xref: /openbmc/linux/arch/alpha/kernel/perf_event.c (revision 3b64b188)
1 /*
2  * Hardware performance events for the Alpha.
3  *
4  * We implement HW counts on the EV67 and subsequent CPUs only.
5  *
6  * (C) 2010 Michael J. Cree
7  *
8  * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
9  * ARM code, which are copyright by their respective authors.
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/kprobes.h>
14 #include <linux/kernel.h>
15 #include <linux/kdebug.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 
19 #include <asm/hwrpb.h>
20 #include <linux/atomic.h>
21 #include <asm/irq.h>
22 #include <asm/irq_regs.h>
23 #include <asm/pal.h>
24 #include <asm/wrperfmon.h>
25 #include <asm/hw_irq.h>
26 
27 
28 /* The maximum number of PMCs on any Alpha CPU whatsoever. */
29 #define MAX_HWEVENTS 3
30 #define PMC_NO_INDEX -1
31 
32 /* For tracking PMCs and the hw events they monitor on each CPU. */
33 struct cpu_hw_events {
34 	int			enabled;
35 	/* Number of events scheduled; also number entries valid in arrays below. */
36 	int			n_events;
37 	/* Number events added since last hw_perf_disable(). */
38 	int			n_added;
39 	/* Events currently scheduled. */
40 	struct perf_event	*event[MAX_HWEVENTS];
41 	/* Event type of each scheduled event. */
42 	unsigned long		evtype[MAX_HWEVENTS];
43 	/* Current index of each scheduled event; if not yet determined
44 	 * contains PMC_NO_INDEX.
45 	 */
46 	int			current_idx[MAX_HWEVENTS];
47 	/* The active PMCs' config for easy use with wrperfmon(). */
48 	unsigned long		config;
49 	/* The active counters' indices for easy use with wrperfmon(). */
50 	unsigned long		idx_mask;
51 };
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
53 
54 
55 
56 /*
57  * A structure to hold the description of the PMCs available on a particular
58  * type of Alpha CPU.
59  */
60 struct alpha_pmu_t {
61 	/* Mapping of the perf system hw event types to indigenous event types */
62 	const int *event_map;
63 	/* The number of entries in the event_map */
64 	int  max_events;
65 	/* The number of PMCs on this Alpha */
66 	int  num_pmcs;
67 	/*
68 	 * All PMC counters reside in the IBOX register PCTR.  This is the
69 	 * LSB of the counter.
70 	 */
71 	int  pmc_count_shift[MAX_HWEVENTS];
72 	/*
73 	 * The mask that isolates the PMC bits when the LSB of the counter
74 	 * is shifted to bit 0.
75 	 */
76 	unsigned long pmc_count_mask[MAX_HWEVENTS];
77 	/* The maximum period the PMC can count. */
78 	unsigned long pmc_max_period[MAX_HWEVENTS];
79 	/*
80 	 * The maximum value that may be written to the counter due to
81 	 * hardware restrictions is pmc_max_period - pmc_left.
82 	 */
83 	long pmc_left[3];
84 	 /* Subroutine for allocation of PMCs.  Enforces constraints. */
85 	int (*check_constraints)(struct perf_event **, unsigned long *, int);
86 };
87 
88 /*
89  * The Alpha CPU PMU description currently in operation.  This is set during
90  * the boot process to the specific CPU of the machine.
91  */
92 static const struct alpha_pmu_t *alpha_pmu;
93 
94 
95 #define HW_OP_UNSUPPORTED -1
96 
97 /*
98  * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
99  * follow. Since they are identical we refer to them collectively as the
100  * EV67 henceforth.
101  */
102 
103 /*
104  * EV67 PMC event types
105  *
106  * There is no one-to-one mapping of the possible hw event types to the
107  * actual codes that are used to program the PMCs hence we introduce our
108  * own hw event type identifiers.
