1 /* 2 * Hardware performance events for the Alpha. 3 * 4 * We implement HW counts on the EV67 and subsequent CPUs only. 5 * 6 * (C) 2010 Michael J. Cree 7 * 8 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and 9 * ARM code, which are copyright by their respective authors. 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/kprobes.h> 14 #include <linux/kernel.h> 15 #include <linux/kdebug.h> 16 #include <linux/mutex.h> 17 #include <linux/init.h> 18 19 #include <asm/hwrpb.h> 20 #include <linux/atomic.h> 21 #include <asm/irq.h> 22 #include <asm/irq_regs.h> 23 #include <asm/pal.h> 24 #include <asm/wrperfmon.h> 25 #include <asm/hw_irq.h> 26 27 28 /* The maximum number of PMCs on any Alpha CPU whatsoever. */ 29 #define MAX_HWEVENTS 3 30 #define PMC_NO_INDEX -1 31 32 /* For tracking PMCs and the hw events they monitor on each CPU. */ 33 struct cpu_hw_events { 34 int enabled; 35 /* Number of events scheduled; also number entries valid in arrays below. */ 36 int n_events; 37 /* Number events added since last hw_perf_disable(). */ 38 int n_added; 39 /* Events currently scheduled. */ 40 struct perf_event *event[MAX_HWEVENTS]; 41 /* Event type of each scheduled event. */ 42 unsigned long evtype[MAX_HWEVENTS]; 43 /* Current index of each scheduled event; if not yet determined 44 * contains PMC_NO_INDEX. 45 */ 46 int current_idx[MAX_HWEVENTS]; 47 /* The active PMCs' config for easy use with wrperfmon(). */ 48 unsigned long config; 49 /* The active counters' indices for easy use with wrperfmon(). */ 50 unsigned long idx_mask; 51 }; 52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 53 54 55 56 /* 57 * A structure to hold the description of the PMCs available on a particular 58 * type of Alpha CPU. 59 */ 60 struct alpha_pmu_t { 61 /* Mapping of the perf system hw event types to indigenous event types */ 62 const int *event_map; 63 /* The number of entries in the event_map */ 64 int max_events; 65 /* The number of PMCs on this Alpha */ 66 int num_pmcs; 67 /* 68 * All PMC counters reside in the IBOX register PCTR. This is the 69 * LSB of the counter. 70 */ 71 int pmc_count_shift[MAX_HWEVENTS]; 72 /* 73 * The mask that isolates the PMC bits when the LSB of the counter 74 * is shifted to bit 0. 75 */ 76 unsigned long pmc_count_mask[MAX_HWEVENTS]; 77 /* The maximum period the PMC can count. */ 78 unsigned long pmc_max_period[MAX_HWEVENTS]; 79 /* 80 * The maximum value that may be written to the counter due to 81 * hardware restrictions is pmc_max_period - pmc_left. 82 */ 83 long pmc_left[3]; 84 /* Subroutine for allocation of PMCs. Enforces constraints. */ 85 int (*check_constraints)(struct perf_event **, unsigned long *, int); 86 /* Subroutine for checking validity of a raw event for this PMU. */ 87 int (*raw_event_valid)(u64 config); 88 }; 89 90 /* 91 * The Alpha CPU PMU description currently in operation. This is set during 92 * the boot process to the specific CPU of the machine. 93 */ 94 static const struct alpha_pmu_t *alpha_pmu; 95 96 97 #define HW_OP_UNSUPPORTED -1 98 99 /* 100 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs 101 * follow. Since they are identical we refer to them collectively as the 102 * EV67 henceforth. 103 */ 104 105 /* 106 * EV67 PMC event types 107 * 108 * There is no one-to-one mapping of the possible hw event types to the 109 * actual codes that are used to program the PMCs hence we introduce our 110 * own hw event type identifiers. 