1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a framework of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Throughout the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured. Changing the current tracer clears
99	the ring buffer content as well as the "snapshot" buffer.
100
101  available_tracers:
102
103	This holds the different types of tracers that
104	have been compiled into the kernel. The
105	tracers listed here can be configured by
106	echoing their name into current_tracer.
107
108  tracing_on:
109
110	This sets or displays whether writing to the trace
111	ring buffer is enabled. Echo 0 into this file to disable
112	the tracer or 1 to enable it. Note, this only disables
113	writing to the ring buffer, the tracing overhead may
114	still be occurring.
115
116	The kernel function tracing_off() can be used within the
117	kernel to disable writing to the ring buffer, which will
118	set this file to "0". User space can re-enable tracing by
119	echoing "1" into the file.
120
121	Note, the function and event trigger "traceoff" will also
122	set this file to zero and stop tracing. Which can also
123	be re-enabled by user space using this file.
124
125  trace:
126
127	This file holds the output of the trace in a human
128	readable format (described below). Note, tracing is temporarily
129	disabled when the file is open for reading. Once all readers
130	are closed, tracing is re-enabled. Opening this file for
131	writing with the O_TRUNC flag clears the ring buffer content.
132
133  trace_pipe:
134
135	The output is the same as the "trace" file but this
136	file is meant to be streamed with live tracing.
137	Reads from this file will block until new data is
138	retrieved.  Unlike the "trace" file, this file is a
139	consumer. This means reading from this file causes
140	sequential reads to display more current data. Once
141	data is read from this file, it is consumed, and
142	will not be read again with a sequential read. The
143	"trace" file is static, and if the tracer is not
144	adding more data, it will display the same
145	information every time it is read. Unlike the
146	"trace" file, opening this file for reading will not
147	temporarily disable tracing.
148
149  trace_options:
150
151	This file lets the user control the amount of data
152	that is displayed in one of the above output
153	files. Options also exist to modify how a tracer
154	or events work (stack traces, timestamps, etc).
155
156  options:
157
158	This is a directory that has a file for every available
159	trace option (also in trace_options). Options may also be set
160	or cleared by writing a "1" or "0" respectively into the
161	corresponding file with the option name.
162
163  tracing_max_latency:
164
165	Some of the tracers record the max latency.
166	For example, the maximum time that interrupts are disabled.
167	The maximum time is saved in this file. The max trace will also be
168	stored,	and displayed by "trace". A new max trace will only be
169	recorded if the latency is greater than the value in this file
170	(in microseconds).
171
172	By echoing in a time into this file, no latency will be recorded
173	unless it is greater than the time in this file.
174
175  tracing_thresh:
176
177	Some latency tracers will record a trace whenever the
178	latency is greater than the number in this file.
179	Only active when the file contains a number greater than 0.
180	(in microseconds)
181
182  buffer_size_kb:
183
184	This sets or displays the number of kilobytes each CPU
185	buffer holds. By default, the trace buffers are the same size
186	for each CPU. The displayed number is the size of the
187	CPU buffer and not total size of all buffers. The
188	trace buffers are allocated in pages (blocks of memory
189	that the kernel uses for allocation, usually 4 KB in size).
190	If the last page allocated has room for more bytes
191	than requested, the rest of the page will be used,
192	making the actual allocation bigger than requested or shown.
193	( Note, the size may not be a multiple of the page size
194	due to buffer management meta-data. )
195
196	Buffer sizes for individual CPUs may vary
197	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
198	this file will show "X".
199
200  buffer_total_size_kb:
201
202	This displays the total combined size of all the trace buffers.
203
204  free_buffer:
205
206	If a process is performing tracing, and the ring buffer	should be
207	shrunk "freed" when the process is finished, even if it were to be
208	killed by a signal, this file can be used for that purpose. On close
209	of this file, the ring buffer will be resized to its minimum size.
210	Having a process that is tracing also open this file, when the process
211	exits its file descriptor for this file will be closed, and in doing so,
212	the ring buffer will be "freed".
213
214	It may also stop tracing if disable_on_free option is set.
215
216  tracing_cpumask:
217
218	This is a mask that lets the user only trace on specified CPUs.
219	The format is a hex string representing the CPUs.
220
221  set_ftrace_filter:
222
223	When dynamic ftrace is configured in (see the
224	section below "dynamic ftrace"), the code is dynamically
225	modified (code text rewrite) to disable calling of the
226	function profiler (mcount). This lets tracing be configured
227	in with practically no overhead in performance.  This also
228	has a side effect of enabling or disabling specific functions
229	to be traced. Echoing names of functions into this file
230	will limit the trace to only those functions.
231	This influences the tracers "function" and "function_graph"
232	and thus also function profiling (see "function_profile_enabled").
233
234	The functions listed in "available_filter_functions" are what
235	can be written into this file.
236
237	This interface also allows for commands to be used. See the
238	"Filter commands" section for more details.
239
240	As a speed up, since processing strings can't be quite expensive
241	and requires a check of all functions registered to tracing, instead
242	an index can be written into this file. A number (starting with "1")
243	written will instead select the same corresponding at the line position
244	of the "available_filter_functions" file.
245
246  set_ftrace_notrace:
247
248	This has an effect opposite to that of
249	set_ftrace_filter. Any function that is added here will not
250	be traced. If a function exists in both set_ftrace_filter
251	and set_ftrace_notrace,	the function will _not_ be traced.
252
253  set_ftrace_pid:
254
255	Have the function tracer only trace the threads whose PID are
256	listed in this file.
257
258	If the "function-fork" option is set, then when a task whose
259	PID is listed in this file forks, the child's PID will
260	automatically be added to this file, and the child will be
261	traced by the function tracer as well. This option will also
262	cause PIDs of tasks that exit to be removed from the file.
263
264  set_event_pid:
265
266	Have the events only trace a task with a PID listed in this file.
267	Note, sched_switch and sched_wake_up will also trace events
268	listed in this file.
269
270	To have the PIDs of children of tasks with their PID in this file
271	added on fork, enable the "event-fork" option. That option will also
272	cause the PIDs of tasks to be removed from this file when the task
273	exits.
274
275  set_graph_function:
276
277	Functions listed in this file will cause the function graph
278	tracer to only trace these functions and the functions that
279	they call. (See the section "dynamic ftrace" for more details).
280	Note, set_ftrace_filter and set_ftrace_notrace still affects
281	what functions are being traced.
282
283  set_graph_notrace:
284
285	Similar to set_graph_function, but will disable function graph
286	tracing when the function is hit until it exits the function.
287	This makes it possible to ignore tracing functions that are called
288	by a specific function.
289
290  available_filter_functions:
291
292	This lists the functions that ftrace has processed and can trace.
293	These are the function names that you can pass to
294	"set_ftrace_filter", "set_ftrace_notrace",
295	"set_graph_function", or "set_graph_notrace".
296	(See the section "dynamic ftrace" below for more details.)
297
298  dyn_ftrace_total_info:
299
300	This file is for debugging purposes. The number of functions that
301	have been converted to nops and are available to be traced.
302
303  enabled_functions:
304
305	This file is more for debugging ftrace, but can also be useful
306	in seeing if any function has a callback attached to it.
307	Not only does the trace infrastructure use ftrace function
308	trace utility, but other subsystems might too. This file
309	displays all functions that have a callback attached to them
310	as well as the number of callbacks that have been attached.
311	Note, a callback may also call multiple functions which will
312	not be listed in this count.
313
314	If the callback registered to be traced by a function with
315	the "save regs" attribute (thus even more overhead), a 'R'
316	will be displayed on the same line as the function that
317	is returning registers.
318
319	If the callback registered to be traced by a function with
320	the "ip modify" attribute (thus the regs->ip can be changed),
321	an 'I' will be displayed on the same line as the function that
322	can be overridden.
323
324	If the architecture supports it, it will also show what callback
325	is being directly called by the function. If the count is greater
326	than 1 it most likely will be ftrace_ops_list_func().
327
328	If the callback of the function jumps to a trampoline that is
329	specific to a the callback and not the standard trampoline,
330	its address will be printed as well as the function that the
331	trampoline calls.
332
333  function_profile_enabled:
334
335	When set it will enable all functions with either the function
336	tracer, or if configured, the function graph tracer. It will
337	keep a histogram of the number of functions that were called
338	and if the function graph tracer was configured, it will also keep
339	track of the time spent in those functions. The histogram
340	content can be displayed in the files:
341
342	trace_stat/function<cpu> ( function0, function1, etc).
343
344  trace_stat:
345
346	A directory that holds different tracing stats.
347
348  kprobe_events:
349
350	Enable dynamic trace points. See kprobetrace.txt.
351
352  kprobe_profile:
353
354	Dynamic trace points stats. See kprobetrace.txt.
355
356  max_graph_depth:
357
358	Used with the function graph tracer. This is the max depth
359	it will trace into a function. Setting this to a value of
360	one will show only the first kernel function that is called
361	from user space.