109  */
110 enum ev67_pmc_event_type {
111 	EV67_CYCLES = 1,
112 	EV67_INSTRUCTIONS,
113 	EV67_BCACHEMISS,
114 	EV67_MBOXREPLAY,
115 	EV67_LAST_ET
116 };
117 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
118 
119 
120 /* Mapping of the hw event types to the perf tool interface */
121 static const int ev67_perfmon_event_map[] = {
122 	[PERF_COUNT_HW_CPU_CYCLES]	 = EV67_CYCLES,
123 	[PERF_COUNT_HW_INSTRUCTIONS]	 = EV67_INSTRUCTIONS,
124 	[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
125 	[PERF_COUNT_HW_CACHE_MISSES]	 = EV67_BCACHEMISS,
126 };
127 
128 struct ev67_mapping_t {
129 	int config;
130 	int idx;
131 };
132 
133 /*
134  * The mapping used for one event only - these must be in same order as enum
135  * ev67_pmc_event_type definition.
136  */
137 static const struct ev67_mapping_t ev67_mapping[] = {
138 	{EV67_PCTR_INSTR_CYCLES, 1},	 /* EV67_CYCLES, */
139 	{EV67_PCTR_INSTR_CYCLES, 0},	 /* EV67_INSTRUCTIONS */
140 	{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
141 	{EV67_PCTR_CYCLES_MBOX, 1}	 /* EV67_MBOXREPLAY */
142 };
143 
144 
145 /*
146  * Check that a group of events can be simultaneously scheduled on to the
147  * EV67 PMU.  Also allocate counter indices and config.
148  */
149 static int ev67_check_constraints(struct perf_event **event,
150 				unsigned long *evtype, int n_ev)
151 {
152 	int idx0;
153 	unsigned long config;
154 
155 	idx0 = ev67_mapping[evtype[0]-1].idx;
156 	config = ev67_mapping[evtype[0]-1].config;
157 	if (n_ev == 1)
158 		goto success;
159 
160 	BUG_ON(n_ev != 2);
161 
162 	if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
163 		/* MBOX replay traps must be on PMC 1 */
164 		idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
165 		/* Only cycles can accompany MBOX replay traps */
166 		if (evtype[idx0] == EV67_CYCLES) {
167 			config = EV67_PCTR_CYCLES_MBOX;
168 			goto success;
169 		}
170 	}
171 
172 	if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
173 		/* Bcache misses must be on PMC 1 */
174 		idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
175 		/* Only instructions can accompany Bcache misses */
176 		if (evtype[idx0] == EV67_INSTRUCTIONS) {
177 			config = EV67_PCTR_INSTR_BCACHEMISS;
178 			goto success;
179 		}
180 	}
181 
182 	if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
183 		/* Instructions must be on PMC 0 */
184 		idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
185 		/* By this point only cycles can accompany instructions */
186 		if (evtype[idx0^1] == EV67_CYCLES) {
187 			config = EV67_PCTR_INSTR_CYCLES;
188 			goto success;
189 		}
190 	}
191 
192 	/* Otherwise, darn it, there is a conflict.  */
193 	return -1;
194 
195 success:
196 	event[0]->hw.idx = idx0;
197 	event[0]->hw.config_base = config;
198 	if (n_ev == 2) {
199 		event[1]->hw.idx = idx0 ^ 1;
200 		event[1]->hw.config_base = config;
201 	}
202 	return 0;
203 }
204 
205 
206 static const struct alpha_pmu_t ev67_pmu = {
207 	.event_map = ev67_perfmon_event_map,
208 	.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
209 	.num_pmcs = 2,
210 	.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
211 	.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK,  EV67_PCTR_1_COUNT_MASK,  0},
212 	.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
213 	.pmc_left = {16, 4, 0},
214 	.check_constraints = ev67_check_constraints
215 };
216 
217 
218 
219 /*
220  * Helper routines to ensure that we read/write only the correct PMC bits
221  * when calling the wrperfmon PALcall.
