const int ev67_perfmon_event_map[] = {
125 	[PERF_COUNT_HW_CPU_CYCLES]	 = EV67_CYCLES,
126 	[PERF_COUNT_HW_INSTRUCTIONS]	 = EV67_INSTRUCTIONS,
127 	[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
128 	[PERF_COUNT_HW_CACHE_MISSES]	 = EV67_BCACHEMISS,
129 };
130 
131 struct ev67_mapping_t {
132 	int config;
133 	int idx;
134 };
135 
136 /*
137  * The mapping used for one event only - these must be in same order as enum
138  * ev67_pmc_event_type definition.
139  */
140 static const struct ev67_mapping_t ev67_mapping[] = {
141 	{EV67_PCTR_INSTR_CYCLES, 1},	 /* EV67_CYCLES, */
142 	{EV67_PCTR_INSTR_CYCLES, 0},	 /* EV67_INSTRUCTIONS */
143 	{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
144 	{EV67_PCTR_CYCLES_MBOX, 1}	 /* EV67_MBOXREPLAY */
145 };
146 
147 
148 /*
149  * Check that a group of events can be simultaneously scheduled on to the
150  * EV67 PMU.  Also allocate counter indices and config.
151  */
152 static int ev67_check_constraints(struct perf_event **event,
153 				unsigned long *evtype, int n_ev)
154 {
155 	int idx0;
156 	unsigned long config;
157 
158 	idx0 = ev67_mapping[evtype[0]-1].idx;
159 	config = ev67_mapping[evtype[0]-1].config;
160 	if (n_ev == 1)
161 		goto success;
162 
163 	BUG_ON(n_ev != 2);
164 
165 	if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
166 		/* MBOX replay traps must be on PMC 1 */
167 		idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
168 		/* Only cycles can accompany MBOX replay traps */
169 		if (evtype[idx0] == EV67_CYCLES) {
170 			config = EV67_PCTR_CYCLES_MBOX;
171 			goto success;
172 		}
173 	}
174 
175 	if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
176 		/* Bcache misses must be on PMC 1 */
177 		idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
178 		/* Only instructions can accompany Bcache misses */
179 		if (evtype[idx0] == EV67_INSTRUCTIONS) {
180 			config = EV67_PCTR_INSTR_BCACHEMISS;
181 			goto success;
182 		}
183 	}
184 
185 	if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
186 		/* Instructions must be on PMC 0 */
187 		idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
188 		/* By this point only cycles can accompany instructions */
189 		if (evtype[idx0^1] == EV67_CYCLES) {
190 			config = EV67_PCTR_INSTR_CYCLES;
191 			goto success;
192 		}
193 	}
194 
195 	/* Otherwise, darn it, there is a conflict.  */
196 	return -1;
197 
198 success:
199 	event[0]->hw.idx = idx0;
200 	event[0]->hw.config_base = config;
201 	if (n_ev == 2) {
202 		event[1]->hw.idx = idx0 ^ 1;
203 		event[1]->hw.config_base = config;
204 	}
205 	return 0;
206 }
207 
208 
209 static int ev67_raw_event_valid(u64 config)
210 {
211 	return config >= EV67_CYCLES && config < EV67_LAST_ET;
212 };
213 
214 
215 static const struct alpha_pmu_t ev67_pmu = {
216 	.event_map = ev67_perfmon_event_map,
217 	.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
218 	.num_pmcs = 2,
219 	.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
220 	.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK,  EV67_PCTR_1_COUNT_MASK,  0},
221 	.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
222 	.pmc_left = {16, 4, 0},
223 	.check_constraints = ev67_check_constraints,
224 	.raw_event_valid = ev67_raw_event_valid,
225 };
226 
227 
228 
229 /*
230  * Helper routines to ensure that we read/write only the correct PMC bits
231  * when calling the wrperfmon PALcall.