362
363  printk_formats:
364
365	This is for tools that read the raw format files. If an event in
366	the ring buffer references a string, only a pointer to the string
367	is recorded into the buffer and not the string itself. This prevents
368	tools from knowing what that string was. This file displays the string
369	and address for	the string allowing tools to map the pointers to what
370	the strings were.
371
372  saved_cmdlines:
373
374	Only the pid of the task is recorded in a trace event unless
375	the event specifically saves the task comm as well. Ftrace
376	makes a cache of pid mappings to comms to try to display
377	comms for events. If a pid for a comm is not listed, then
378	"<...>" is displayed in the output.
379
380	If the option "record-cmd" is set to "0", then comms of tasks
381	will not be saved during recording. By default, it is enabled.
382
383  saved_cmdlines_size:
384
385	By default, 128 comms are saved (see "saved_cmdlines" above). To
386	increase or decrease the amount of comms that are cached, echo
387	in a the number of comms to cache, into this file.
388
389  saved_tgids:
390
391	If the option "record-tgid" is set, on each scheduling context switch
392	the Task Group ID of a task is saved in a table mapping the PID of
393	the thread to its TGID. By default, the "record-tgid" option is
394	disabled.
395
396  snapshot:
397
398	This displays the "snapshot" buffer and also lets the user
399	take a snapshot of the current running trace.
400	See the "Snapshot" section below for more details.
401
402  stack_max_size:
403
404	When the stack tracer is activated, this will display the
405	maximum stack size it has encountered.
406	See the "Stack Trace" section below.
407
408  stack_trace:
409
410	This displays the stack back trace of the largest stack
411	that was encountered when the stack tracer is activated.
412	See the "Stack Trace" section below.
413
414  stack_trace_filter:
415
416	This is similar to "set_ftrace_filter" but it limits what
417	functions the stack tracer will check.
418
419  trace_clock:
420
421	Whenever an event is recorded into the ring buffer, a
422	"timestamp" is added. This stamp comes from a specified
423	clock. By default, ftrace uses the "local" clock. This
424	clock is very fast and strictly per cpu, but on some
425	systems it may not be monotonic with respect to other
426	CPUs. In other words, the local clocks may not be in sync
427	with local clocks on other CPUs.
428
429	Usual clocks for tracing::
430
431	  # cat trace_clock
432	  [local] global counter x86-tsc
433
434	The clock with the square brackets around it is the one in effect.
435
436	local:
437		Default clock, but may not be in sync across CPUs
438
439	global:
440		This clock is in sync with all CPUs but may
441		be a bit slower than the local clock.
442
443	counter:
444		This is not a clock at all, but literally an atomic
445		counter. It counts up one by one, but is in sync
446		with all CPUs. This is useful when you need to
447		know exactly the order events occurred with respect to
448		each other on different CPUs.
449
450	uptime:
451		This uses the jiffies counter and the time stamp
452		is relative to the time since boot up.
453
454	perf:
455		This makes ftrace use the same clock that perf uses.
456		Eventually perf will be able to read ftrace buffers
457		and this will help out in interleaving the data.
458
459	x86-tsc:
460		Architectures may define their own clocks. For
461		example, x86 uses its own TSC cycle clock here.
462
463	ppc-tb:
464		This uses the powerpc timebase register value.
465		This is in sync across CPUs and can also be used
466		to correlate events across hypervisor/guest if
467		tb_offset is known.
468
469	mono:
470		This uses the fast monotonic clock (CLOCK_MONOTONIC)
471		which is monotonic and is subject to NTP rate adjustments.
472
473	mono_raw:
474		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
475		which is monotonic but is not subject to any rate adjustments
476		and ticks at the same rate as the hardware clocksource.
477
478	boot:
479		This is the boot clock (CLOCK_BOOTTIME) and is based on the
480		fast monotonic clock, but also accounts for time spent in
481		suspend. Since the clock access is designed for use in
482		tracing in the suspend path, some side effects are possible
483		if clock is accessed after the suspend time is accounted before
484		the fast mono clock is updated. In this case, the clock update
485		appears to happen slightly sooner than it normally would have.
486		Also on 32-bit systems, it's possible that the 64-bit boot offset
487		sees a partial update. These effects are rare and post
488		processing should be able to handle them. See comments in the
489		ktime_get_boot_fast_ns() function for more information.
490
491	To set a clock, simply echo the clock name into this file::
492
493	  # echo global > trace_clock
494
495	Setting a clock clears the ring buffer content as well as the
496	"snapshot" buffer.
497
498  trace_marker:
499
500	This is a very useful file for synchronizing user space
501	with events happening in the kernel. Writing strings into
502	this file will be written into the ftrace buffer.
503
504	It is useful in applications to open this file at the start
505	of the application and just reference the file descriptor
506	for the file::
507
508		void trace_write(const char *fmt, ...)
509		{
510			va_list ap;
511			char buf[256];
512			int n;
513
514			if (trace_fd < 0)
515				return;
516
517			va_start(ap, fmt);
518			n = vsnprintf(buf, 256, fmt, ap);
519			va_end(ap);
520
521			write(trace_fd, buf, n);
522		}
523
524	start::
525
526		trace_fd = open("trace_marker", WR_ONLY);
527
528	Note: Writing into the trace_marker file can also initiate triggers
529	      that are written into /sys/kernel/tracing/events/ftrace/print/trigger
530	      See "Event triggers" in Documentation/trace/events.rst and an
531              example in Documentation/trace/histogram.rst (Section 3.)
532
533  trace_marker_raw:
534
535	This is similar to trace_marker above, but is meant for for binary data
536	to be written to it, where a tool can be used to parse the data
537	from trace_pipe_raw.
538
539  uprobe_events:
540
541	Add dynamic tracepoints in programs.
542	See uprobetracer.txt
543
544  uprobe_profile:
545
546	Uprobe statistics. See uprobetrace.txt
547
548  instances:
549
550	This is a way to make multiple trace buffers where different
551	events can be recorded in different buffers.
552	See "Instances" section below.
553
554  events:
555
556	This is the trace event directory. It holds event tracepoints
557	(also known as static tracepoints) that have been compiled
558	into the kernel. It shows what event tracepoints exist
559	and how they are grouped by system. There are "enable"
560	files at various levels that can enable the tracepoints
561	when a "1" is written to them.
562
563	See events.txt for more information.
564
565  set_event:
566
567	By echoing in the event into this file, will enable that event.
568
569	See events.txt for more information.
570
571  available_events:
572
573	A list of events that can be enabled in tracing.
574
575	See events.txt for more information.
576
577  timestamp_mode:
578
579	Certain tracers may change the timestamp mode used when
580	logging trace events into the event buffer.  Events with
581	different modes can coexist within a buffer but the mode in
582	effect when an event is logged determines which timestamp mode
583	is used for that event.  The default timestamp mode is
584	'delta'.
585
586	Usual timestamp modes for tracing:
587
588	  # cat timestamp_mode
589	  [delta] absolute
590
591	  The timestamp mode with the square brackets around it is the
592	  one in effect.
593
594	  delta: Default timestamp mode - timestamp is a delta against
595	         a per-buffer timestamp.
596
597	  absolute: The timestamp is a full timestamp, not a delta
598                 against some other value.  As such it takes up more
599                 space and is less efficient.
600
601  hwlat_detector:
602
603	Directory for the Hardware Latency Detector.
604	See "Hardware Latency Detector" section below.
605
606  per_cpu:
607
608	This is a directory that contains the trace per_cpu information.
609
610  per_cpu/cpu0/buffer_size_kb:
611
612	The ftrace buffer is defined per_cpu. That is, there's a separate
613	buffer for each CPU to allow writes to be done atomically,
614	and free from cache bouncing. These buffers may have different
615	size buffers. This file is similar to the buffer_size_kb
616	file, but it only displays or sets the buffer size for the
617	specific CPU. (here cpu0).
618
619  per_cpu/cpu0/trace:
620
621	This is similar to the "trace" file, but it will only display
622	the data specific for the CPU. If written to, it only clears
623	the specific CPU buffer.
624
625  per_cpu/cpu0/trace_pipe
626
627	This is similar to the "trace_pipe" file, and is a consuming
628	read, but it will only display (and consume) the data specific
629	for the CPU.
630
631  per_cpu/cpu0/trace_pipe_raw
632
633	For tools that can parse the ftrace ring buffer binary format,
634	the trace_pipe_raw file can be used to extract the data
635	from the ring buffer directly. With the use of the splice()
636	system call, the buffer data can be quickly transferred to
637	a file or to the network where a server is collecting the
638	data.
639
640	Like trace_pipe, this is a consuming reader, where multiple
641	reads will always produce different data.
642
643  per_cpu/cpu0/snapshot:
644
645	This is similar to the main "snapshot" file, but will only
646	snapshot the current CPU (if supported). It only displays
647	the content of the snapshot for a given CPU, and if
648	written to, only clears this CPU buffer.
649
650  per_cpu/cpu0/snapshot_raw:
651
652	Similar to the trace_pipe_raw, but will read the binary format
653	from the snapshot buffer for the given CPU.