222  */
223 static inline void alpha_write_pmc(int idx, unsigned long val)
224 {
225 	val &= alpha_pmu->pmc_count_mask[idx];
226 	val <<= alpha_pmu->pmc_count_shift[idx];
227 	val |= (1<<idx);
228 	wrperfmon(PERFMON_CMD_WRITE, val);
229 }
230 
231 static inline unsigned long alpha_read_pmc(int idx)
232 {
233 	unsigned long val;
234 
235 	val = wrperfmon(PERFMON_CMD_READ, 0);
236 	val >>= alpha_pmu->pmc_count_shift[idx];
237 	val &= alpha_pmu->pmc_count_mask[idx];
238 	return val;
239 }
240 
241 /* Set a new period to sample over */
242 static int alpha_perf_event_set_period(struct perf_event *event,
243 				struct hw_perf_event *hwc, int idx)
244 {
245 	long left = local64_read(&hwc->period_left);
246 	long period = hwc->sample_period;
247 	int ret = 0;
248 
249 	if (unlikely(left <= -period)) {
250 		left = period;
251 		local64_set(&hwc->period_left, left);
252 		hwc->last_period = period;
253 		ret = 1;
254 	}
255 
256 	if (unlikely(left <= 0)) {
257 		left += period;
258 		local64_set(&hwc->period_left, left);
259 		hwc->last_period = period;
260 		ret = 1;
261 	}
262 
263 	/*
264 	 * Hardware restrictions require that the counters must not be
265 	 * written with values that are too close to the maximum period.
266 	 */
267 	if (unlikely(left < alpha_pmu->pmc_left[idx]))
268 		left = alpha_pmu->pmc_left[idx];
269 
270 	if (left > (long)alpha_pmu->pmc_max_period[idx])
271 		left = alpha_pmu->pmc_max_period[idx];
272 
273 	local64_set(&hwc->prev_count, (unsigned long)(-left));
274 
275 	alpha_write_pmc(idx, (unsigned long)(-left));
276 
277 	perf_event_update_userpage(event);
278 
279 	return ret;
280 }
281 
282 
283 /*
284  * Calculates the count (the 'delta') since the last time the PMC was read.
285  *
286  * As the PMCs' full period can easily be exceeded within the perf system
287  * sampling period we cannot use any high order bits as a guard bit in the
288  * PMCs to detect overflow as is done by other architectures.  The code here
289  * calculates the delta on the basis that there is no overflow when ovf is
290  * zero.  The value passed via ovf by the interrupt handler corrects for
291  * overflow.
292  *
293  * This can be racey on rare occasions -- a call to this routine can occur
294  * with an overflowed counter just before the PMI service routine is called.
295  * The check for delta negative hopefully always rectifies this situation.
296  */
297 static unsigned long alpha_perf_event_update(struct perf_event *event,
298 					struct hw_perf_event *hwc, int idx, long ovf)
299 {
300 	long prev_raw_count, new_raw_count;
301 	long delta;
302 
303 again:
304 	prev_raw_count = local64_read(&hwc->prev_count);
305 	new_raw_count = alpha_read_pmc(idx);
306 
307 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
308 			     new_raw_count) != prev_raw_count)
309 		goto again;
310 
311 	delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
312 
313 	/* It is possible on very rare occasions that the PMC has overflowed
314 	 * but the interrupt is yet to come.  Detect and fix this situation.
315 	 */
316 	if (unlikely(delta < 0)) {
317 		delta += alpha_pmu->pmc_max_period[idx] + 1;
318 	}
319 
320 	local64_add(delta, &event->count);
321 	local64_sub(delta, &hwc->period_left);
322 
323 	return new_raw_count;
324 }
325 
326 
327 /*
328  * Collect all HW events into the array event[].
329  */
330 static int collect_events(struct perf_event *group, int max_count,
331 			  struct perf_event *event[], unsigned long *evtype,
332 			  int *current_idx)
333 {
334 	struct perf_event *pe;
335 	int n = 0;
336 
337 	if (!is_software_event(group)) {
338 		if (n >= max_count)
339 			return -1;
340 		event[n] = group;
341 		evtype[n] = group->hw.event_base;
342 		current_idx[n++] = PMC_NO_INDEX;
343 	}
344 	list_for_each_entry(pe, &group->sibling_list, group_entry) {
345 		if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
346 			if (n >= max_count)
347 				return -1;
348 			event[n] = pe;
349 			evtype[n] = pe->hw.event_base;
350 			current_idx[n++] = PMC_NO_INDEX;
351 		}
352 	}
353 	return n;
354 }
355 
356 
357 
358 /*
359  * Check that a group of events can be simultaneously scheduled on to the PMU.