111 */ 112 enum ev67_pmc_event_type { 113 EV67_CYCLES = 1, 114 EV67_INSTRUCTIONS, 115 EV67_BCACHEMISS, 116 EV67_MBOXREPLAY, 117 EV67_LAST_ET 118 }; 119 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES) 120 121 122 /* Mapping of the hw event types to the perf tool interface */ 123 static const int ev67_perfmon_event_map[] = { 124 [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES, 125 [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS, 126 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, 127 [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS, 128 }; 129 130 struct ev67_mapping_t { 131 int config; 132 int idx; 133 }; 134 135 /* 136 * The mapping used for one event only - these must be in same order as enum 137 * ev67_pmc_event_type definition. 138 */ 139 static const struct ev67_mapping_t ev67_mapping[] = { 140 {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */ 141 {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */ 142 {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */ 143 {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */ 144 }; 145 146 147 /* 148 * Check that a group of events can be simultaneously scheduled on to the 149 * EV67 PMU. Also allocate counter indices and config. 150 */ 151 static int ev67_check_constraints(struct perf_event **event, 152 unsigned long *evtype, int n_ev) 153 { 154 int idx0; 155 unsigned long config; 156 157 idx0 = ev67_mapping[evtype[0]-1].idx; 158 config = ev67_mapping[evtype[0]-1].config; 159 if (n_ev == 1) 160 goto success; 161 162 BUG_ON(n_ev != 2); 163 164 if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) { 165 /* MBOX replay traps must be on PMC 1 */ 166 idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0; 167 /* Only cycles can accompany MBOX replay traps */ 168 if (evtype[idx0] == EV67_CYCLES) { 169 config = EV67_PCTR_CYCLES_MBOX; 170 goto success; 171 } 172 } 173 174 if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) { 175 /* Bcache misses must be on PMC 1 */ 176 idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0; 177 /* Only instructions can accompany Bcache misses */ 178 if (evtype[idx0] == EV67_INSTRUCTIONS) { 179 config = EV67_PCTR_INSTR_BCACHEMISS; 180 goto success; 181 } 182 } 183 184 if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) { 185 /* Instructions must be on PMC 0 */ 186 idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1; 187 /* By this point only cycles can accompany instructions */ 188 if (evtype[idx0^1] == EV67_CYCLES) { 189 config = EV67_PCTR_INSTR_CYCLES; 190 goto success; 191 } 192 } 193 194 /* Otherwise, darn it, there is a conflict. */ 195 return -1; 196 197 success: 198 event[0]->hw.idx = idx0; 199 event[0]->hw.config_base = config; 200 if (n_ev == 2) { 201 event[1]->hw.idx = idx0 ^ 1; 202 event[1]->hw.config_base = config; 203 } 204 return 0; 205 } 206 207 208 static int ev67_raw_event_valid(u64 config) 209 { 210 return config >= EV67_CYCLES && config < EV67_LAST_ET; 211 }; 212 213 214 static const struct alpha_pmu_t ev67_pmu = { 215 .event_map = ev67_perfmon_event_map, 216 .max_events = ARRAY_SIZE(ev67_perfmon_event_map), 217 .num_pmcs = 2, 218 .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0}, 219 .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0}, 220 .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0}, 221 .pmc_left = {16, 4, 0}, 222 .check_constraints = ev67_check_constraints, 223 .raw_event_valid = ev67_raw_event_valid, 224 }; 225 226 227 228 /* 229 * Helper routines to ensure that we read/write only the correct PMC bits 230 * when calling the wrperfmon PALcall. 