654
655  per_cpu/cpu0/stats:
656
657	This displays certain stats about the ring buffer:
658
659	entries:
660		The number of events that are still in the buffer.
661
662	overrun:
663		The number of lost events due to overwriting when
664		the buffer was full.
665
666	commit overrun:
667		Should always be zero.
668		This gets set if so many events happened within a nested
669		event (ring buffer is re-entrant), that it fills the
670		buffer and starts dropping events.
671
672	bytes:
673		Bytes actually read (not overwritten).
674
675	oldest event ts:
676		The oldest timestamp in the buffer
677
678	now ts:
679		The current timestamp
680
681	dropped events:
682		Events lost due to overwrite option being off.
683
684	read events:
685		The number of events read.
686
687The Tracers
688-----------
689
690Here is the list of current tracers that may be configured.
691
692  "function"
693
694	Function call tracer to trace all kernel functions.
695
696  "function_graph"
697
698	Similar to the function tracer except that the
699	function tracer probes the functions on their entry
700	whereas the function graph tracer traces on both entry
701	and exit of the functions. It then provides the ability
702	to draw a graph of function calls similar to C code
703	source.
704
705  "blk"
706
707	The block tracer. The tracer used by the blktrace user
708	application.
709
710  "hwlat"
711
712	The Hardware Latency tracer is used to detect if the hardware
713	produces any latency. See "Hardware Latency Detector" section
714	below.
715
716  "irqsoff"
717
718	Traces the areas that disable interrupts and saves
719	the trace with the longest max latency.
720	See tracing_max_latency. When a new max is recorded,
721	it replaces the old trace. It is best to view this
722	trace with the latency-format option enabled, which
723	happens automatically when the tracer is selected.
724
725  "preemptoff"
726
727	Similar to irqsoff but traces and records the amount of
728	time for which preemption is disabled.
729
730  "preemptirqsoff"
731
732	Similar to irqsoff and preemptoff, but traces and
733	records the largest time for which irqs and/or preemption
734	is disabled.
735
736  "wakeup"
737
738	Traces and records the max latency that it takes for
739	the highest priority task to get scheduled after
740	it has been woken up.
741        Traces all tasks as an average developer would expect.
742
743  "wakeup_rt"
744
745        Traces and records the max latency that it takes for just
746        RT tasks (as the current "wakeup" does). This is useful
747        for those interested in wake up timings of RT tasks.
748
749  "wakeup_dl"
750
751	Traces and records the max latency that it takes for
752	a SCHED_DEADLINE task to be woken (as the "wakeup" and
753	"wakeup_rt" does).
754
755  "mmiotrace"
756
757	A special tracer that is used to trace binary module.
758	It will trace all the calls that a module makes to the
759	hardware. Everything it writes and reads from the I/O
760	as well.
761
762  "branch"
763
764	This tracer can be configured when tracing likely/unlikely
765	calls within the kernel. It will trace when a likely and
766	unlikely branch is hit and if it was correct in its prediction
767	of being correct.
768
769  "nop"
770
771	This is the "trace nothing" tracer. To remove all
772	tracers from tracing simply echo "nop" into
773	current_tracer.
774
775Error conditions
776----------------
777
778  For most ftrace commands, failure modes are obvious and communicated
779  using standard return codes.
780
781  For other more involved commands, extended error information may be
782  available via the tracing/error_log file.  For the commands that
783  support it, reading the tracing/error_log file after an error will
784  display more detailed information about what went wrong, if
785  information is available.  The tracing/error_log file is a circular
786  error log displaying a small number (currently, 8) of ftrace errors
787  for the last (8) failed commands.
788
789  The extended error information and usage takes the form shown in
790  this example::
791
792    # echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/trigger
793    echo: write error: Invalid argument
794
795    # cat /sys/kernel/debug/tracing/error_log
796    [ 5348.887237] location: error: Couldn't yyy: zzz
797      Command: xxx
798               ^
799    [ 7517.023364] location: error: Bad rrr: sss
800      Command: ppp qqq
801                   ^
802
803  To clear the error log, echo the empty string into it::
804
805    # echo > /sys/kernel/debug/tracing/error_log
806
807Examples of using the tracer
808----------------------------
809
810Here are typical examples of using the tracers when controlling
811them only with the tracefs interface (without using any
812user-land utilities).
813
814Output format:
815--------------
816
817Here is an example of the output format of the file "trace"::
818
819  # tracer: function
820  #
821  # entries-in-buffer/entries-written: 140080/250280   #P:4
822  #
823  #                              _-----=> irqs-off
824  #                             / _----=> need-resched
825  #                            | / _---=> hardirq/softirq
826  #                            || / _--=> preempt-depth
827  #                            ||| /     delay
828  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
829  #              | |       |   ||||       |         |
830              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
831              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
832              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
833              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
834              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
835              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
836              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
837              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
838              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
839              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
840              ....
841
842A header is printed with the tracer name that is represented by
843the trace. In this case the tracer is "function". Then it shows the
844number of events in the buffer as well as the total number of entries
845that were written. The difference is the number of entries that were
846lost due to the buffer filling up (250280 - 140080 = 110200 events
847lost).
848
849The header explains the content of the events. Task name "bash", the task
850PID "1977", the CPU that it was running on "000", the latency format
851(explained below), the timestamp in <secs>.<usecs> format, the
852function name that was traced "sys_close" and the parent function that
853called this function "system_call_fastpath". The timestamp is the time
854at which the function was entered.
855
856Latency trace format
857--------------------
858
859When the latency-format option is enabled or when one of the latency
860tracers is set, the trace file gives somewhat more information to see
861why a latency happened. Here is a typical trace::
862
863  # tracer: irqsoff
864  #
865  # irqsoff latency trace v1.1.5 on 3.8.0-test+
866  # --------------------------------------------------------------------
867  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
868  #    -----------------
869  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
870  #    -----------------
871  #  => started at: __lock_task_sighand
872  #  => ended at:   _raw_spin_unlock_irqrestore
873  #
874  #
875  #                  _------=> CPU#
876  #                 / _-----=> irqs-off
877  #                | / _----=> need-resched
878  #                || / _---=> hardirq/softirq
879  #                ||| / _--=> preempt-depth
880  #                |||| /     delay
881  #  cmd     pid   ||||| time  |   caller
882  #     \   /      |||||  \    |   /
883        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
884        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
885        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
886        ps-6143    2d..1  306us : <stack trace>
887   => trace_hardirqs_on_caller
888   => trace_hardirqs_on
889   => _raw_spin_unlock_irqrestore
890   => do_task_stat
891   => proc_tgid_stat
892   => proc_single_show
893   => seq_read
894   => vfs_read
895   => sys_read
896   => system_call_fastpath
897
898
899This shows that the current tracer is "irqsoff" tracing the time
900for which interrupts were disabled. It gives the trace version (which
901never changes) and the version of the kernel upon which this was executed on
902(3.8). Then it displays the max latency in microseconds (259 us). The number
903of trace entries displayed and the total number (both are four: #4/4).
904VP, KP, SP, and HP are always zero and are reserved for later use.
905#P is the number of online CPUs (#P:4).
906
907The task is the process that was running when the latency
908occurred. (ps pid: 6143).
909
910The start and stop (the functions in which the interrupts were
911disabled and enabled respectively) that caused the latencies:
912
913  - __lock_task_sighand is where the interrupts were disabled.
914  - _raw_spin_unlock_irqrestore is where they were enabled again.
915
916The next lines after the header are the trace itself. The header
917explains which is which.
918
919  cmd: The name of the process in the trace.
920
921  pid: The PID of that process.
922
923  CPU#: The CPU which the process was running on.
924
925  irqs-off: 'd' interrupts are disabled. '.' otherwise.
926	.. caution:: If the architecture does not support a way to
927		read the irq flags variable, an 'X' will always
928		be printed here.
929
930  need-resched:
931	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
932	- 'n' only TIF_NEED_RESCHED is set,
933	- 'p' only PREEMPT_NEED_RESCHED is set,
934	- '.' otherwise.
935
936  hardirq/softirq:
937	- 'Z' - NMI occurred inside a hardirq
938	- 'z' - NMI is running
939	- 'H' - hard irq occurred inside a softirq.
940	- 'h' - hard irq is running
941	- 's' - soft irq is running
942	- '.' - normal context.
943
944  preempt-depth: The level of preempt_disabled
945
946The above is mostly meaningful for kernel developers.
947
948  time:
949	When the latency-format option is enabled, the trace file
950	output includes a timestamp relative to the start of the
951	trace. This differs from the output when latency-format
952	is disabled, which includes an absolute timestamp.
953
954  delay:
955	This is just to help catch your eye a bit better. And
956	needs to be fixed to be only relative to the same CPU.
957	The marks are determined by the difference between this
958	current trace and the next trace.
959
960	  - '$' - greater than 1 second
961	  - '@' - greater than 100 millisecond
962	  - '*' - greater than 10 millisecond
963	  - '#' - greater than 1000 microsecond
964	  - '!' - greater than 100 microsecond
965	  - '+' - greater than 10 microsecond
966	  - ' ' - less than or equal to 10 microsecond.