232  */
233 static inline void alpha_write_pmc(int idx, unsigned long val)
234 {
235 	val &= alpha_pmu->pmc_count_mask[idx];
236 	val <<= alpha_pmu->pmc_count_shift[idx];
237 	val |= (1<<idx);
238 	wrperfmon(PERFMON_CMD_WRITE, val);
239 }
240 
241 static inline unsigned long alpha_read_pmc(int idx)
242 {
243 	unsigned long val;
244 
245 	val = wrperfmon(PERFMON_CMD_READ, 0);
246 	val >>= alpha_pmu->pmc_count_shift[idx];
247 	val &= alpha_pmu->pmc_count_mask[idx];
248 	return val;
249 }
250 
251 /* Set a new period to sample over */
252 static int alpha_perf_event_set_period(struct perf_event *event,
253 				struct hw_perf_event *hwc, int idx)
254 {
255 	long left = local64_read(&hwc->period_left);
256 	long period = hwc->sample_period;
257 	int ret = 0;
258 
259 	if (unlikely(left <= -period)) {
260 		left = period;
261 		local64_set(&hwc->period_left, left);
262 		hwc->last_period = period;
263 		ret = 1;
264 	}
265 
266 	if (unlikely(left <= 0)) {
267 		left += period;
268 		local64_set(&hwc->period_left, left);
269 		hwc->last_period = period;
270 		ret = 1;
271 	}
272 
273 	/*
274 	 * Hardware restrictions require that the counters must not be
275 	 * written with values that are too close to the maximum period.
276 	 */
277 	if (unlikely(left < alpha_pmu->pmc_left[idx]))
278 		left = alpha_pmu->pmc_left[idx];
279 
280 	if (left > (long)alpha_pmu->pmc_max_period[idx])
281 		left = alpha_pmu->pmc_max_period[idx];
282 
283 	local64_set(&hwc->prev_count, (unsigned long)(-left));
284 
285 	alpha_write_pmc(idx, (unsigned long)(-left));
286 
287 	perf_event_update_userpage(event);
288 
289 	return ret;
290 }
291 
292 
293 /*
294  * Calculates the count (the 'delta') since the last time the PMC was read.
295  *
296  * As the PMCs' full period can easily be exceeded within the perf system
297  * sampling period we cannot use any high order bits as a guard bit in the
298  * PMCs to detect overflow as is done by other architectures.  The code here
299  * calculates the delta on the basis that there is no overflow when ovf is
300  * zero.  The value passed via ovf by the interrupt handler corrects for
301  * overflow.
302  *
303  * This can be racey on rare occasions -- a call to this routine can occur
304  * with an overflowed counter just before the PMI service routine is called.
305  * The check for delta negative hopefully always rectifies this situation.
306  */
307 static unsigned long alpha_perf_event_update(struct perf_event *event,
308 					struct hw_perf_event *hwc, int idx, long ovf)
309 {
310 	long prev_raw_count, new_raw_count;
311 	long delta;
312 
313 again:
314 	prev_raw_count = local64_read(&hwc->prev_count);
315 	new_raw_count = alpha_read_pmc(idx);
316 
317 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
318 			     new_raw_count) != prev_raw_count)
319 		goto again;
320 
321 	delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
322 
323 	/* It is possible on very rare occasions that the PMC has overflowed
324 	 * but the interrupt is yet to come.  Detect and fix this situation.
325 	 */
326 	if (unlikely(delta < 0)) {
327 		delta += alpha_pmu->pmc_max_period[idx] + 1;
328 	}
329 
330 	local64_add(delta, &event->count);
331 	local64_sub(delta, &hwc->period_left);
332 
333 	return new_raw_count;
334 }
335 
336 
337 /*
338  * Collect all HW events into the array event[].
339  */
340 static int collect_events(struct perf_event *group, int max_count,
341 			  struct perf_event *event[], unsigned long *evtype,
342 			  int *current_idx)
343 {
344 	struct perf_event *pe;
345 	int n = 0;
346 
347 	if (!is_software_event(group)) {
348 		if (n >= max_count)
349 			return -1;
350 		event[n] = group;
351 		evtype[n] = group->hw.event_base;
352 		current_idx[n++] = PMC_NO_INDEX;
353 	}
354 	for_each_sibling_event(pe, group) {
355 		if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
356 			if (n >= max_count)
357 				return -1;
358 			event[n] = pe;
359 			evtype[n] = pe->hw.event_base;
360 			current_idx[n++] = PMC_NO_INDEX;
361 		}
362 	}
363 	return n;
364 }
365 
366 
367 
368 /*
369  * Check that a group of events can be simultaneously scheduled on to the PMU.