231 */ 232 static inline void alpha_write_pmc(int idx, unsigned long val) 233 { 234 val &= alpha_pmu->pmc_count_mask[idx]; 235 val <<= alpha_pmu->pmc_count_shift[idx]; 236 val |= (1<<idx); 237 wrperfmon(PERFMON_CMD_WRITE, val); 238 } 239 240 static inline unsigned long alpha_read_pmc(int idx) 241 { 242 unsigned long val; 243 244 val = wrperfmon(PERFMON_CMD_READ, 0); 245 val >>= alpha_pmu->pmc_count_shift[idx]; 246 val &= alpha_pmu->pmc_count_mask[idx]; 247 return val; 248 } 249 250 /* Set a new period to sample over */ 251 static int alpha_perf_event_set_period(struct perf_event *event, 252 struct hw_perf_event *hwc, int idx) 253 { 254 long left = local64_read(&hwc->period_left); 255 long period = hwc->sample_period; 256 int ret = 0; 257 258 if (unlikely(left <= -period)) { 259 left = period; 260 local64_set(&hwc->period_left, left); 261 hwc->last_period = period; 262 ret = 1; 263 } 264 265 if (unlikely(left <= 0)) { 266 left += period; 267 local64_set(&hwc->period_left, left); 268 hwc->last_period = period; 269 ret = 1; 270 } 271 272 /* 273 * Hardware restrictions require that the counters must not be 274 * written with values that are too close to the maximum period. 275 */ 276 if (unlikely(left < alpha_pmu->pmc_left[idx])) 277 left = alpha_pmu->pmc_left[idx]; 278 279 if (left > (long)alpha_pmu->pmc_max_period[idx]) 280 left = alpha_pmu->pmc_max_period[idx]; 281 282 local64_set(&hwc->prev_count, (unsigned long)(-left)); 283 284 alpha_write_pmc(idx, (unsigned long)(-left)); 285 286 perf_event_update_userpage(event); 287 288 return ret; 289 } 290 291 292 /* 293 * Calculates the count (the 'delta') since the last time the PMC was read. 294 * 295 * As the PMCs' full period can easily be exceeded within the perf system 296 * sampling period we cannot use any high order bits as a guard bit in the 297 * PMCs to detect overflow as is done by other architectures. The code here 298 * calculates the delta on the basis that there is no overflow when ovf is 299 * zero. The value passed via ovf by the interrupt handler corrects for 300 * overflow. 301 * 302 * This can be racey on rare occasions -- a call to this routine can occur 303 * with an overflowed counter just before the PMI service routine is called. 304 * The check for delta negative hopefully always rectifies this situation. 305 */ 306 static unsigned long alpha_perf_event_update(struct perf_event *event, 307 struct hw_perf_event *hwc, int idx, long ovf) 308 { 309 long prev_raw_count, new_raw_count; 310 long delta; 311 312 again: 313 prev_raw_count = local64_read(&hwc->prev_count); 314 new_raw_count = alpha_read_pmc(idx); 315 316 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 317 new_raw_count) != prev_raw_count) 318 goto again; 319 320 delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf; 321 322 /* It is possible on very rare occasions that the PMC has overflowed 323 * but the interrupt is yet to come. Detect and fix this situation. 324 */ 325 if (unlikely(delta < 0)) { 326 delta += alpha_pmu->pmc_max_period[idx] + 1; 327 } 328 329 local64_add(delta, &event->count); 330 local64_sub(delta, &hwc->period_left); 331 332 return new_raw_count; 333 } 334 335 336 /* 337 * Collect all HW events into the array event[]. 338 */ 339 static int collect_events(struct perf_event *group, int max_count, 340 struct perf_event *event[], unsigned long *evtype, 341 int *current_idx) 342 { 343 struct perf_event *pe; 344 int n = 0; 345 346 if (!is_software_event(group)) { 347 if (n >= max_count) 348 return -1; 349 event[n] = group; 350 evtype[n] = group->hw.event_base; 351 current_idx[n++] = PMC_NO_INDEX; 352 } 353 list_for_each_entry(pe, &group->sibling_list, group_entry) { 354 if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) { 355 if (n >= max_count) 356 return -1; 357 event[n] = pe; 358 evtype[n] = pe->hw.event_base; 359 current_idx[n++] = PMC_NO_INDEX; 360 } 361 } 362 return n; 363 } 364 365 366 367 /* 368 * Check that a group of events can be simultaneously