967
968  The rest is the same as the 'trace' file.
969
970  Note, the latency tracers will usually end with a back trace
971  to easily find where the latency occurred.
972
973trace_options
974-------------
975
976The trace_options file (or the options directory) is used to control
977what gets printed in the trace output, or manipulate the tracers.
978To see what is available, simply cat the file::
979
980  cat trace_options
981	print-parent
982	nosym-offset
983	nosym-addr
984	noverbose
985	noraw
986	nohex
987	nobin
988	noblock
989	trace_printk
990	annotate
991	nouserstacktrace
992	nosym-userobj
993	noprintk-msg-only
994	context-info
995	nolatency-format
996	record-cmd
997	norecord-tgid
998	overwrite
999	nodisable_on_free
1000	irq-info
1001	markers
1002	noevent-fork
1003	function-trace
1004	nofunction-fork
1005	nodisplay-graph
1006	nostacktrace
1007	nobranch
1008
1009To disable one of the options, echo in the option prepended with
1010"no"::
1011
1012  echo noprint-parent > trace_options
1013
1014To enable an option, leave off the "no"::
1015
1016  echo sym-offset > trace_options
1017
1018Here are the available options:
1019
1020  print-parent
1021	On function traces, display the calling (parent)
1022	function as well as the function being traced.
1023	::
1024
1025	  print-parent:
1026	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
1027
1028	  noprint-parent:
1029	   bash-4000  [01]  1477.606694: simple_strtoul
1030
1031
1032  sym-offset
1033	Display not only the function name, but also the
1034	offset in the function. For example, instead of
1035	seeing just "ktime_get", you will see
1036	"ktime_get+0xb/0x20".
1037	::
1038
1039	  sym-offset:
1040	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
1041
1042  sym-addr
1043	This will also display the function address as well
1044	as the function name.
1045	::
1046
1047	  sym-addr:
1048	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
1049
1050  verbose
1051	This deals with the trace file when the
1052        latency-format option is enabled.
1053	::
1054
1055	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1056	    (+0.000ms): simple_strtoul (kstrtoul)
1057
1058  raw
1059	This will display raw numbers. This option is best for
1060	use with user applications that can translate the raw
1061	numbers better than having it done in the kernel.
1062
1063  hex
1064	Similar to raw, but the numbers will be in a hexadecimal format.
1065
1066  bin
1067	This will print out the formats in raw binary.
1068
1069  block
1070	When set, reading trace_pipe will not block when polled.
1071
1072  trace_printk
1073	Can disable trace_printk() from writing into the buffer.
1074
1075  annotate
1076	It is sometimes confusing when the CPU buffers are full
1077	and one CPU buffer had a lot of events recently, thus
1078	a shorter time frame, were another CPU may have only had
1079	a few events, which lets it have older events. When
1080	the trace is reported, it shows the oldest events first,
1081	and it may look like only one CPU ran (the one with the
1082	oldest events). When the annotate option is set, it will
1083	display when a new CPU buffer started::
1084
1085			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1086			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1087			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1088		##### CPU 2 buffer started ####
1089			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1090			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1091			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1092
1093  userstacktrace
1094	This option changes the trace. It records a
1095	stacktrace of the current user space thread after
1096	each trace event.
1097
1098  sym-userobj
1099	when user stacktrace are enabled, look up which
1100	object the address belongs to, and print a
1101	relative address. This is especially useful when
1102	ASLR is on, otherwise you don't get a chance to
1103	resolve the address to object/file/line after
1104	the app is no longer running
1105
1106	The lookup is performed when you read
1107	trace,trace_pipe. Example::
1108
1109		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1110		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1111
1112
1113  printk-msg-only
1114	When set, trace_printk()s will only show the format
1115	and not their parameters (if trace_bprintk() or
1116	trace_bputs() was used to save the trace_printk()).
1117
1118  context-info
1119	Show only the event data. Hides the comm, PID,
1120	timestamp, CPU, and other useful data.
1121
1122  latency-format
1123	This option changes the trace output. When it is enabled,
1124	the trace displays additional information about the
1125	latency, as described in "Latency trace format".
1126
1127  record-cmd
1128	When any event or tracer is enabled, a hook is enabled
1129	in the sched_switch trace point to fill comm cache
1130	with mapped pids and comms. But this may cause some
1131	overhead, and if you only care about pids, and not the
1132	name of the task, disabling this option can lower the
1133	impact of tracing. See "saved_cmdlines".
1134
1135  record-tgid
1136	When any event or tracer is enabled, a hook is enabled
1137	in the sched_switch trace point to fill the cache of
1138	mapped Thread Group IDs (TGID) mapping to pids. See
1139	"saved_tgids".
1140
1141  overwrite
1142	This controls what happens when the trace buffer is
1143	full. If "1" (default), the oldest events are
1144	discarded and overwritten. If "0", then the newest
1145	events are discarded.
1146	(see per_cpu/cpu0/stats for overrun and dropped)
1147
1148  disable_on_free
1149	When the free_buffer is closed, tracing will
1150	stop (tracing_on set to 0).
1151
1152  irq-info
1153	Shows the interrupt, preempt count, need resched data.
1154	When disabled, the trace looks like::
1155
1156		# tracer: function
1157		#
1158		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1159		#
1160		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1161		#              | |       |          |         |
1162			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1163			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1164			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1165
1166
1167  markers
1168	When set, the trace_marker is writable (only by root).
1169	When disabled, the trace_marker will error with EINVAL
1170	on write.
1171
1172  event-fork
1173	When set, tasks with PIDs listed in set_event_pid will have
1174	the PIDs of their children added to set_event_pid when those
1175	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1176	their PIDs will be removed from the file.
1177
1178  function-trace
1179	The latency tracers will enable function tracing
1180	if this option is enabled (default it is). When
1181	it is disabled, the latency tracers do not trace
1182	functions. This keeps the overhead of the tracer down
1183	when performing latency tests.
1184
1185  function-fork
1186	When set, tasks with PIDs listed in set_ftrace_pid will
1187	have the PIDs of their children added to set_ftrace_pid
1188	when those tasks fork. Also, when tasks with PIDs in
1189	set_ftrace_pid exit, their PIDs will be removed from the
1190	file.
1191
1192  display-graph
1193	When set, the latency tracers (irqsoff, wakeup, etc) will
1194	use function graph tracing instead of function tracing.
1195
1196  stacktrace
1197	When set, a stack trace is recorded after any trace event
1198	is recorded.
1199
1200  branch
1201	Enable branch tracing with the tracer. This enables branch
1202	tracer along with the currently set tracer. Enabling this
1203	with the "nop" tracer is the same as just enabling the
1204	"branch" tracer.
1205
1206.. tip:: Some tracers have their own options. They only appear in this
1207       file when the tracer is active. They always appear in the
1208       options directory.
1209
1210
1211Here are the per tracer options:
1212
1213Options for function tracer:
1214
1215  func_stack_trace
1216	When set, a stack trace is recorded after every
1217	function that is recorded. NOTE! Limit the functions
1218	that are recorded before enabling this, with
1219	"set_ftrace_filter" otherwise the system performance
1220	will be critically degraded. Remember to disable
1221	this option before clearing the function filter.
1222
1223Options for function_graph tracer:
1224
1225 Since the function_graph tracer has a slightly different output
1226 it has its own options to control what is displayed.
1227
1228  funcgraph-overrun
1229	When set, the "overrun" of the graph stack is
1230	displayed after each function traced. The
1231	overrun, is when the stack depth of the calls
1232	is greater than what is reserved for each task.
1233	Each task has a fixed array of functions to
1234	trace in the call graph. If the depth of the
1235	calls exceeds that, the function is not traced.
1236	The overrun is the number of functions missed
1237	due to exceeding this array.
1238
1239  funcgraph-cpu
1240	When set, the CPU number of the CPU where the trace
1241	occurred is displayed.
1242
1243  funcgraph-overhead
1244	When set, if the function takes longer than
1245	A certain amount, then a delay marker is
1246	displayed. See "delay" above, under the
1247	header description.
1248
1249  funcgraph-proc
1250	Unlike other tracers, the process' command line
1251	is not displayed by default, but instead only
1252	when a task is traced in and out during a context
1253	switch. Enabling this options has the command
1254	of each process displayed at every line.
1255
1256  funcgraph-duration
1257	At the end of each function (the return)
1258	the duration of the amount of time in the
1259	function is displayed in microseconds.
1260
1261  funcgraph-abstime
1262	When set, the timestamp is displayed at each line.
1263
1264  funcgraph-irqs
1265	When disabled, functions that happen inside an
1266	interrupt will not be traced.
1267
1268  funcgraph-tail
1269	When set, the return event will include the function
1270	that it represents. By default this is off, and
1271	only a closing curly bracket "}" is displayed for
1272	the return of a function.
