1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __ALPHA_UACCESS_H 3 #define __ALPHA_UACCESS_H 4 5 /* 6 * The fs value determines whether argument validity checking should be 7 * performed or not. If get_fs() == USER_DS, checking is performed, with 8 * get_fs() == KERNEL_DS, checking is bypassed. 9 * 10 * Or at least it did once upon a time. Nowadays it is a mask that 11 * defines which bits of the address space are off limits. This is a 12 * wee bit faster than the above. 13 * 14 * For historical reasons, these macros are grossly misnamed. 15 */ 16 17 #define KERNEL_DS ((mm_segment_t) { 0UL }) 18 #define USER_DS ((mm_segment_t) { -0x40000000000UL }) 19 20 #define get_fs() (current_thread_info()->addr_limit) 21 #define set_fs(x) (current_thread_info()->addr_limit = (x)) 22 23 #define uaccess_kernel() (get_fs().seg == KERNEL_DS.seg) 24 25 /* 26 * Is a address valid? This does a straightforward calculation rather 27 * than tests. 28 * 29 * Address valid if: 30 * - "addr" doesn't have any high-bits set 31 * - AND "size" doesn't have any high-bits set 32 * - AND "addr+size-(size != 0)" doesn't have any high-bits set 33 * - OR we are in kernel mode. 34 */ 35 #define __access_ok(addr, size) ({ \ 36 unsigned long __ao_a = (addr), __ao_b = (size); \ 37 unsigned long __ao_end = __ao_a + __ao_b - !!__ao_b; \ 38 (get_fs().seg & (__ao_a | __ao_b | __ao_end)) == 0; }) 39 40 #define access_ok(addr, size) \ 41 ({ \ 42 __chk_user_ptr(addr); \ 43 __access_ok(((unsigned long)(addr)), (size)); \ 44 }) 45 46 /* 47 * These are the main single-value transfer routines. They automatically 48 * use the right size if we just have the right pointer type. 49 * 50 * As the alpha uses the same address space for kernel and user 51 * data, we can just do these as direct assignments. (Of course, the 52 * exception handling means that it's no longer "just"...) 53 * 54 * Careful to not 55 * (a) re-use the arguments for side effects (sizeof/typeof is ok) 56 * (b) require any knowledge of processes at this stage 57 */ 58 #define put_user(x, ptr) \ 59 __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) 60 #define get_user(x, ptr) \ 61 __get_user_check((x), (ptr), sizeof(*(ptr))) 62 63 /* 64 * The "__xxx" versions do not do address space checking, useful when 65 * doing multiple accesses to the same area (the programmer has to do the 66 * checks by hand with "access_ok()") 67 */ 68 #define __put_user(x, ptr) \ 69 __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) 70 #define __get_user(x, ptr) \ 71 __get_user_nocheck((x), (ptr), sizeof(*(ptr))) 72 73 /* 74 * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to 75 * encode the bits we need for resolving the exception. See the 76 * more extensive comments with fixup_inline_exception below for 77 * more information. 78 */ 79 #define EXC(label,cont,res,err) \ 80 ".section __ex_table,\"a\"\n" \ 81 " .long "#label"-.