360  */
361 static int alpha_check_constraints(struct perf_event **events,
362 				   unsigned long *evtypes, int n_ev)
363 {
364 
365 	/* No HW events is possible from hw_perf_group_sched_in(). */
366 	if (n_ev == 0)
367 		return 0;
368 
369 	if (n_ev > alpha_pmu->num_pmcs)
370 		return -1;
371 
372 	return alpha_pmu->check_constraints(events, evtypes, n_ev);
373 }
374 
375 
376 /*
377  * If new events have been scheduled then update cpuc with the new
378  * configuration.  This may involve shifting cycle counts from one PMC to
379  * another.
380  */
381 static void maybe_change_configuration(struct cpu_hw_events *cpuc)
382 {
383 	int j;
384 
385 	if (cpuc->n_added == 0)
386 		return;
387 
388 	/* Find counters that are moving to another PMC and update */
389 	for (j = 0; j < cpuc->n_events; j++) {
390 		struct perf_event *pe = cpuc->event[j];
391 
392 		if (cpuc->current_idx[j] != PMC_NO_INDEX &&
393 			cpuc->current_idx[j] != pe->hw.idx) {
394 			alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
395 			cpuc->current_idx[j] = PMC_NO_INDEX;
396 		}
397 	}
398 
399 	/* Assign to counters all unassigned events. */
400 	cpuc->idx_mask = 0;
401 	for (j = 0; j < cpuc->n_events; j++) {
402 		struct perf_event *pe = cpuc->event[j];
403 		struct hw_perf_event *hwc = &pe->hw;
404 		int idx = hwc->idx;
405 
406 		if (cpuc->current_idx[j] == PMC_NO_INDEX) {
407 			alpha_perf_event_set_period(pe, hwc, idx);
408 			cpuc->current_idx[j] = idx;
409 		}
410 
411 		if (!(hwc->state & PERF_HES_STOPPED))
412 			cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
413 	}
414 	cpuc->config = cpuc->event[0]->hw.config_base;
415 }
416 
417 
418 
419 /* Schedule perf HW event on to PMU.
420  *  - this function is called from outside this module via the pmu struct
421  *    returned from perf event initialisation.
422  */
423 static int alpha_pmu_add(struct perf_event *event, int flags)
424 {
425 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
426 	struct hw_perf_event *hwc = &event->hw;
427 	int n0;
428 	int ret;
429 	unsigned long irq_flags;
430 
431 	/*
432 	 * The Sparc code has the IRQ disable first followed by the perf
433 	 * disable, however this can lead to an overflowed counter with the
434 	 * PMI disabled on rare occasions.  The alpha_perf_event_update()
435 	 * routine should detect this situation by noting a negative delta,
436 	 * nevertheless we disable the PMCs first to enable a potential
437 	 * final PMI to occur before we disable interrupts.
438 	 */
439 	perf_pmu_disable(event->pmu);
440 	local_irq_save(irq_flags);
441 
442 	/* Default to error to be returned */
443 	ret = -EAGAIN;
444 
445 	/* Insert event on to PMU and if successful modify ret to valid return */
446 	n0 = cpuc->n_events;
447 	if (n0 < alpha_pmu->num_pmcs) {
448 		cpuc->event[n0] = event;
449 		cpuc->evtype[n0] = event->hw.event_base;
450 		cpuc->current_idx[n0] = PMC_NO_INDEX;
451 
452 		if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
453 			cpuc->n_events++;
454 			cpuc->n_added++;
455 			ret = 0;
456 		}
457 	}
458 
459 	hwc->state = PERF_HES_UPTODATE;
460 	if (!(flags & PERF_EF_START))
461 		hwc->state |= PERF_HES_STOPPED;
462 
463 	local_irq_restore(irq_flags);
464 	perf_pmu_enable(event->pmu);
465 
466 	return ret;
467 }
468 
469 
470 
471 /* Disable performance monitoring unit
472  *  - this function is called from outside this module via the pmu struct
473  *    returned from perf event initialisation.
474  */
475 static void alpha_pmu_del(struct perf_event *event, int flags)
476 {
477 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
478 	struct hw_perf_event *hwc = &event->hw;
479 	unsigned long irq_flags;
480 	int j;
481 
482 	perf_pmu_disable(event->pmu);
483 	local_irq_save(irq_flags);
484 
485 	for (j = 0; j < cpuc->n_events; j++) {
486 		if (event == cpuc->event[j]) {
487 			int idx = cpuc->current_idx[j];
488 
489 			/* Shift remaining entries down into the existing
490 			 * slot.