1273
1274  sleep-time
1275	When running function graph tracer, to include
1276	the time a task schedules out in its function.
1277	When enabled, it will account time the task has been
1278	scheduled out as part of the function call.
1279
1280  graph-time
1281	When running function profiler with function graph tracer,
1282	to include the time to call nested functions. When this is
1283	not set, the time reported for the function will only
1284	include the time the function itself executed for, not the
1285	time for functions that it called.
1286
1287Options for blk tracer:
1288
1289  blk_classic
1290	Shows a more minimalistic output.
1291
1292
1293irqsoff
1294-------
1295
1296When interrupts are disabled, the CPU can not react to any other
1297external event (besides NMIs and SMIs). This prevents the timer
1298interrupt from triggering or the mouse interrupt from letting
1299the kernel know of a new mouse event. The result is a latency
1300with the reaction time.
1301
1302The irqsoff tracer tracks the time for which interrupts are
1303disabled. When a new maximum latency is hit, the tracer saves
1304the trace leading up to that latency point so that every time a
1305new maximum is reached, the old saved trace is discarded and the
1306new trace is saved.
1307
1308To reset the maximum, echo 0 into tracing_max_latency. Here is
1309an example::
1310
1311  # echo 0 > options/function-trace
1312  # echo irqsoff > current_tracer
1313  # echo 1 > tracing_on
1314  # echo 0 > tracing_max_latency
1315  # ls -ltr
1316  [...]
1317  # echo 0 > tracing_on
1318  # cat trace
1319  # tracer: irqsoff
1320  #
1321  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1322  # --------------------------------------------------------------------
1323  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1324  #    -----------------
1325  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1326  #    -----------------
1327  #  => started at: run_timer_softirq
1328  #  => ended at:   run_timer_softirq
1329  #
1330  #
1331  #                  _------=> CPU#
1332  #                 / _-----=> irqs-off
1333  #                | / _----=> need-resched
1334  #                || / _---=> hardirq/softirq
1335  #                ||| / _--=> preempt-depth
1336  #                |||| /     delay
1337  #  cmd     pid   ||||| time  |   caller
1338  #     \   /      |||||  \    |   /
1339    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1340    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1341    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1342    <idle>-0       0dNs3   25us : <stack trace>
1343   => _raw_spin_unlock_irq
1344   => run_timer_softirq
1345   => __do_softirq
1346   => call_softirq
1347   => do_softirq
1348   => irq_exit
1349   => smp_apic_timer_interrupt
1350   => apic_timer_interrupt
1351   => rcu_idle_exit
1352   => cpu_idle
1353   => rest_init
1354   => start_kernel
1355   => x86_64_start_reservations
1356   => x86_64_start_kernel
1357
1358Here we see that that we had a latency of 16 microseconds (which is
1359very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1360interrupts. The difference between the 16 and the displayed
1361timestamp 25us occurred because the clock was incremented
1362between the time of recording the max latency and the time of
1363recording the function that had that latency.
1364
1365Note the above example had function-trace not set. If we set
1366function-trace, we get a much larger output::
1367
1368 with echo 1 > options/function-trace
1369
1370  # tracer: irqsoff
1371  #
1372  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1373  # --------------------------------------------------------------------
1374  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1375  #    -----------------
1376  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1377  #    -----------------
1378  #  => started at: ata_scsi_queuecmd
1379  #  => ended at:   ata_scsi_queuecmd
1380  #
1381  #
1382  #                  _------=> CPU#
1383  #                 / _-----=> irqs-off
1384  #                | / _----=> need-resched
1385  #                || / _---=> hardirq/softirq
1386  #                ||| / _--=> preempt-depth
1387  #                |||| /     delay
1388  #  cmd     pid   ||||| time  |   caller
1389  #     \   /      |||||  \    |   /
1390      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1391      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1392      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1393      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1394      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1395      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1396      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1397      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1398      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1399  [...]
1400      bash-2042    3d..1   67us : delay_tsc <-__delay
1401      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1402      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1403      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1404      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1405      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1406      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1407      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1408      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1409      bash-2042    3d..1  120us : <stack trace>
1410   => _raw_spin_unlock_irqrestore
1411   => ata_scsi_queuecmd
1412   => scsi_dispatch_cmd
1413   => scsi_request_fn
1414   => __blk_run_queue_uncond
1415   => __blk_run_queue
1416   => blk_queue_bio
1417   => generic_make_request
1418   => submit_bio
1419   => submit_bh
1420   => __ext3_get_inode_loc
1421   => ext3_iget
1422   => ext3_lookup
1423   => lookup_real
1424   => __lookup_hash
1425   => walk_component
1426   => lookup_last
1427   => path_lookupat
1428   => filename_lookup
1429   => user_path_at_empty
1430   => user_path_at
1431   => vfs_fstatat
1432   => vfs_stat
1433   => sys_newstat
1434   => system_call_fastpath
1435
1436
1437Here we traced a 71 microsecond latency. But we also see all the
1438functions that were called during that time. Note that by
1439enabling function tracing, we incur an added overhead. This
1440overhead may extend the latency times. But nevertheless, this
1441trace has provided some very helpful debugging information.
1442
1443If we prefer function graph output instead of function, we can set
1444display-graph option::
1445
1446 with echo 1 > options/display-graph
1447
1448  # tracer: irqsoff
1449  #
1450  # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1451  # --------------------------------------------------------------------
1452  # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1453  #    -----------------
1454  #    | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1455  #    -----------------
1456  #  => started at: free_debug_processing
1457  #  => ended at:   return_to_handler
1458  #
1459  #
1460  #                                       _-----=> irqs-off
1461  #                                      / _----=> need-resched
1462  #                                     | / _---=> hardirq/softirq
1463  #                                     || / _--=> preempt-depth
1464  #                                     ||| /
1465  #   REL TIME      CPU  TASK/PID       ||||     DURATION                  FUNCTION CALLS
1466  #      |          |     |    |        ||||      |   |                     |   |   |   |
1467          0 us |   0)   bash-1507    |  d... |   0.000 us    |  _raw_spin_lock_irqsave();
1468          0 us |   0)   bash-1507    |  d..1 |   0.378 us    |    do_raw_spin_trylock();
1469          1 us |   0)   bash-1507    |  d..2 |               |    set_track() {
1470          2 us |   0)   bash-1507    |  d..2 |               |      save_stack_trace() {
1471          2 us |   0)   bash-1507    |  d..2 |               |        __save_stack_trace() {
1472          3 us |   0)   bash-1507    |  d..2 |               |          __unwind_start() {
1473          3 us |   0)   bash-1507    |  d..2 |               |            get_stack_info() {
1474          3 us |   0)   bash-1507    |  d..2 |   0.351 us    |              in_task_stack();
1475          4 us |   0)   bash-1507    |  d..2 |   1.107 us    |            }
1476  [...]
1477       3750 us |   0)   bash-1507    |  d..1 |   0.516 us    |      do_raw_spin_unlock();
1478       3750 us |   0)   bash-1507    |  d..1 |   0.000 us    |  _raw_spin_unlock_irqrestore();
1479       3764 us |   0)   bash-1507    |  d..1 |   0.000 us    |  tracer_hardirqs_on();
1480      bash-1507    0d..1 3792us : <stack trace>
1481   => free_debug_processing
1482   => __slab_free
1483   => kmem_cache_free
1484   => vm_area_free
1485   => remove_vma
1486   => exit_mmap
1487   => mmput
1488   => flush_old_exec
1489   => load_elf_binary
1490   => search_binary_handler
1491   => __do_execve_file.isra.32
1492   => __x64_sys_execve
1493   => do_syscall_64
1494   => entry_SYSCALL_64_after_hwframe
1495
1496preemptoff
1497----------
1498
1499When preemption is disabled, we may be able to receive
1500interrupts but the task cannot be preempted and a higher
1501priority task must wait for preemption to be enabled again
1502before it can preempt a lower priority task.
1503
1504The preemptoff tracer traces the places that disable preemption.
1505Like the irqsoff tracer, it records the maximum latency for
1506which preemption was disabled. The control of preemptoff tracer
1507is much like the irqsoff tracer.
1508::
1509
1510  # echo 0 > options/function-trace
1511  # echo preemptoff > current_tracer
1512  # echo 1 > tracing_on
1513  # echo 0 > tracing_max_latency
1514  # ls -ltr
1515  [...]
1516  # echo 0 > tracing_on
1517  # cat trace
1518  # tracer: preemptoff
1519  #
1520  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1521  # --------------------------------------------------------------------
1522  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1523  #    -----------------
1524  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1525  #    -----------------
1526  #  => started at: do_IRQ
1527  #  => ended at:   do_IRQ
1528  #
1529  #
1530  #                  _------=> CPU#
1531  #                 / _-----=> irqs-off
1532  #                | / _----=> need-resched
1533  #                || / _---=> hardirq/softirq
1534  #                ||| / _--=> preempt-depth
1535  #                |||| /     delay
1536  #  cmd     pid   ||||| time  |   caller
1537  #     \   /      |||||  \    |   /
1538      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1539      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1540      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1541      sshd-1991    1d..1   52us : <stack trace>
1542   => sub_preempt_count
1543   => irq_exit
1544   => do_IRQ
1545   => ret_from_intr
1546
1547
1548This has some more changes. Preemption was disabled when an
1549interrupt came in (notice the 'h'), and was enabled on exit.
