xref: /openbmc/linux/arch/alpha/include/asm/dma.h (revision 1dd0dd0b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * include/asm-alpha/dma.h
4  *
5  * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
6  * use ISA-compatible dma.  The only extension is support for high-page
7  * registers that allow to set the top 8 bits of a 32-bit DMA address.
8  * This register should be written last when setting up a DMA address
9  * as this will also enable DMA across 64 KB boundaries.
10  */
11 
12 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
13  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
14  * Written by Hennus Bergman, 1992.
15  * High DMA channel support & info by Hannu Savolainen
16  * and John Boyd, Nov. 1992.
17  */
18 
19 #ifndef _ASM_DMA_H
20 #define _ASM_DMA_H
21 
22 #include <linux/spinlock.h>
23 #include <asm/io.h>
24 
25 #define dma_outb	outb
26 #define dma_inb		inb
27 
28 /*
29  * NOTES about DMA transfers:
30  *
31  *  controller 1: channels 0-3, byte operations, ports 00-1F
32  *  controller 2: channels 4-7, word operations, ports C0-DF
33  *
34  *  - ALL registers are 8 bits only, regardless of transfer size
35  *  - channel 4 is not used - cascades 1 into 2.
36  *  - channels 0-3 are byte - addresses/counts are for physical bytes
37  *  - channels 5-7 are word - addresses/counts are for physical words
38  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
39  *  - transfer count loaded to registers is 1 less than actual count
40  *  - controller 2 offsets are all even (2x offsets for controller 1)
41  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
42  *  - page registers for 0-3 use bit 0, represent 64K pages
43  *
44  * DMA transfers are limited to the lower 16MB of _physical_ memory.
45  * Note that addresses loaded into registers must be _physical_ addresses,
46  * not logical addresses (which may differ if paging is active).
47  *
48  *  Address mapping for channels 0-3:
49  *
50  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
51  *    |  ...  |   |  ... |   |  ... |
52  *    |  ...  |   |  ... |   |  ... |
53  *    |  ...  |   |  ... |   |  ... |
54  *   P7  ...  P0  A7 ... A0  A7 ... A0
55  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
56  *
57  *  Address mapping for channels 5-7:
58  *
59  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
60  *    |  ...  |   \   \   ... \  \  \  ... \  \
61  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
62  *    |  ...  |     \   \   ... \  \  \  ... \
63  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
64  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
65  *
66  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
67  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
68  * the hardware level, so odd-byte transfers aren't possible).
69  *
70  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
71  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
72  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
73  *
74  */
75 
76 #define MAX_DMA_CHANNELS	8
77 
78 /*
79   ISA DMA limitations on Alpha platforms,
80 
81   These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
82   just a wiring limit.
83 */
84 
85 /* The maximum address for ISA DMA transfer on Alpha XL, due to an
86    hardware SIO limitation, is 64MB.
87 */
88 #define ALPHA_XL_MAX_ISA_DMA_ADDRESS		0x04000000UL
89 
90 /* The maximum address for ISA DMA transfer on RUFFIAN,
91    due to an hardware SIO limitation, is 16MB.
92 */
93 #define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS	0x01000000UL
94 
95 /* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
96    due to an hardware SIO chip limitation, is 2GB.
97 */
98 #define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS		0x80000000UL
99 #define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS		0x80000000UL
100 
101 /*
102   Maximum address for all the others is the complete 32-bit bus
103   address space.
104 */
105 #define ALPHA_MAX_ISA_DMA_ADDRESS		0x100000000UL
106 
107 #ifdef CONFIG_ALPHA_GENERIC
108 # define MAX_ISA_DMA_ADDRESS		(alpha_mv.max_isa_dma_address)
109 #else
110 # if defined(CONFIG_ALPHA_XL)
111 #  define MAX_ISA_DMA_ADDRESS		ALPHA_XL_MAX_ISA_DMA_ADDRESS
112 # elif defined(CONFIG_ALPHA_RUFFIAN)
113 #  define MAX_ISA_DMA_ADDRESS		ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
114 # elif defined(CONFIG_ALPHA_SABLE)
115 #  define MAX_ISA_DMA_ADDRESS		ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
116 # elif defined(CONFIG_ALPHA_ALCOR)
117 #  define MAX_ISA_DMA_ADDRESS		ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
118 # else
119 #  define MAX_ISA_DMA_ADDRESS		ALPHA_MAX_ISA_DMA_ADDRESS
120 # endif
121 #endif
122 
123 /* If we have the iommu, we don't have any address limitations on DMA.