370  */
371 static int alpha_check_constraints(struct perf_event **events,
372 				   unsigned long *evtypes, int n_ev)
373 {
374 
375 	/* No HW events is possible from hw_perf_group_sched_in(). */
376 	if (n_ev == 0)
377 		return 0;
378 
379 	if (n_ev > alpha_pmu->num_pmcs)
380 		return -1;
381 
382 	return alpha_pmu->check_constraints(events, evtypes, n_ev);
383 }
384 
385 
386 /*
387  * If new events have been scheduled then update cpuc with the new
388  * configuration.  This may involve shifting cycle counts from one PMC to
389  * another.
390  */
391 static void maybe_change_configuration(struct cpu_hw_events *cpuc)
392 {
393 	int j;
394 
395 	if (cpuc->n_added == 0)
396 		return;
397 
398 	/* Find counters that are moving to another PMC and update */
399 	for (j = 0; j < cpuc->n_events; j++) {
400 		struct perf_event *pe = cpuc->event[j];
401 
402 		if (cpuc->current_idx[j] != PMC_NO_INDEX &&
403 			cpuc->current_idx[j] != pe->hw.idx) {
404 			alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
405 			cpuc->current_idx[j] = PMC_NO_INDEX;
406 		}
407 	}
408 
409 	/* Assign to counters all unassigned events. */
410 	cpuc->idx_mask = 0;
411 	for (j = 0; j < cpuc->n_events; j++) {
412 		struct perf_event *pe = cpuc->event[j];
413 		struct hw_perf_event *hwc = &pe->hw;
414 		int idx = hwc->idx;
415 
416 		if (cpuc->current_idx[j] == PMC_NO_INDEX) {
417 			alpha_perf_event_set_period(pe, hwc, idx);
418 			cpuc->current_idx[j] = idx;
419 		}
420 
421 		if (!(hwc->state & PERF_HES_STOPPED))
422 			cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
423 	}
424 	cpuc->config = cpuc->event[0]->hw.config_base;
425 }
426 
427 
428 
429 /* Schedule perf HW event on to PMU.
430  *  - this function is called from outside this module via the pmu struct
431  *    returned from perf event initialisation.
432  */
433 static int alpha_pmu_add(struct perf_event *event, int flags)
434 {
435 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
436 	struct hw_perf_event *hwc = &event->hw;
437 	int n0;
438 	int ret;
439 	unsigned long irq_flags;
440 
441 	/*
442 	 * The Sparc code has the IRQ disable first followed by the perf
443 	 * disable, however this can lead to an overflowed counter with the
444 	 * PMI disabled on rare occasions.  The alpha_perf_event_update()
445 	 * routine should detect this situation by noting a negative delta,
446 	 * nevertheless we disable the PMCs first to enable a potential
447 	 * final PMI to occur before we disable interrupts.
448 	 */
449 	perf_pmu_disable(event->pmu);
450 	local_irq_save(irq_flags);
451 
452 	/* Default to error to be returned */
453 	ret = -EAGAIN;
454 
455 	/* Insert event on to PMU and if successful modify ret to valid return */
456 	n0 = cpuc->n_events;
457 	if (n0 < alpha_pmu->num_pmcs) {
458 		cpuc->event[n0] = event;
459 		cpuc->evtype[n0] = event->hw.event_base;
460 		cpuc->current_idx[n0] = PMC_NO_INDEX;
461 
462 		if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
463 			cpuc->n_events++;
464 			cpuc->n_added++;
465 			ret = 0;
466 		}
467 	}
468 
469 	hwc->state = PERF_HES_UPTODATE;
470 	if (!(flags & PERF_EF_START))
471 		hwc->state |= PERF_HES_STOPPED;
472 
473 	local_irq_restore(irq_flags);
474 	perf_pmu_enable(event->pmu);
475 
476 	return ret;
477 }
478 
479 
480 
481 /* Disable performance monitoring unit
482  *  - this function is called from outside this module via the pmu struct
483  *    returned from perf event initialisation.