1550But we also see that interrupts have been disabled when entering
1551the preempt off section and leaving it (the 'd'). We do not know if
1552interrupts were enabled in the mean time or shortly after this
1553was over.
1554::
1555
1556  # tracer: preemptoff
1557  #
1558  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1559  # --------------------------------------------------------------------
1560  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1561  #    -----------------
1562  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1563  #    -----------------
1564  #  => started at: wake_up_new_task
1565  #  => ended at:   task_rq_unlock
1566  #
1567  #
1568  #                  _------=> CPU#
1569  #                 / _-----=> irqs-off
1570  #                | / _----=> need-resched
1571  #                || / _---=> hardirq/softirq
1572  #                ||| / _--=> preempt-depth
1573  #                |||| /     delay
1574  #  cmd     pid   ||||| time  |   caller
1575  #     \   /      |||||  \    |   /
1576      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1577      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1578      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1579      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1580      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1581  [...]
1582      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1583      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1584      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1585      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1586      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1587      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1588      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1589      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1590  [...]
1591      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1592      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1593      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1594      bash-1994    1d..2   36us : do_softirq <-irq_exit
1595      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1596      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1597      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1598      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1599      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1600      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1601  [...]
1602      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1603      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1604      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1605      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1606      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1607      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1608      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1609      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1610      bash-1994    1.N.1  104us : <stack trace>
1611   => sub_preempt_count
1612   => _raw_spin_unlock_irqrestore
1613   => task_rq_unlock
1614   => wake_up_new_task
1615   => do_fork
1616   => sys_clone
1617   => stub_clone
1618
1619
1620The above is an example of the preemptoff trace with
1621function-trace set. Here we see that interrupts were not disabled
1622the entire time. The irq_enter code lets us know that we entered
1623an interrupt 'h'. Before that, the functions being traced still
1624show that it is not in an interrupt, but we can see from the
1625functions themselves that this is not the case.
1626
1627preemptirqsoff
1628--------------
1629
1630Knowing the locations that have interrupts disabled or
1631preemption disabled for the longest times is helpful. But
1632sometimes we would like to know when either preemption and/or
1633interrupts are disabled.
1634
1635Consider the following code::
1636
1637    local_irq_disable();
1638    call_function_with_irqs_off();
1639    preempt_disable();
1640    call_function_with_irqs_and_preemption_off();
1641    local_irq_enable();
1642    call_function_with_preemption_off();
1643    preempt_enable();
1644
1645The irqsoff tracer will record the total length of
1646call_function_with_irqs_off() and
1647call_function_with_irqs_and_preemption_off().
1648
1649The preemptoff tracer will record the total length of
1650call_function_with_irqs_and_preemption_off() and
1651call_function_with_preemption_off().
1652
1653But neither will trace the time that interrupts and/or
1654preemption is disabled. This total time is the time that we can
1655not schedule. To record this time, use the preemptirqsoff
1656tracer.
1657
1658Again, using this trace is much like the irqsoff and preemptoff
1659tracers.
1660::
1661
1662  # echo 0 > options/function-trace
1663  # echo preemptirqsoff > current_tracer
1664  # echo 1 > tracing_on
1665  # echo 0 > tracing_max_latency
1666  # ls -ltr
1667  [...]
1668  # echo 0 > tracing_on
1669  # cat trace
1670  # tracer: preemptirqsoff
1671  #
1672  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1673  # --------------------------------------------------------------------
1674  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1675  #    -----------------
1676  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1677  #    -----------------
1678  #  => started at: ata_scsi_queuecmd
1679  #  => ended at:   ata_scsi_queuecmd
1680  #
1681  #
1682  #                  _------=> CPU#
1683  #                 / _-----=> irqs-off
1684  #                | / _----=> need-resched
1685  #                || / _---=> hardirq/softirq
1686  #                ||| / _--=> preempt-depth
1687  #                |||| /     delay
1688  #  cmd     pid   ||||| time  |   caller
1689  #     \   /      |||||  \    |   /
1690        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1691        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1692        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1693        ls-2230    3...1  111us : <stack trace>
1694   => sub_preempt_count
1695   => _raw_spin_unlock_irqrestore
1696   => ata_scsi_queuecmd
1697   => scsi_dispatch_cmd
1698   => scsi_request_fn
1699   => __blk_run_queue_uncond
1700   => __blk_run_queue
1701   => blk_queue_bio
1702   => generic_make_request
1703   => submit_bio
1704   => submit_bh
1705   => ext3_bread
1706   => ext3_dir_bread
1707   => htree_dirblock_to_tree
1708   => ext3_htree_fill_tree
1709   => ext3_readdir
1710   => vfs_readdir
1711   => sys_getdents
1712   => system_call_fastpath
1713
1714
1715The trace_hardirqs_off_thunk is called from assembly on x86 when
1716interrupts are disabled in the assembly code. Without the
1717function tracing, we do not know if interrupts were enabled
1718within the preemption points. We do see that it started with
1719preemption enabled.
1720
1721Here is a trace with function-trace set::
1722
1723  # tracer: preemptirqsoff
1724  #
1725  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1726  # --------------------------------------------------------------------
1727  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1728  #    -----------------
1729  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1730  #    -----------------
1731  #  => started at: schedule
1732  #  => ended at:   mutex_unlock
1733  #
1734  #
1735  #                  _------=> CPU#
1736  #                 / _-----=> irqs-off
1737  #                | / _----=> need-resched
1738  #                || / _---=> hardirq/softirq
1739  #                ||| / _--=> preempt-depth
1740  #                |||| /     delay
1741  #  cmd     pid   ||||| time  |   caller
1742  #     \   /      |||||  \    |   /
1743  kworker/-59      3...1    0us : __schedule <-schedule
1744  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1745  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1746  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1747  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1748  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1749  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1750  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1751  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1752  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1753  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1754  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1755  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1756  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1757  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1758  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1759  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1760  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1761  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1762  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1763  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1764  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1765  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1766  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1767  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1768        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1769        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1770        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1771        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1772        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1773        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1774        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1775  [...]
1776        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1777        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1778        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1779        ls-2269    3d..3   21us : do_softirq <-irq_exit
1780        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1781        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1782        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1783        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1784        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1785        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1786        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1787  [...]
1788        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1789        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1790        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1791        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1792        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1793        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1794  [...]
1795        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1796        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1797        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1798        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1799        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1800        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1801        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1802        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1803        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1804        ls-2269    3d...  186us : <stack trace>
1805   => __mutex_unlock_slowpath
1806   => mutex_unlock
1807   => process_output
1808   => n_tty_write
1809   => tty_write
1810   => vfs_write
1811   => sys_write
1812   => system_call_fastpath
1813
1814This is an interesting trace. It started with kworker running and
1815scheduling out and ls taking over. But as soon as ls released the
1816rq lock and enabled interrupts (but not preemption) an interrupt
1817triggered. When the interrupt finished, it started running softirqs.
1818But while the softirq was running, another interrupt triggered.
1819When an interrupt is running inside a softirq, the annotation is 'H'.
1820
1821
1822wakeup
1823------
1824
1825One common case that people are interested in tracing is the
1826time it takes for a task that is woken to actually wake up.
1827Now for non Real-Time tasks, this can be arbitrary. But tracing
1828it none the less can be interesting.
1829
1830Without function tracing::
1831
1832  # echo 0 > options/function-trace
1833  # echo wakeup > current_tracer
1834  # echo 1 > tracing_on
1835  # echo 0 > tracing_max_latency
1836  # chrt -f 5 sleep 1
1837  # echo 0 > tracing_on
1838  # cat trace
1839  # tracer: wakeup
1840  #
1841  # wakeup latency trace v1.1.5 on 3.8.0-test+
1842  # --------------------------------------------------------------------
1843  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1844  #    -----------------
1845  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1846  #    -----------------
1847  #
1848  #                  _------=> CPU#
1849  #                 / _-----=> irqs-off
1850  #                | / _----=> need-resched
1851  #                || / _---=> hardirq/softirq
1852  #                ||| / _--=> preempt-depth
1853  #                |||| /     delay
1854  #  cmd     pid   ||||| time  |   caller
1855  #     \   /      |||||  \    |   /
1856    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1857    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1858    <idle>-0       3d..3   15us : __schedule <-schedule
1859    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1860
1861The tracer only traces the highest priority task in the system
1862to avoid tracing the normal circumstances. Here we see that
1863the kworker with a nice priority of -20 (not very nice), took
1864just 15 microseconds from the time it woke up, to the time it
1865ran.
1866
1867Non Real-Time tasks are not that interesting. A more interesting
1868trace is to concentrate only on Real-Time tasks.