124    Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
125    like i386. */
126 #define MAX_DMA_ADDRESS		(alpha_mv.mv_pci_tbi ?	\
127 				 ~0UL : IDENT_ADDR + 0x01000000)
128 
129 /* 8237 DMA controllers */
130 #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
131 #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
132 
133 /* DMA controller registers */
134 #define DMA1_CMD_REG		0x08	/* command register (w) */
135 #define DMA1_STAT_REG		0x08	/* status register (r) */
136 #define DMA1_REQ_REG            0x09    /* request register (w) */
137 #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
138 #define DMA1_MODE_REG		0x0B	/* mode register (w) */
139 #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
140 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
141 #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
142 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
143 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
144 #define DMA1_EXT_MODE_REG	(0x400 | DMA1_MODE_REG)
145 
146 #define DMA2_CMD_REG		0xD0	/* command register (w) */
147 #define DMA2_STAT_REG		0xD0	/* status register (r) */
148 #define DMA2_REQ_REG            0xD2    /* request register (w) */
149 #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
150 #define DMA2_MODE_REG		0xD6	/* mode register (w) */
151 #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
152 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
153 #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
154 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
155 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
156 #define DMA2_EXT_MODE_REG	(0x400 | DMA2_MODE_REG)
157 
158 #define DMA_ADDR_0              0x00    /* DMA address registers */
159 #define DMA_ADDR_1              0x02
160 #define DMA_ADDR_2              0x04
161 #define DMA_ADDR_3              0x06
162 #define DMA_ADDR_4              0xC0
163 #define DMA_ADDR_5              0xC4
164 #define DMA_ADDR_6              0xC8
165 #define DMA_ADDR_7              0xCC
166 
167 #define DMA_CNT_0               0x01    /* DMA count registers */
168 #define DMA_CNT_1               0x03
169 #define DMA_CNT_2               0x05
170 #define DMA_CNT_3               0x07
171 #define DMA_CNT_4               0xC2
172 #define DMA_CNT_5               0xC6
173 #define DMA_CNT_6               0xCA
174 #define DMA_CNT_7               0xCE
175 
176 #define DMA_PAGE_0              0x87    /* DMA page registers */
177 #define DMA_PAGE_1              0x83
178 #define DMA_PAGE_2              0x81
179 #define DMA_PAGE_3              0x82
180 #define DMA_PAGE_5              0x8B
181 #define DMA_PAGE_6              0x89
182 #define DMA_PAGE_7              0x8A
183 
184 #define DMA_HIPAGE_0		(0x400 | DMA_PAGE_0)
185 #define DMA_HIPAGE_1		(0x400 | DMA_PAGE_1)
186 #define DMA_HIPAGE_2		(0x400 | DMA_PAGE_2)
187 #define DMA_HIPAGE_3		(0x400 | DMA_PAGE_3)
188 #define DMA_HIPAGE_4		(0x400 | DMA_PAGE_4)
189 #define DMA_HIPAGE_5		(0x400 | DMA_PAGE_5)
190 #define DMA_HIPAGE_6		(0x400 | DMA_PAGE_6)
191 #define DMA_HIPAGE_7		(0x400 | DMA_PAGE_7)
192 
193 #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
194 #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
195 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
196 
197 #define DMA_AUTOINIT	0x10
198 
199 extern spinlock_t  dma_spin_lock;
200 
201 static __inline__ unsigned long claim_dma_lock(void)
202 {
203 	unsigned long flags;
204 	spin_lock_irqsave(&dma_spin_lock, flags);
205 	return flags;
206 }
207 
208 static __inline__ void release_dma_lock(unsigned long flags)
209 {
210 	spin_unlock_irqrestore(&dma_spin_lock, flags);
211 }
212 
213 /* enable/disable a specific DMA channel */
214 static __inline__ void enable_dma(unsigned int dmanr)
215 {
216 	if (dmanr<=3)
217 		dma_outb(dmanr,  DMA1_MASK_REG);
218 	else
219 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
220 }
221 
222 static __inline__ void disable_dma(unsigned int dmanr)
223 {
224 	if (dmanr<=3)
225 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
226 	else
227 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
228 }
229 
230 /* Clear the 'DMA Pointer Flip Flop'.