484  */
485 static void alpha_pmu_del(struct perf_event *event, int flags)
486 {
487 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
488 	struct hw_perf_event *hwc = &event->hw;
489 	unsigned long irq_flags;
490 	int j;
491 
492 	perf_pmu_disable(event->pmu);
493 	local_irq_save(irq_flags);
494 
495 	for (j = 0; j < cpuc->n_events; j++) {
496 		if (event == cpuc->event[j]) {
497 			int idx = cpuc->current_idx[j];
498 
499 			/* Shift remaining entries down into the existing
500 			 * slot.
501 			 */
502 			while (++j < cpuc->n_events) {
503 				cpuc->event[j - 1] = cpuc->event[j];
504 				cpuc->evtype[j - 1] = cpuc->evtype[j];
505 				cpuc->current_idx[j - 1] =
506 					cpuc->current_idx[j];
507 			}
508 
509 			/* Absorb the final count and turn off the event. */
510 			alpha_perf_event_update(event, hwc, idx, 0);
511 			perf_event_update_userpage(event);
512 
513 			cpuc->idx_mask &= ~(1UL<<idx);
514 			cpuc->n_events--;
515 			break;
516 		}
517 	}
518 
519 	local_irq_restore(irq_flags);
520 	perf_pmu_enable(event->pmu);
521 }
522 
523 
524 static void alpha_pmu_read(struct perf_event *event)
525 {
526 	struct hw_perf_event *hwc = &event->hw;
527 
528 	alpha_perf_event_update(event, hwc, hwc->idx, 0);
529 }
530 
531 
532 static void alpha_pmu_stop(struct perf_event *event, int flags)
533 {
534 	struct hw_perf_event *hwc = &event->hw;
535 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
536 
537 	if (!(hwc->state & PERF_HES_STOPPED)) {
538 		cpuc->idx_mask &= ~(1UL<<hwc->idx);
539 		hwc->state |= PERF_HES_STOPPED;
540 	}
541 
542 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
543 		alpha_perf_event_update(event, hwc, hwc->idx, 0);
544 		hwc->state |= PERF_HES_UPTODATE;
545 	}
546 
547 	if (cpuc->enabled)
548 		wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx));
549 }
550 
551 
552 static void alpha_pmu_start(struct perf_event *event, int flags)
553 {
554 	struct hw_perf_event *hwc = &event->hw;
555 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
556 
557 	if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
558 		return;
559 
560 	if (flags & PERF_EF_RELOAD) {
561 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
562 		alpha_perf_event_set_period(event, hwc, hwc->idx);
563 	}
564 
565 	hwc->state = 0;
566 
567 	cpuc->idx_mask |= 1UL<<hwc->idx;
568 	if (cpuc->enabled)
569 		wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
570 }
571 
572 
573 /*
574  * Check that CPU performance counters are supported.
575  * - currently support EV67 and later CPUs.
576  * - actually some later revisions of the EV6 have the same PMC model as the
577  *     EV67 but we don't do sufficiently deep CPU detection to detect them.
578  *     Bad luck to the very few people who might have one, I guess.
579  */
580 static int supported_cpu(void)
581 {
582 	struct percpu_struct *cpu;
583 	unsigned long cputype;
584 
585 	/* Get cpu type from HW */
586 	cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
587 	cputype = cpu->type & 0xffffffff;
588 	/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
589 	return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
590 }
591 
592 
593 
594 static void hw_perf_event_destroy(struct perf_event *event)
595 {
596 	/* Nothing to be done! */
597 	return;
598 }
599 
600 
601 
602 static int __hw_perf_event_init(struct perf_event *event)
603 {
604 	struct perf_event_attr *attr = &event->attr;
605 	struct hw_perf_event *hwc = &event->hw;
606 	struct perf_event *evts[MAX_HWEVENTS];
607 	unsigned long evtypes[MAX_HWEVENTS];
608 	int idx_rubbish_bin[MAX_HWEVENTS];
609 	int ev;
610 	int n;
611 
612 	/* We only support a limited range of HARDWARE event types with one
613 	 * only programmable via a RAW event type.