\n" \ 82 " lda "#res","#cont"-"#label"("#err")\n" \ 83 ".previous\n" 84 85 extern void __get_user_unknown(void); 86 87 #define __get_user_nocheck(x, ptr, size) \ 88 ({ \ 89 long __gu_err = 0; \ 90 unsigned long __gu_val; \ 91 __chk_user_ptr(ptr); \ 92 switch (size) { \ 93 case 1: __get_user_8(ptr); break; \ 94 case 2: __get_user_16(ptr); break; \ 95 case 4: __get_user_32(ptr); break; \ 96 case 8: __get_user_64(ptr); break; \ 97 default: __get_user_unknown(); break; \ 98 } \ 99 (x) = (__force __typeof__(*(ptr))) __gu_val; \ 100 __gu_err; \ 101 }) 102 103 #define __get_user_check(x, ptr, size) \ 104 ({ \ 105 long __gu_err = -EFAULT; \ 106 unsigned long __gu_val = 0; \ 107 const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \ 108 if (__access_ok((unsigned long)__gu_addr, size)) { \ 109 __gu_err = 0; \ 110 switch (size) { \ 111 case 1: __get_user_8(__gu_addr); break; \ 112 case 2: __get_user_16(__gu_addr); break; \ 113 case 4: __get_user_32(__gu_addr); break; \ 114 case 8: __get_user_64(__gu_addr); break; \ 115 default: __get_user_unknown(); break; \ 116 } \ 117 } \ 118 (x) = (__force __typeof__(*(ptr))) __gu_val; \ 119 __gu_err; \ 120 }) 121 122 struct __large_struct { unsigned long buf[100]; }; 123 #define __m(x) (*(struct __large_struct __user *)(x)) 124 125 #define __get_user_64(addr) \ 126 __asm__("1: ldq %0,%2\n" \ 127 "2:\n" \ 128 EXC(1b,2b,%0,%1) \ 129 : "=r"(__gu_val), "=r"(__gu_err) \ 130 : "m"(__m(addr)), "1"(__gu_err)) 131 132 #define __get_user_32(addr) \ 133 __asm__("1: ldl %0,%2\n" \ 134 "2:\n" \ 135 EXC(1b,2b,%0,%1) \ 136 : "=r"(__gu_val), "=r"(__gu_err) \ 137 : "m"(__m(addr)), "1"(__gu_err)) 138 139 #ifdef __alpha_bwx__ 140 /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ 141 142 #define __get_user_16(addr) \ 143 __asm__("1: ldwu %0,%2\n" \ 144 "2:\n" \ 145 EXC(1b,2b,%0,%1) \ 146 : "=r"(__gu_val), "=r"(__gu_err) \ 147 : "m"(__m(addr)), "1"(__gu_err)) 148 149 #define __get_user_8(addr) \ 150 __asm__("1: ldbu %0,%2\n" \ 151 "2:\n" \ 152 EXC(1b,2b,%0,%1) \ 153 : "=r"(__gu_val), "=r"(__gu_err) \ 154 : "m"(__m(addr)), "1"(__gu_err)) 155 #else 156 /* Unfortunately, we can't get an unaligned access trap for the sub-word 157 load, so we have to do a general unaligned operation. */ 158 159 #define __get_user_16(addr) \ 160 { \ 161 long __gu_tmp; \ 162 __asm__("1: ldq_u %0,0(%3)\n" \ 163 "2: ldq_u %1,1(%3)\n" \ 164 " extwl %0,%3,%0\n" \ 165 " extwh %1,%3,%1\n" \ 166 " or %0,%1,%0\n" \ 167 "3:\n" \ 168 EXC(1b,3b,%0,%2) \ 169 EXC(2b,3b,%0,%2) \ 170 : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \ 171 : "r"(addr), "2"(__gu_err)); \ 172 } 173 174 #define __get_user_8(addr) \ 175 __asm__("1: ldq_u %0,0(%2)\n" \ 176 " extbl %0,%2,%0\n" \ 177 "2:\n" \ 178 EXC(1b,2b,%0,%1) \ 179 : "=&r"(__gu_val), "=r"(__gu_err) \ 180 : "r"(addr), "1"(__gu_err)) 181 #endif 182 183 extern void __put_user_unknown(void); 184 185 #define __put_user_nocheck(x, ptr, size) \ 186 ({ \ 187 long __pu_err = 0; \ 188 __chk_user_ptr(ptr); \ 189 switch (size) { \ 190 case 1: __put_user_8(x, ptr); break; \ 191 case 2: __put_user_16(x, ptr); break; \ 192 case 4: __put_user_32(x, ptr); break; \ 193 case 8: __put_user_64(x, ptr); break; \ 194 default: __put_user_unknown(); break; \ 195 } \ 196 __pu_err; \ 197 }) 198 199 #define __put_user_check(x, ptr, size) \ 200 ({ \ 201 long __pu_err = -EFAULT; \ 202 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ 203 if (__access_ok((unsigned long)__pu_addr, size)) { \ 204 __pu_err = 0; \ 205 switch (size) { \ 206 case 1: __put_user_8(x, __pu_addr); break; \ 207 case 2: __put_user_16(x, __pu_addr); break; \ 208 case 4: __put_user_32(x, __pu_addr); break; \ 209 case 8: __put_user_64(x, __pu_addr); break; \ 210 default: __put_user_unknown(); break; \ 211 } \ 212 } \ 213 __pu_err; \ 214 }) 215 216 /* 217 * The "__put_user_xx()" macros tell gcc they read from memory 218 * instead