491 			 */
492 			while (++j < cpuc->n_events) {
493 				cpuc->event[j - 1] = cpuc->event[j];
494 				cpuc->evtype[j - 1] = cpuc->evtype[j];
495 				cpuc->current_idx[j - 1] =
496 					cpuc->current_idx[j];
497 			}
498 
499 			/* Absorb the final count and turn off the event. */
500 			alpha_perf_event_update(event, hwc, idx, 0);
501 			perf_event_update_userpage(event);
502 
503 			cpuc->idx_mask &= ~(1UL<<idx);
504 			cpuc->n_events--;
505 			break;
506 		}
507 	}
508 
509 	local_irq_restore(irq_flags);
510 	perf_pmu_enable(event->pmu);
511 }
512 
513 
514 static void alpha_pmu_read(struct perf_event *event)
515 {
516 	struct hw_perf_event *hwc = &event->hw;
517 
518 	alpha_perf_event_update(event, hwc, hwc->idx, 0);
519 }
520 
521 
522 static void alpha_pmu_stop(struct perf_event *event, int flags)
523 {
524 	struct hw_perf_event *hwc = &event->hw;
525 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
526 
527 	if (!(hwc->state & PERF_HES_STOPPED)) {
528 		cpuc->idx_mask &= ~(1UL<<hwc->idx);
529 		hwc->state |= PERF_HES_STOPPED;
530 	}
531 
532 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
533 		alpha_perf_event_update(event, hwc, hwc->idx, 0);
534 		hwc->state |= PERF_HES_UPTODATE;
535 	}
536 
537 	if (cpuc->enabled)
538 		wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx));
539 }
540 
541 
542 static void alpha_pmu_start(struct perf_event *event, int flags)
543 {
544 	struct hw_perf_event *hwc = &event->hw;
545 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
546 
547 	if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
548 		return;
549 
550 	if (flags & PERF_EF_RELOAD) {
551 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
552 		alpha_perf_event_set_period(event, hwc, hwc->idx);
553 	}
554 
555 	hwc->state = 0;
556 
557 	cpuc->idx_mask |= 1UL<<hwc->idx;
558 	if (cpuc->enabled)
559 		wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
560 }
561 
562 
563 /*
564  * Check that CPU performance counters are supported.
565  * - currently support EV67 and later CPUs.
566  * - actually some later revisions of the EV6 have the same PMC model as the
567  *     EV67 but we don't do suffiently deep CPU detection to detect them.
568  *     Bad luck to the very few people who might have one, I guess.
569  */
570 static int supported_cpu(void)
571 {
572 	struct percpu_struct *cpu;
573 	unsigned long cputype;
574 
575 	/* Get cpu type from HW */
576 	cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
577 	cputype = cpu->type & 0xffffffff;
578 	/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
579 	return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
580 }
581 
582 
583 
584 static void hw_perf_event_destroy(struct perf_event *event)
585 {
586 	/* Nothing to be done! */
587 	return;
588 }
589 
590 
591 
592 static int __hw_perf_event_init(struct perf_event *event)
593 {
594 	struct perf_event_attr *attr = &event->attr;
595 	struct hw_perf_event *hwc = &event->hw;
596 	struct perf_event *evts[MAX_HWEVENTS];
597 	unsigned long evtypes[MAX_HWEVENTS];
598 	int idx_rubbish_bin[MAX_HWEVENTS];
599 	int ev;
600 	int n;
601 
602 	/* We only support a limited range of HARDWARE event types with one
603 	 * only programmable via a RAW event type.