scheduled on to the PMU. 369 */ 370 static int alpha_check_constraints(struct perf_event **events, 371 unsigned long *evtypes, int n_ev) 372 { 373 374 /* No HW events is possible from hw_perf_group_sched_in(). */ 375 if (n_ev == 0) 376 return 0; 377 378 if (n_ev > alpha_pmu->num_pmcs) 379 return -1; 380 381 return alpha_pmu->check_constraints(events, evtypes, n_ev); 382 } 383 384 385 /* 386 * If new events have been scheduled then update cpuc with the new 387 * configuration. This may involve shifting cycle counts from one PMC to 388 * another. 389 */ 390 static void maybe_change_configuration(struct cpu_hw_events *cpuc) 391 { 392 int j; 393 394 if (cpuc->n_added == 0) 395 return; 396 397 /* Find counters that are moving to another PMC and update */ 398 for (j = 0; j < cpuc->n_events; j++) { 399 struct perf_event *pe = cpuc->event[j]; 400 401 if (cpuc->current_idx[j] != PMC_NO_INDEX && 402 cpuc->current_idx[j] != pe->hw.idx) { 403 alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0); 404 cpuc->current_idx[j] = PMC_NO_INDEX; 405 } 406 } 407 408 /* Assign to counters all unassigned events. */ 409 cpuc->idx_mask = 0; 410 for (j = 0; j < cpuc->n_events; j++) { 411 struct perf_event *pe = cpuc->event[j]; 412 struct hw_perf_event *hwc = &pe->hw; 413 int idx = hwc->idx; 414 415 if (cpuc->current_idx[j] == PMC_NO_INDEX) { 416 alpha_perf_event_set_period(pe, hwc, idx); 417 cpuc->current_idx[j] = idx; 418 } 419 420 if (!(hwc->state & PERF_HES_STOPPED)) 421 cpuc->idx_mask |= (1<<cpuc->current_idx[j]); 422 } 423 cpuc->config = cpuc->event[0]->hw.config_base; 424 } 425 426 427 428 /* Schedule perf HW event on to PMU. 429 * - this function is called from outside this module via the pmu struct 430 * returned from perf event initialisation. 431 */ 432 static int alpha_pmu_add(struct perf_event *event, int flags) 433 { 434 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 435 struct hw_perf_event *hwc = &event->hw; 436 int n0; 437 int ret; 438 unsigned long irq_flags; 439 440 /* 441 * The Sparc code has the IRQ disable first followed by the perf 442 * disable, however this can lead to an overflowed counter with the 443 * PMI disabled on rare occasions. The alpha_perf_event_update() 444 * routine should detect this situation by noting a negative delta, 445 * nevertheless we disable the PMCs first to enable a potential 446 * final PMI to occur before we disable interrupts. 447 */ 448 perf_pmu_disable(event->pmu); 449 local_irq_save(irq_flags); 450 451 /* Default to error to be returned */ 452 ret = -EAGAIN; 453 454 /* Insert event on to PMU and if successful modify ret to valid return */ 455 n0 = cpuc->n_events; 456 if (n0 < alpha_pmu->num_pmcs) { 457 cpuc->event[n0] = event; 458 cpuc->evtype[n0] = event->hw.event_base; 459 cpuc->current_idx[n0] = PMC_NO_INDEX; 460 461 if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) { 462 cpuc->n_events++; 463 cpuc->n_added++; 464 ret = 0; 465 } 466 } 467 468 hwc->state = PERF_HES_UPTODATE; 469 if (!(flags & PERF_EF_START)) 470 hwc->state |= PERF_HES_STOPPED; 471 472 local_irq_restore(irq_flags); 473 perf_pmu_enable(event->pmu); 474 475 return ret; 476 } 477 478 479 480 /* Disable performance monitoring unit 481 * - this function is called from outside this module via the pmu struct 482 * returned from perf event initialisation. 