1869
1870wakeup_rt
1871---------
1872
1873In a Real-Time environment it is very important to know the
1874wakeup time it takes for the highest priority task that is woken
1875up to the time that it executes. This is also known as "schedule
1876latency". I stress the point that this is about RT tasks. It is
1877also important to know the scheduling latency of non-RT tasks,
1878but the average schedule latency is better for non-RT tasks.
1879Tools like LatencyTop are more appropriate for such
1880measurements.
1881
1882Real-Time environments are interested in the worst case latency.
1883That is the longest latency it takes for something to happen,
1884and not the average. We can have a very fast scheduler that may
1885only have a large latency once in a while, but that would not
1886work well with Real-Time tasks.  The wakeup_rt tracer was designed
1887to record the worst case wakeups of RT tasks. Non-RT tasks are
1888not recorded because the tracer only records one worst case and
1889tracing non-RT tasks that are unpredictable will overwrite the
1890worst case latency of RT tasks (just run the normal wakeup
1891tracer for a while to see that effect).
1892
1893Since this tracer only deals with RT tasks, we will run this
1894slightly differently than we did with the previous tracers.
1895Instead of performing an 'ls', we will run 'sleep 1' under
1896'chrt' which changes the priority of the task.
1897::
1898
1899  # echo 0 > options/function-trace
1900  # echo wakeup_rt > current_tracer
1901  # echo 1 > tracing_on
1902  # echo 0 > tracing_max_latency
1903  # chrt -f 5 sleep 1
1904  # echo 0 > tracing_on
1905  # cat trace
1906  # tracer: wakeup
1907  #
1908  # tracer: wakeup_rt
1909  #
1910  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1911  # --------------------------------------------------------------------
1912  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1913  #    -----------------
1914  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1915  #    -----------------
1916  #
1917  #                  _------=> CPU#
1918  #                 / _-----=> irqs-off
1919  #                | / _----=> need-resched
1920  #                || / _---=> hardirq/softirq
1921  #                ||| / _--=> preempt-depth
1922  #                |||| /     delay
1923  #  cmd     pid   ||||| time  |   caller
1924  #     \   /      |||||  \    |   /
1925    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1926    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1927    <idle>-0       3d..3    5us : __schedule <-schedule
1928    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1929
1930
1931Running this on an idle system, we see that it only took 5 microseconds
1932to perform the task switch.  Note, since the trace point in the schedule
1933is before the actual "switch", we stop the tracing when the recorded task
1934is about to schedule in. This may change if we add a new marker at the
1935end of the scheduler.
1936
1937Notice that the recorded task is 'sleep' with the PID of 2389
1938and it has an rt_prio of 5. This priority is user-space priority
1939and not the internal kernel priority. The policy is 1 for
1940SCHED_FIFO and 2 for SCHED_RR.
1941
1942Note, that the trace data shows the internal priority (99 - rtprio).
1943::
1944
1945  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1946
1947The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1948and in the running state 'R'. The sleep task was scheduled in with
19492389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1950and it too is in the running state.
1951
1952Doing the same with chrt -r 5 and function-trace set.
1953::
1954
1955  echo 1 > options/function-trace
1956
1957  # tracer: wakeup_rt
1958  #
1959  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1960  # --------------------------------------------------------------------
1961  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1962  #    -----------------
1963  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1964  #    -----------------
1965  #
1966  #                  _------=> CPU#
1967  #                 / _-----=> irqs-off
1968  #                | / _----=> need-resched
1969  #                || / _---=> hardirq/softirq
1970  #                ||| / _--=> preempt-depth
1971  #                |||| /     delay
1972  #  cmd     pid   ||||| time  |   caller
1973  #     \   /      |||||  \    |   /
1974    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1975    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1976    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1977    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1978    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1979    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1980    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1981    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1982    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1983    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1984    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1985    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1986    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1987    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1988    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1989    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1990    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1991    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1992    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1993    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1994    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1995    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1996    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1997    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1998    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1999    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
2000    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
2001    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
2002    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
2003    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
2004    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
2005    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
2006    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
2007    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
2008    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
2009    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
2010    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
2011    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
2012    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
2013    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
2014    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
2015    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
2016    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2017    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
2018    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
2019    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
2020    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
2021    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
2022    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
2023    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
2024    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
2025    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2026    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
2027    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
2028    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
2029    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2030    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
2031    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
2032    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2033    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
2034    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
2035    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
2036    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
2037    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
2038    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
2039    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
2040    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2041    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2042    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
2043    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
2044    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
2045    <idle>-0       3.N..   25us : schedule <-cpu_idle
2046    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
2047    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
2048    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
2049    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
2050    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
2051    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
2052    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
2053    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
2054    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
2055    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
2056    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
2057    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
2058    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
2059
2060This isn't that big of a trace, even with function tracing enabled,
2061so I included the entire trace.
2062
2063The interrupt went off while when the system was idle. Somewhere
2064before task_woken_rt() was called, the NEED_RESCHED flag was set,
2065this is indicated by the first occurrence of the 'N' flag.
2066
2067Latency tracing and events
2068--------------------------
2069As function tracing can induce a much larger latency, but without
2070seeing what happens within the latency it is hard to know what
2071caused it. There is a middle ground, and that is with enabling
2072events.
2073::
2074
2075  # echo 0 > options/function-trace
2076  # echo wakeup_rt > current_tracer
2077  # echo 1 > events/enable
2078  # echo 1 > tracing_on
2079  # echo 0 > tracing_max_latency
2080  # chrt -f 5 sleep 1
2081  # echo 0 > tracing_on
2082  # cat trace
2083  # tracer: wakeup_rt
2084  #
2085  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2086  # --------------------------------------------------------------------
2087  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2088  #    -----------------
2089  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2090  #    -----------------
2091  #
2092  #                  _------=> CPU#
2093  #                 / _-----=> irqs-off
2094  #                | / _----=> need-resched
2095  #                || / _---=> hardirq/softirq
2096  #                ||| / _--=> preempt-depth
2097  #                |||| /     delay
2098  #  cmd     pid   ||||| time  |   caller
2099  #     \   /      |||||  \    |   /
2100    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
2101    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2102    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2103    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2104    <idle>-0       2.N.2    2us : power_end: cpu_id=2
2105    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
2106    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2107    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2108    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
2109    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
2110    <idle>-0       2d..3    6us : __schedule <-schedule
2111    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
2112
2113
2114Hardware Latency Detector
2115-------------------------
2116
2117The hardware latency detector is executed by enabling the "hwlat" tracer.
2118
2119NOTE, this tracer will affect the performance of the system as it will
2120periodically make a CPU constantly busy with interrupts disabled.
2121::
2122
2123  # echo hwlat > current_tracer
2124  # sleep 100
2125  # cat trace
2126  # tracer: hwlat
2127  #
2128  #                              _-----=> irqs-off
2129  #                             / _----=> need-resched
2130  #                            | / _---=> hardirq/softirq
2131  #                            || / _--=> preempt-depth
2132  #                            ||| /     delay
2133  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2134  #              | |       |   ||||       |         |
2135             <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
2136             <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
2137             <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
2138             <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
2139             <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
2140             <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1
2141
2142
2143The above output is somewhat the same in the header. All events will have
2144interrupts disabled 'd'. Under the FUNCTION title there is:
2145
2146 #1
2147	This is the count of events recorded that were greater than the
2148	tracing_threshold (See below).
2149
2150 inner/outer(us):   12/14
2151
2152      This shows two numbers as "inner latency" and "outer latency". The test
2153      runs in a loop checking a timestamp twice. The latency detected within
2154      the two timestamps is the "inner latency" and the latency detected
2155      after the previous timestamp and the next timestamp in the loop is
2156      the "outer latency".
2157
2158 ts:1499801089.066141940
2159
2160      The absolute timestamp that the event happened.
2161
2162 nmi-total:4 nmi-count:1
2163
2164      On architectures that support it, if an NMI comes in during the
2165      test, the time spent in NMI is reported in "nmi-total" (in
2166      microseconds).
2167
2168      All architectures that have NMIs will show the "nmi-count" if an
2169      NMI comes in during the test.
2170
2171hwlat files:
2172
2173  tracing_threshold
2174	This gets automatically set to "10" to represent 10
2175	microseconds. This is the threshold of latency that
2176	needs to be detected before the trace will be recorded.
2177
2178	Note, when hwlat tracer is finished (another tracer is
2179	written into "current_tracer"), the original value for
2180	tracing_threshold is placed back into this file.
2181
2182  hwlat_detector/width
2183	The length of time the test runs with interrupts disabled.
2184
2185  hwlat_detector/window
2186	The length of time of the window which the test
2187	runs. That is, the test will run for "width"
2188	microseconds per "window" microseconds
2189
2190  tracing_cpumask
2191	When the test is started. A kernel thread is created that
2192	runs the test. This thread will alternate between CPUs
2193	listed in the tracing_cpumask between each period
2194	(one "window"). To limit the test to specific CPUs
2195	set the mask in this file to only the CPUs that the test
2196	should run on.