604 	 */
605 	if (attr->type == PERF_TYPE_HARDWARE) {
606 		if (attr->config >= alpha_pmu->max_events)
607 			return -EINVAL;
608 		ev = alpha_pmu->event_map[attr->config];
609 	} else if (attr->type == PERF_TYPE_HW_CACHE) {
610 		return -EOPNOTSUPP;
611 	} else if (attr->type == PERF_TYPE_RAW) {
612 		ev = attr->config & 0xff;
613 	} else {
614 		return -EOPNOTSUPP;
615 	}
616 
617 	if (ev < 0) {
618 		return ev;
619 	}
620 
621 	/* The EV67 does not support mode exclusion */
622 	if (attr->exclude_kernel || attr->exclude_user
623 			|| attr->exclude_hv || attr->exclude_idle) {
624 		return -EPERM;
625 	}
626 
627 	/*
628 	 * We place the event type in event_base here and leave calculation
629 	 * of the codes to programme the PMU for alpha_pmu_enable() because
630 	 * it is only then we will know what HW events are actually
631 	 * scheduled on to the PMU.  At that point the code to programme the
632 	 * PMU is put into config_base and the PMC to use is placed into
633 	 * idx.  We initialise idx (below) to PMC_NO_INDEX to indicate that
634 	 * it is yet to be determined.
635 	 */
636 	hwc->event_base = ev;
637 
638 	/* Collect events in a group together suitable for calling
639 	 * alpha_check_constraints() to verify that the group as a whole can
640 	 * be scheduled on to the PMU.
641 	 */
642 	n = 0;
643 	if (event->group_leader != event) {
644 		n = collect_events(event->group_leader,
645 				alpha_pmu->num_pmcs - 1,
646 				evts, evtypes, idx_rubbish_bin);
647 		if (n < 0)
648 			return -EINVAL;
649 	}
650 	evtypes[n] = hwc->event_base;
651 	evts[n] = event;
652 
653 	if (alpha_check_constraints(evts, evtypes, n + 1))
654 		return -EINVAL;
655 
656 	/* Indicate that PMU config and idx are yet to be determined. */
657 	hwc->config_base = 0;
658 	hwc->idx = PMC_NO_INDEX;
659 
660 	event->destroy = hw_perf_event_destroy;
661 
662 	/*
663 	 * Most architectures reserve the PMU for their use at this point.
664 	 * As there is no existing mechanism to arbitrate usage and there
665 	 * appears to be no other user of the Alpha PMU we just assume
666 	 * that we can just use it, hence a NO-OP here.
667 	 *
668 	 * Maybe an alpha_reserve_pmu() routine should be implemented but is
669 	 * anything else ever going to use it?
670 	 */
671 
672 	if (!hwc->sample_period) {
673 		hwc->sample_period = alpha_pmu->pmc_max_period[0];
674 		hwc->last_period = hwc->sample_period;
675 		local64_set(&hwc->period_left, hwc->sample_period);
676 	}
677 
678 	return 0;
679 }
680 
681 /*
682  * Main entry point to initialise a HW performance event.
683  */
684 static int alpha_pmu_event_init(struct perf_event *event)
685 {
686 	int err;
687 
688 	/* does not support taken branch sampling */
689 	if (has_branch_stack(event))
690 		return -EOPNOTSUPP;
691 
692 	switch (event->attr.type) {
693 	case PERF_TYPE_RAW:
694 	case PERF_TYPE_HARDWARE:
695 	case PERF_TYPE_HW_CACHE:
696 		break;
697 
698 	default:
699 		return -ENOENT;
700 	}
701 
702 	if (!alpha_pmu)
703 		return -ENODEV;
704 
705 	/* Do the real initialisation work. */
706 	err = __hw_perf_event_init(event);
707 
708 	return err;
709 }
710 
711 /*
712  * Main entry point - enable HW performance counters.
713  */
714 static void alpha_pmu_enable(struct pmu *pmu)
715 {
716 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
717 
718 	if (cpuc->enabled)
719 		return;
720 
721 	cpuc->enabled = 1;
722 	barrier();
723 
724 	if (cpuc->n_events > 0) {
725 		/* Update cpuc with information from any new scheduled events. */
726 		maybe_change_configuration(cpuc);
727 
728 		/* Start counting the desired events. */
729 		wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
730 		wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
731 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
732 	}
733 }
734 
735 
736 /*
737  * Main entry point - disable HW performance counters.