483 */ 484 static void alpha_pmu_del(struct perf_event *event, int flags) 485 { 486 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 487 struct hw_perf_event *hwc = &event->hw; 488 unsigned long irq_flags; 489 int j; 490 491 perf_pmu_disable(event->pmu); 492 local_irq_save(irq_flags); 493 494 for (j = 0; j < cpuc->n_events; j++) { 495 if (event == cpuc->event[j]) { 496 int idx = cpuc->current_idx[j]; 497 498 /* Shift remaining entries down into the existing 499 * slot. 500 */ 501 while (++j < cpuc->n_events) { 502 cpuc->event[j - 1] = cpuc->event[j]; 503 cpuc->evtype[j - 1] = cpuc->evtype[j]; 504 cpuc->current_idx[j - 1] = 505 cpuc->current_idx[j]; 506 } 507 508 /* Absorb the final count and turn off the event. */ 509 alpha_perf_event_update(event, hwc, idx, 0); 510 perf_event_update_userpage(event); 511 512 cpuc->idx_mask &= ~(1UL<<idx); 513 cpuc->n_events--; 514 break; 515 } 516 } 517 518 local_irq_restore(irq_flags); 519 perf_pmu_enable(event->pmu); 520 } 521 522 523 static void alpha_pmu_read(struct perf_event *event) 524 { 525 struct hw_perf_event *hwc = &event->hw; 526 527 alpha_perf_event_update(event, hwc, hwc->idx, 0); 528 } 529 530 531 static void alpha_pmu_stop(struct perf_event *event, int flags) 532 { 533 struct hw_perf_event *hwc = &event->hw; 534 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 535 536 if (!(hwc->state & PERF_HES_STOPPED)) { 537 cpuc->idx_mask &= ~(1UL<<hwc->idx); 538 hwc->state |= PERF_HES_STOPPED; 539 } 540 541 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 542 alpha_perf_event_update(event, hwc, hwc->idx, 0); 543 hwc->state |= PERF_HES_UPTODATE; 544 } 545 546 if (cpuc->enabled) 547 wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx)); 548 } 549 550 551 static void alpha_pmu_start(struct perf_event *event, int flags) 552 { 553 struct hw_perf_event *hwc = &event->hw; 554 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 555 556 if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) 557 return; 558 559 if (flags & PERF_EF_RELOAD) { 560 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 561 alpha_perf_event_set_period(event, hwc, hwc->idx); 562 } 563 564 hwc->state = 0; 565 566 cpuc->idx_mask |= 1UL<<hwc->idx; 567 if (cpuc->enabled) 568 wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); 569 } 570 571 572 /* 573 * Check that CPU performance counters are supported. 574 * - currently support EV67 and later CPUs. 575 * - actually some later revisions of the EV6 have the same PMC model as the 576 * EV67 but we don't do suffiently deep CPU detection to detect them. 577 * Bad luck to the very few people who might have one, I guess. 578 */ 579 static int supported_cpu(void) 580 { 581 struct percpu_struct *cpu; 582 unsigned long cputype; 583 584 /* Get cpu type from HW */ 585 cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset); 586 cputype = cpu->type & 0xffffffff; 587 /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */ 588 return (cputype >= EV67_CPU) && (cputype <= EV69_CPU); 589 } 590 591 592 593 static void hw_perf_event_destroy(struct perf_event *event) 594 { 595 /* Nothing to be done! */ 596 return; 597 } 598 599 600 601 static int __hw_perf_event_init(struct perf_event *event) 602 { 603 struct perf_event_attr *attr = &event->attr; 604 struct hw_perf_event *hwc = &event->hw; 605 struct perf_event *evts[MAX_HWEVENTS]; 606 unsigned long evtypes[MAX_HWEVENTS]; 607 int idx_rubbish_bin[MAX_HWEVENTS]; 608 int ev; 609 int n; 610 611 /* We only support a limited range of HARDWARE event types with one 612 * only programmable via a RAW event type. 613 */ 614 if (attr->type == PERF_TYPE_HARDWARE) { 615 if (attr->config >= alpha_pmu->max_events) 616 return -EINVAL; 617 ev = alpha_pmu->event_map[attr->config]; 618 } else if (attr->type == PERF_TYPE_HW_CACHE) { 619 return -EOPNOTSUPP; 620 } else if (attr->type == PERF_TYPE_RAW) { 621 if (!alpha_pmu->raw_event_valid(attr->config)) 622 return -EINVAL; 623 ev = attr->config; 624 } else { 625 return -EOPNOTSUPP; 626 } 627 628 