614 	 */
615 	if (attr->type == PERF_TYPE_HARDWARE) {
616 		if (attr->config >= alpha_pmu->max_events)
617 			return -EINVAL;
618 		ev = alpha_pmu->event_map[attr->config];
619 	} else if (attr->type == PERF_TYPE_HW_CACHE) {
620 		return -EOPNOTSUPP;
621 	} else if (attr->type == PERF_TYPE_RAW) {
622 		if (!alpha_pmu->raw_event_valid(attr->config))
623 			return -EINVAL;
624 		ev = attr->config;
625 	} else {
626 		return -EOPNOTSUPP;
627 	}
628 
629 	if (ev < 0) {
630 		return ev;
631 	}
632 
633 	/*
634 	 * We place the event type in event_base here and leave calculation
635 	 * of the codes to programme the PMU for alpha_pmu_enable() because
636 	 * it is only then we will know what HW events are actually
637 	 * scheduled on to the PMU.  At that point the code to programme the
638 	 * PMU is put into config_base and the PMC to use is placed into
639 	 * idx.  We initialise idx (below) to PMC_NO_INDEX to indicate that
640 	 * it is yet to be determined.
641 	 */
642 	hwc->event_base = ev;
643 
644 	/* Collect events in a group together suitable for calling
645 	 * alpha_check_constraints() to verify that the group as a whole can
646 	 * be scheduled on to the PMU.
647 	 */
648 	n = 0;
649 	if (event->group_leader != event) {
650 		n = collect_events(event->group_leader,
651 				alpha_pmu->num_pmcs - 1,
652 				evts, evtypes, idx_rubbish_bin);
653 		if (n < 0)
654 			return -EINVAL;
655 	}
656 	evtypes[n] = hwc->event_base;
657 	evts[n] = event;
658 
659 	if (alpha_check_constraints(evts, evtypes, n + 1))
660 		return -EINVAL;
661 
662 	/* Indicate that PMU config and idx are yet to be determined. */
663 	hwc->config_base = 0;
664 	hwc->idx = PMC_NO_INDEX;
665 
666 	event->destroy = hw_perf_event_destroy;
667 
668 	/*
669 	 * Most architectures reserve the PMU for their use at this point.
670 	 * As there is no existing mechanism to arbitrate usage and there
671 	 * appears to be no other user of the Alpha PMU we just assume
672 	 * that we can just use it, hence a NO-OP here.
673 	 *
674 	 * Maybe an alpha_reserve_pmu() routine should be implemented but is
675 	 * anything else ever going to use it?
676 	 */
677 
678 	if (!hwc->sample_period) {
679 		hwc->sample_period = alpha_pmu->pmc_max_period[0];
680 		hwc->last_period = hwc->sample_period;
681 		local64_set(&hwc->period_left, hwc->sample_period);
682 	}
683 
684 	return 0;
685 }
686 
687 /*
688  * Main entry point to initialise a HW performance event.
689  */
690 static int alpha_pmu_event_init(struct perf_event *event)
691 {
692 	/* does not support taken branch sampling */
693 	if (has_branch_stack(event))
694 		return -EOPNOTSUPP;
695 
696 	switch (event->attr.type) {
697 	case PERF_TYPE_RAW:
698 	case PERF_TYPE_HARDWARE:
699 	case PERF_TYPE_HW_CACHE:
700 		break;
701 
702 	default:
703 		return -ENOENT;
704 	}
705 
706 	if (!alpha_pmu)
707 		return -ENODEV;
708 
709 	/* Do the real initialisation work. */
710 	return __hw_perf_event_init(event);
711 }
712 
713 /*
714  * Main entry point - enable HW performance counters.
715  */
716 static void alpha_pmu_enable(struct pmu *pmu)
717 {
718 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
719 
720 	if (cpuc->enabled)
721 		return;
722 
723 	cpuc->enabled = 1;
724 	barrier();
725 
726 	if (cpuc->n_events > 0) {
727 		/* Update cpuc with information from any new scheduled events. */
728 		maybe_change_configuration(cpuc);
729 
730 		/* Start counting the desired events. */
731 		wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
732 		wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
733 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
734 	}
735 }
736 
737 
738 /*
739  * Main entry point - disable HW performance counters.