231  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
232  * Use this once to initialize the FF to a known state.
233  * After that, keep track of it. :-)
234  * --- In order to do that, the DMA routines below should ---
235  * --- only be used while interrupts are disabled! ---
236  */
237 static __inline__ void clear_dma_ff(unsigned int dmanr)
238 {
239 	if (dmanr<=3)
240 		dma_outb(0,  DMA1_CLEAR_FF_REG);
241 	else
242 		dma_outb(0,  DMA2_CLEAR_FF_REG);
243 }
244 
245 /* set mode (above) for a specific DMA channel */
246 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
247 {
248 	if (dmanr<=3)
249 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
250 	else
251 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
252 }
253 
254 /* set extended mode for a specific DMA channel */
255 static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
256 {
257 	if (dmanr<=3)
258 		dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
259 	else
260 		dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
261 }
262 
263 /* Set only the page register bits of the transfer address.
264  * This is used for successive transfers when we know the contents of
265  * the lower 16 bits of the DMA current address register.
266  */
267 static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
268 {
269 	switch(dmanr) {
270 		case 0:
271 			dma_outb(pagenr, DMA_PAGE_0);
272 			dma_outb((pagenr >> 8), DMA_HIPAGE_0);
273 			break;
274 		case 1:
275 			dma_outb(pagenr, DMA_PAGE_1);
276 			dma_outb((pagenr >> 8), DMA_HIPAGE_1);
277 			break;
278 		case 2:
279 			dma_outb(pagenr, DMA_PAGE_2);
280 			dma_outb((pagenr >> 8), DMA_HIPAGE_2);
281 			break;
282 		case 3:
283 			dma_outb(pagenr, DMA_PAGE_3);
284 			dma_outb((pagenr >> 8), DMA_HIPAGE_3);
285 			break;
286 		case 5:
287 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
288 			dma_outb((pagenr >> 8), DMA_HIPAGE_5);
289 			break;
290 		case 6:
291 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
292 			dma_outb((pagenr >> 8), DMA_HIPAGE_6);
293 			break;
294 		case 7:
295 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
296 			dma_outb((pagenr >> 8), DMA_HIPAGE_7);
297 			break;
298 	}
299 }
300 
301 
302 /* Set transfer address & page bits for specific DMA channel.
303  * Assumes dma flipflop is clear.
304  */
305 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
306 {
307 	if (dmanr <= 3)  {
308 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
309             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
310 	}  else  {
311 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
312 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
313 	}
314 	set_dma_page(dmanr, a>>16);	/* set hipage last to enable 32-bit mode */
315 }
316 
317 
318 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
319  * a specific DMA channel.
320  * You must ensure the parameters are valid.
321  * NOTE: from a manual: "the number of transfers is one more
322  * than the initial word count"! This is taken into account.
323  * Assumes dma flip-flop is clear.
324  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
325  */
326 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
327 {
328         count--;
329 	if (dmanr <= 3)  {
330 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
331 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
332         } else {
333 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
334 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
335         }
336 }
337 
338 
339 /* Get DMA residue count. After a DMA transfer, this
340  * should return zero. Reading this while a DMA transfer is
341  * still in progress will return unpredictable results.
342  * If called before the channel has been used, it may return 1.
343  * Otherwise, it returns the number of _bytes_ left to transfer.
344  *
345  * Assumes DMA flip-flop is clear.
346  */
347 static __inline__ int get_dma_residue(unsigned int dmanr)
348 {
349 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
350 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
351 
352 	/* using short to get 16-bit wrap around */
353 	unsigned short count;
354 
355 	count = 1 + dma_inb(io_port);
356 	count += dma_inb(io_port) << 8;
357 
358 	return (dmanr<=3)? count : (count<<1);
359 }
360 
361 
362 /* These are in kernel/dma.c: */
363 extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
364 extern void free_dma(unsigned int dmanr);	/* release it again */
365 #define KERNEL_HAVE_CHECK_DMA
366 extern int check_dma(unsigned int dmanr);
367 
368 #endif /* _ASM_DMA_H */
369