if (ev < 0) { 629 return ev; 630 } 631 632 /* The EV67 does not support mode exclusion */ 633 if (attr->exclude_kernel || attr->exclude_user 634 || attr->exclude_hv || attr->exclude_idle) { 635 return -EPERM; 636 } 637 638 /* 639 * We place the event type in event_base here and leave calculation 640 * of the codes to programme the PMU for alpha_pmu_enable() because 641 * it is only then we will know what HW events are actually 642 * scheduled on to the PMU. At that point the code to programme the 643 * PMU is put into config_base and the PMC to use is placed into 644 * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that 645 * it is yet to be determined. 646 */ 647 hwc->event_base = ev; 648 649 /* Collect events in a group together suitable for calling 650 * alpha_check_constraints() to verify that the group as a whole can 651 * be scheduled on to the PMU. 652 */ 653 n = 0; 654 if (event->group_leader != event) { 655 n = collect_events(event->group_leader, 656 alpha_pmu->num_pmcs - 1, 657 evts, evtypes, idx_rubbish_bin); 658 if (n < 0) 659 return -EINVAL; 660 } 661 evtypes[n] = hwc->event_base; 662 evts[n] = event; 663 664 if (alpha_check_constraints(evts, evtypes, n + 1)) 665 return -EINVAL; 666 667 /* Indicate that PMU config and idx are yet to be determined. */ 668 hwc->config_base = 0; 669 hwc->idx = PMC_NO_INDEX; 670 671 event->destroy = hw_perf_event_destroy; 672 673 /* 674 * Most architectures reserve the PMU for their use at this point. 675 * As there is no existing mechanism to arbitrate usage and there 676 * appears to be no other user of the Alpha PMU we just assume 677 * that we can just use it, hence a NO-OP here. 678 * 679 * Maybe an alpha_reserve_pmu() routine should be implemented but is 680 * anything else ever going to use it? 681 */ 682 683 if (!hwc->sample_period) { 684 hwc->sample_period = alpha_pmu->pmc_max_period[0]; 685 hwc->last_period = hwc->sample_period; 686 local64_set(&hwc->period_left, hwc->sample_period); 687 } 688 689 return 0; 690 } 691 692 /* 693 * Main entry point to initialise a HW performance event. 694 */ 695 static int alpha_pmu_event_init(struct perf_event *event) 696 { 697 int err; 698 699 /* does not support taken branch sampling */ 700 if (has_branch_stack(event)) 701 return -EOPNOTSUPP; 702 703 switch (event->attr.type) { 704 case PERF_TYPE_RAW: 705 case PERF_TYPE_HARDWARE: 706 case PERF_TYPE_HW_CACHE: 707 break; 708 709 default: 710 return -ENOENT; 711 } 712 713 if (!alpha_pmu) 714 return -ENODEV; 715 716 /* Do the real initialisation work. */ 717 err = __hw_perf_event_init(event); 718 719 return err; 720 } 721 722 /* 723 * Main entry point - enable HW performance counters. 724 */ 725 static void alpha_pmu_enable(struct pmu *pmu) 726 { 727 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 728 729 if (cpuc->enabled) 730 return; 731 732 cpuc->enabled = 1; 733 barrier(); 734 735 if (cpuc->n_events > 0) { 736 /* Update cpuc with information from any new scheduled events. */ 737 maybe_change_configuration(cpuc); 738 739 /* Start counting the desired events. */ 740 wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE); 741 wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config); 742 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 743 } 744 } 745 746 747 /* 748 * Main entry point - disable HW performance counters. 