740  */
741 
742 static void alpha_pmu_disable(struct pmu *pmu)
743 {
744 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
745 
746 	if (!cpuc->enabled)
747 		return;
748 
749 	cpuc->enabled = 0;
750 	cpuc->n_added = 0;
751 
752 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
753 }
754 
755 static struct pmu pmu = {
756 	.pmu_enable	= alpha_pmu_enable,
757 	.pmu_disable	= alpha_pmu_disable,
758 	.event_init	= alpha_pmu_event_init,
759 	.add		= alpha_pmu_add,
760 	.del		= alpha_pmu_del,
761 	.start		= alpha_pmu_start,
762 	.stop		= alpha_pmu_stop,
763 	.read		= alpha_pmu_read,
764 	.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
765 };
766 
767 
768 /*
769  * Main entry point - don't know when this is called but it
770  * obviously dumps debug info.
771  */
772 void perf_event_print_debug(void)
773 {
774 	unsigned long flags;
775 	unsigned long pcr;
776 	int pcr0, pcr1;
777 	int cpu;
778 
779 	if (!supported_cpu())
780 		return;
781 
782 	local_irq_save(flags);
783 
784 	cpu = smp_processor_id();
785 
786 	pcr = wrperfmon(PERFMON_CMD_READ, 0);
787 	pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
788 	pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
789 
790 	pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
791 
792 	local_irq_restore(flags);
793 }
794 
795 
796 /*
797  * Performance Monitoring Interrupt Service Routine called when a PMC
798  * overflows.  The PMC that overflowed is passed in la_ptr.
799  */
800 static void alpha_perf_event_irq_handler(unsigned long la_ptr,
801 					struct pt_regs *regs)
802 {
803 	struct cpu_hw_events *cpuc;
804 	struct perf_sample_data data;
805 	struct perf_event *event;
806 	struct hw_perf_event *hwc;
807 	int idx, j;
808 
809 	__this_cpu_inc(irq_pmi_count);
810 	cpuc = this_cpu_ptr(&cpu_hw_events);
811 
812 	/* Completely counting through the PMC's period to trigger a new PMC
813 	 * overflow interrupt while in this interrupt routine is utterly
814 	 * disastrous!  The EV6 and EV67 counters are sufficiently large to
815 	 * prevent this but to be really sure disable the PMCs.
816 	 */
817 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
818 
819 	/* la_ptr is the counter that overflowed. */
820 	if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) {
821 		/* This should never occur! */
822 		irq_err_count++;
823 		pr_warn("PMI: silly index %ld\n", la_ptr);
824 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
825 		return;
826 	}
827 
828 	idx = la_ptr;
829 
830 	for (j = 0; j < cpuc->n_events; j++) {
831 		if (cpuc->current_idx[j] == idx)
832 			break;
833 	}
834 
835 	if (unlikely(j == cpuc->n_events)) {
836 		/* This can occur if the event is disabled right on a PMC overflow. */
837 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
838 		return;
839 	}
840 
841 	event = cpuc->event[j];
842 
843 	if (unlikely(!event)) {
844 		/* This should never occur! */
845 		irq_err_count++;
846 		pr_warn("PMI: No event at index %d!\n", idx);
847 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
848 		return;
849 	}
850 
851 	hwc = &event->hw;
852 	alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
853 	perf_sample_data_init(&data, 0, hwc->last_period);
854 
855 	if (alpha_perf_event_set_period(event, hwc, idx)) {
856 		if (perf_event_overflow(event, &data, regs)) {
857 			/* Interrupts coming too quickly; "throttle" the
858 			 * counter, i.e., disable it for a little while.
859 			 */
860 			alpha_pmu_stop(event, 0);
861 		}
862 	}
863 	wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
864 
865 	return;
866 }
867 
868 
869 
870 /*
871  * Init call to initialise performance events at kernel startup.
872  */
873 int __init init_hw_perf_events(void)
874 {
875 	pr_info("Performance events: ");
876 
877 	if (!supported_cpu()) {
878 		pr_cont("No support for your CPU.\n");
879 		return 0;
880 	}
881 
882 	pr_cont("Supported CPU type!\n");
883 
884 	/* Override performance counter IRQ vector */
885 
886 	perf_irq = alpha_perf_event_irq_handler;
887 
888 	/* And set up PMU specification */
889 	alpha_pmu = &ev67_pmu;
890 
891 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
892 
893 	return 0;
894 }
895 early_initcall(init_hw_perf_events);
896