738  */
739 
740 static void alpha_pmu_disable(struct pmu *pmu)
741 {
742 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
743 
744 	if (!cpuc->enabled)
745 		return;
746 
747 	cpuc->enabled = 0;
748 	cpuc->n_added = 0;
749 
750 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
751 }
752 
753 static struct pmu pmu = {
754 	.pmu_enable	= alpha_pmu_enable,
755 	.pmu_disable	= alpha_pmu_disable,
756 	.event_init	= alpha_pmu_event_init,
757 	.add		= alpha_pmu_add,
758 	.del		= alpha_pmu_del,
759 	.start		= alpha_pmu_start,
760 	.stop		= alpha_pmu_stop,
761 	.read		= alpha_pmu_read,
762 };
763 
764 
765 /*
766  * Main entry point - don't know when this is called but it
767  * obviously dumps debug info.
768  */
769 void perf_event_print_debug(void)
770 {
771 	unsigned long flags;
772 	unsigned long pcr;
773 	int pcr0, pcr1;
774 	int cpu;
775 
776 	if (!supported_cpu())
777 		return;
778 
779 	local_irq_save(flags);
780 
781 	cpu = smp_processor_id();
782 
783 	pcr = wrperfmon(PERFMON_CMD_READ, 0);
784 	pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
785 	pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
786 
787 	pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
788 
789 	local_irq_restore(flags);
790 }
791 
792 
793 /*
794  * Performance Monitoring Interrupt Service Routine called when a PMC
795  * overflows.  The PMC that overflowed is passed in la_ptr.
796  */
797 static void alpha_perf_event_irq_handler(unsigned long la_ptr,
798 					struct pt_regs *regs)
799 {
800 	struct cpu_hw_events *cpuc;
801 	struct perf_sample_data data;
802 	struct perf_event *event;
803 	struct hw_perf_event *hwc;
804 	int idx, j;
805 
806 	__get_cpu_var(irq_pmi_count)++;
807 	cpuc = &__get_cpu_var(cpu_hw_events);
808 
809 	/* Completely counting through the PMC's period to trigger a new PMC
810 	 * overflow interrupt while in this interrupt routine is utterly
811 	 * disastrous!  The EV6 and EV67 counters are sufficiently large to
812 	 * prevent this but to be really sure disable the PMCs.
813 	 */
814 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
815 
816 	/* la_ptr is the counter that overflowed. */
817 	if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) {
818 		/* This should never occur! */
819 		irq_err_count++;
820 		pr_warning("PMI: silly index %ld\n", la_ptr);
821 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
822 		return;
823 	}
824 
825 	idx = la_ptr;
826 
827 	for (j = 0; j < cpuc->n_events; j++) {
828 		if (cpuc->current_idx[j] == idx)
829 			break;
830 	}
831 
832 	if (unlikely(j == cpuc->n_events)) {
833 		/* This can occur if the event is disabled right on a PMC overflow. */
834 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
835 		return;
836 	}
837 
838 	event = cpuc->event[j];
839 
840 	if (unlikely(!event)) {
841 		/* This should never occur! */
842 		irq_err_count++;
843 		pr_warning("PMI: No event at index %d!\n", idx);
844 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
845 		return;
846 	}
847 
848 	hwc = &event->hw;
849 	alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
850 	perf_sample_data_init(&data, 0, hwc->last_period);
851 
852 	if (alpha_perf_event_set_period(event, hwc, idx)) {
853 		if (perf_event_overflow(event, &data, regs)) {
854 			/* Interrupts coming too quickly; "throttle" the
855 			 * counter, i.e., disable it for a little while.
856 			 */
857 			alpha_pmu_stop(event, 0);
858 		}
859 	}
860 	wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
861 
862 	return;
863 }
864 
865 
866 
867 /*
868  * Init call to initialise performance events at kernel startup.
869  */
870 int __init init_hw_perf_events(void)
871 {
872 	pr_info("Performance events: ");
873 
874 	if (!supported_cpu()) {
875 		pr_cont("No support for your CPU.\n");
876 		return 0;
877 	}
878 
879 	pr_cont("Supported CPU type!\n");
880 
881 	/* Override performance counter IRQ vector */
882 
883 	perf_irq = alpha_perf_event_irq_handler;
884 
885 	/* And set up PMU specification */
886 	alpha_pmu = &ev67_pmu;
887 
888 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
889 
890 	return 0;
891 }
892 early_initcall(init_hw_perf_events);
893