of writing: this is because they do not write to 219 * any memory gcc knows about, so there are no aliasing issues 220 */ 221 #define __put_user_64(x, addr) \ 222 __asm__ __volatile__("1: stq %r2,%1\n" \ 223 "2:\n" \ 224 EXC(1b,2b,$31,%0) \ 225 : "=r"(__pu_err) \ 226 : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) 227 228 #define __put_user_32(x, addr) \ 229 __asm__ __volatile__("1: stl %r2,%1\n" \ 230 "2:\n" \ 231 EXC(1b,2b,$31,%0) \ 232 : "=r"(__pu_err) \ 233 : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) 234 235 #ifdef __alpha_bwx__ 236 /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ 237 238 #define __put_user_16(x, addr) \ 239 __asm__ __volatile__("1: stw %r2,%1\n" \ 240 "2:\n" \ 241 EXC(1b,2b,$31,%0) \ 242 : "=r"(__pu_err) \ 243 : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) 244 245 #define __put_user_8(x, addr) \ 246 __asm__ __volatile__("1: stb %r2,%1\n" \ 247 "2:\n" \ 248 EXC(1b,2b,$31,%0) \ 249 : "=r"(__pu_err) \ 250 : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) 251 #else 252 /* Unfortunately, we can't get an unaligned access trap for the sub-word 253 write, so we have to do a general unaligned operation. */ 254 255 #define __put_user_16(x, addr) \ 256 { \ 257 long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \ 258 __asm__ __volatile__( \ 259 "1: ldq_u %2,1(%5)\n" \ 260 "2: ldq_u %1,0(%5)\n" \ 261 " inswh %6,%5,%4\n" \ 262 " inswl %6,%5,%3\n" \ 263 " mskwh %2,%5,%2\n" \ 264 " mskwl %1,%5,%1\n" \ 265 " or %2,%4,%2\n" \ 266 " or %1,%3,%1\n" \ 267 "3: stq_u %2,1(%5)\n" \ 268 "4: stq_u %1,0(%5)\n" \ 269 "5:\n" \ 270 EXC(1b,5b,$31,%0) \ 271 EXC(2b,5b,$31,%0) \ 272 EXC(3b,5b,$31,%0) \ 273 EXC(4b,5b,$31,%0) \ 274 : "=r"(__pu_err), "=&r"(__pu_tmp1), \ 275 "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \ 276 "=&r"(__pu_tmp4) \ 277 : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ 278 } 279 280 #define __put_user_8(x, addr) \ 281 { \ 282 long __pu_tmp1, __pu_tmp2; \ 283 __asm__ __volatile__( \ 284 "1: ldq_u %1,0(%4)\n" \ 285 " insbl %3,%4,%2\n" \ 286 " mskbl %1,%4,%1\n" \ 287 " or %1,%2,%1\n" \ 288 "2: stq_u %1,0(%4)\n" \ 289 "3:\n" \ 290 EXC(1b,3b,$31,%0) \ 291 EXC(2b,3b,$31,%0) \ 292 : "=r"(__pu_err), \ 293 "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \ 294 : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ 295 } 296 #endif 297 298 299 /* 300 * Complex access routines 301 */ 302 303 extern long __copy_user(void *to, const void *from, long len); 304 305 static inline unsigned long 306 raw_copy_from_user(void *to, const void __user *from, unsigned long len) 307 { 308 return __copy_user(to, (__force const void *)from, len); 309 } 310 311 static inline unsigned long 312 raw_copy_to_user(void __user *to, const void *from, unsigned long len) 313 { 314 return __copy_user((__force void *)to, from, len); 315 } 316 317 extern long __clear_user(void __user *to, long len); 318 319 extern inline long 320 clear_user(void __user *to, long len) 321 { 322 if (__access_ok((unsigned long)to, len)) 323 len = __clear_user(to, len); 324 return len; 325 } 326 327 #define user_addr_max() \ 328 (uaccess_kernel() ? ~0UL : TASK_SIZE) 329 330 extern long strncpy_from_user(char *dest, const char __user *src, long count); 331 extern __must_check long strnlen_user(const char __user *str, long n); 332 333 #include <asm/extable.h> 334 335 #endif /* __ALPHA_UACCESS_H */ 336