749 */ 750 751 static void alpha_pmu_disable(struct pmu *pmu) 752 { 753 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 754 755 if (!cpuc->enabled) 756 return; 757 758 cpuc->enabled = 0; 759 cpuc->n_added = 0; 760 761 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 762 } 763 764 static struct pmu pmu = { 765 .pmu_enable = alpha_pmu_enable, 766 .pmu_disable = alpha_pmu_disable, 767 .event_init = alpha_pmu_event_init, 768 .add = alpha_pmu_add, 769 .del = alpha_pmu_del, 770 .start = alpha_pmu_start, 771 .stop = alpha_pmu_stop, 772 .read = alpha_pmu_read, 773 }; 774 775 776 /* 777 * Main entry point - don't know when this is called but it 778 * obviously dumps debug info. 779 */ 780 void perf_event_print_debug(void) 781 { 782 unsigned long flags; 783 unsigned long pcr; 784 int pcr0, pcr1; 785 int cpu; 786 787 if (!supported_cpu()) 788 return; 789 790 local_irq_save(flags); 791 792 cpu = smp_processor_id(); 793 794 pcr = wrperfmon(PERFMON_CMD_READ, 0); 795 pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0]; 796 pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1]; 797 798 pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1); 799 800 local_irq_restore(flags); 801 } 802 803 804 /* 805 * Performance Monitoring Interrupt Service Routine called when a PMC 806 * overflows. The PMC that overflowed is passed in la_ptr. 807 */ 808 static void alpha_perf_event_irq_handler(unsigned long la_ptr, 809 struct pt_regs *regs) 810 { 811 struct cpu_hw_events *cpuc; 812 struct perf_sample_data data; 813 struct perf_event *event; 814 struct hw_perf_event *hwc; 815 int idx, j; 816 817 __get_cpu_var(irq_pmi_count)++; 818 cpuc = &__get_cpu_var(cpu_hw_events); 819 820 /* Completely counting through the PMC's period to trigger a new PMC 821 * overflow interrupt while in this interrupt routine is utterly 822 * disastrous! The EV6 and EV67 counters are sufficiently large to 823 * prevent this but to be really sure disable the PMCs. 824 */ 825 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 826 827 /* la_ptr is the counter that overflowed. */ 828 if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) { 829 /* This should never occur! */ 830 irq_err_count++; 831 pr_warning("PMI: silly index %ld\n", la_ptr); 832 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 833 return; 834 } 835 836 idx = la_ptr; 837 838 for (j = 0; j < cpuc->n_events; j++) { 839 if (cpuc->current_idx[j] == idx) 840 break; 841 } 842 843 if (unlikely(j == cpuc->n_events)) { 844 /* This can occur if the event is disabled right on a PMC overflow. */ 845 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 846 return; 847 } 848 849 event = cpuc->event[j]; 850 851 if (unlikely(!event)) { 852 /* This should never occur! */ 853 irq_err_count++; 854 pr_warning("PMI: No event at index %d!\n", idx); 855 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 856 return; 857 } 858 859 hwc = &event->hw; 860 alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1); 861 perf_sample_data_init(&data, 0, hwc->last_period); 862 863 if (alpha_perf_event_set_period(event, hwc, idx)) { 864 if (perf_event_overflow(event, &data, regs)) { 865 /* Interrupts coming too quickly; "throttle" the 866 * counter, i.e., disable it for a little while. 867 */ 868 alpha_pmu_stop(event, 0); 869 } 870 } 871 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 872 873 return; 874 } 875 876 877 878 /* 879 * Init call to initialise performance events at kernel startup. 880 */ 881 int __init init_hw_perf_events(void) 882 { 883 pr_info("Performance events: "); 884 885 if (!supported_cpu()) { 886 pr_cont("No support for your CPU.\n"); 887 return 0; 888 } 889 890 pr_cont("Supported CPU type!\n"); 891 892 /* Override performance counter IRQ vector */ 893 894 perf_irq = alpha_perf_event_irq_handler; 895 896 /* And set up PMU specification */ 897 alpha_pmu = &ev67_pmu; 898 899 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 900 901 return 0; 902 } 903 early_initcall(init_hw_perf_events); 904