2197
2198function
2199--------
2200
2201This tracer is the function tracer. Enabling the function tracer
2202can be done from the debug file system. Make sure the
2203ftrace_enabled is set; otherwise this tracer is a nop.
2204See the "ftrace_enabled" section below.
2205::
2206
2207  # sysctl kernel.ftrace_enabled=1
2208  # echo function > current_tracer
2209  # echo 1 > tracing_on
2210  # usleep 1
2211  # echo 0 > tracing_on
2212  # cat trace
2213  # tracer: function
2214  #
2215  # entries-in-buffer/entries-written: 24799/24799   #P:4
2216  #
2217  #                              _-----=> irqs-off
2218  #                             / _----=> need-resched
2219  #                            | / _---=> hardirq/softirq
2220  #                            || / _--=> preempt-depth
2221  #                            ||| /     delay
2222  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2223  #              | |       |   ||||       |         |
2224              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2225              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2226              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2227              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2228              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2229              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2230              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2231              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2232  [...]
2233
2234
2235Note: function tracer uses ring buffers to store the above
2236entries. The newest data may overwrite the oldest data.
2237Sometimes using echo to stop the trace is not sufficient because
2238the tracing could have overwritten the data that you wanted to
2239record. For this reason, it is sometimes better to disable
2240tracing directly from a program. This allows you to stop the
2241tracing at the point that you hit the part that you are
2242interested in. To disable the tracing directly from a C program,
2243something like following code snippet can be used::
2244
2245	int trace_fd;
2246	[...]
2247	int main(int argc, char *argv[]) {
2248		[...]
2249		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2250		[...]
2251		if (condition_hit()) {
2252			write(trace_fd, "0", 1);
2253		}
2254		[...]
2255	}
2256
2257
2258Single thread tracing
2259---------------------
2260
2261By writing into set_ftrace_pid you can trace a
2262single thread. For example::
2263
2264  # cat set_ftrace_pid
2265  no pid
2266  # echo 3111 > set_ftrace_pid
2267  # cat set_ftrace_pid
2268  3111
2269  # echo function > current_tracer
2270  # cat trace | head
2271  # tracer: function
2272  #
2273  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2274  #              | |       |          |         |
2275      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2276      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2277      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2278      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2279      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2280      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2281  # echo > set_ftrace_pid
2282  # cat trace |head
2283  # tracer: function
2284  #
2285  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2286  #              | |       |          |         |
2287  ##### CPU 3 buffer started ####
2288      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2289      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2290      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2291      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2292      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2293
2294If you want to trace a function when executing, you could use
2295something like this simple program.
2296::
2297
2298	#include <stdio.h>
2299	#include <stdlib.h>
2300	#include <sys/types.h>
2301	#include <sys/stat.h>
2302	#include <fcntl.h>
2303	#include <unistd.h>
2304	#include <string.h>
2305
2306	#define _STR(x) #x
2307	#define STR(x) _STR(x)
2308	#define MAX_PATH 256
2309
2310	const char *find_tracefs(void)
2311	{
2312	       static char tracefs[MAX_PATH+1];
2313	       static int tracefs_found;
2314	       char type[100];
2315	       FILE *fp;
2316
2317	       if (tracefs_found)
2318		       return tracefs;
2319
2320	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2321		       perror("/proc/mounts");
2322		       return NULL;
2323	       }
2324
2325	       while (fscanf(fp, "%*s %"
2326		             STR(MAX_PATH)
2327		             "s %99s %*s %*d %*d\n",
2328		             tracefs, type) == 2) {
2329		       if (strcmp(type, "tracefs") == 0)
2330		               break;
2331	       }
2332	       fclose(fp);
2333
2334	       if (strcmp(type, "tracefs") != 0) {
2335		       fprintf(stderr, "tracefs not mounted");
2336		       return NULL;
2337	       }
2338
2339	       strcat(tracefs, "/tracing/");
2340	       tracefs_found = 1;
2341
2342	       return tracefs;
2343	}
2344
2345	const char *tracing_file(const char *file_name)
2346	{
2347	       static char trace_file[MAX_PATH+1];
2348	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2349	       return trace_file;
2350	}
2351
2352	int main (int argc, char **argv)
2353	{
2354		if (argc < 1)
2355		        exit(-1);
2356
2357		if (fork() > 0) {
2358		        int fd, ffd;
2359		        char line[64];
2360		        int s;
2361
2362		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2363		        if (ffd < 0)
2364		                exit(-1);
2365		        write(ffd, "nop", 3);
2366
2367		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2368		        s = sprintf(line, "%d\n", getpid());
2369		        write(fd, line, s);
2370
2371		        write(ffd, "function", 8);
2372
2373		        close(fd);
2374		        close(ffd);
2375
2376		        execvp(argv[1], argv+1);
2377		}
2378
2379		return 0;
2380	}
2381
2382Or this simple script!
2383::
2384
2385  #!/bin/bash
2386
2387  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2388  echo nop > $tracefs/tracing/current_tracer
2389  echo 0 > $tracefs/tracing/tracing_on
2390  echo $$ > $tracefs/tracing/set_ftrace_pid
2391  echo function > $tracefs/tracing/current_tracer
2392  echo 1 > $tracefs/tracing/tracing_on
2393  exec "$@"
2394
2395
2396function graph tracer
2397---------------------------
2398
2399This tracer is similar to the function tracer except that it
2400probes a function on its entry and its exit. This is done by
2401using a dynamically allocated stack of return addresses in each
2402task_struct. On function entry the tracer overwrites the return
2403address of each function traced to set a custom probe. Thus the
2404original return address is stored on the stack of return address
2405in the task_struct.
2406
2407Probing on both ends of a function leads to special features
2408such as:
2409
2410- measure of a function's time execution
2411- having a reliable call stack to draw function calls graph
2412
2413This tracer is useful in several situations:
2414
2415- you want to find the reason of a strange kernel behavior and
2416  need to see what happens in detail on any areas (or specific
2417  ones).
2418
2419- you are experiencing weird latencies but it's difficult to
2420  find its origin.
2421
2422- you want to find quickly which path is taken by a specific
2423  function
2424
2425- you just want to peek inside a working kernel and want to see
2426  what happens there.
2427
2428::
2429
2430  # tracer: function_graph
2431  #
2432  # CPU  DURATION                  FUNCTION CALLS
2433  # |     |   |                     |   |   |   |
2434
2435   0)               |  sys_open() {
2436   0)               |    do_sys_open() {
2437   0)               |      getname() {
2438   0)               |        kmem_cache_alloc() {
2439   0)   1.382 us    |          __might_sleep();
2440   0)   2.478 us    |        }
2441   0)               |        strncpy_from_user() {
2442   0)               |          might_fault() {
2443   0)   1.389 us    |            __might_sleep();
2444   0)   2.553 us    |          }
2445   0)   3.807 us    |        }
2446   0)   7.876 us    |      }
2447   0)               |      alloc_fd() {
2448   0)   0.668 us    |        _spin_lock();
2449   0)   0.570 us    |        expand_files();
2450   0)   0.586 us    |        _spin_unlock();
2451
2452
2453There are several columns that can be dynamically
2454enabled/disabled. You can use every combination of options you
2455want, depending on your needs.
2456
2457- The cpu number on which the function executed is default
2458  enabled.  It is sometimes better to only trace one cpu (see
2459  tracing_cpu_mask file) or you might sometimes see unordered
2460  function calls while cpu tracing switch.
2461
2462	- hide: echo nofuncgraph-cpu > trace_options
2463	- show: echo funcgraph-cpu > trace_options
2464
2465- The duration (function's time of execution) is displayed on
2466  the closing bracket line of a function or on the same line
2467  than the current function in case of a leaf one. It is default
2468  enabled.
2469
2470	- hide: echo nofuncgraph-duration > trace_options
2471	- show: echo funcgraph-duration > trace_options
2472
2473- The overhead field precedes the duration field in case of
2474  reached duration thresholds.
2475
2476	- hide: echo nofuncgraph-overhead > trace_options
2477	- show: echo funcgraph-overhead > trace_options
2478	- depends on: funcgraph-duration
2479
2480  ie::
2481
2482    3) # 1837.709 us |          } /* __switch_to */
2483    3)               |          finish_task_switch() {
2484    3)   0.313 us    |            _raw_spin_unlock_irq();
2485    3)   3.177 us    |          }
2486    3) # 1889.063 us |        } /* __schedule */
2487    3) ! 140.417 us  |      } /* __schedule */
2488    3) # 2034.948 us |    } /* schedule */
2489    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2490
2491    [...]
2492
2493    1)   0.260 us    |              msecs_to_jiffies();
2494    1)   0.313 us    |              __rcu_read_unlock();
2495    1) + 61.770 us   |            }
2496    1) + 64.479 us   |          }
2497    1)   0.313 us    |          rcu_bh_qs();
2498    1)   0.313 us    |          __local_bh_enable();
2499    1) ! 217.240 us  |        }
2500    1)   0.365 us    |        idle_cpu();
2501    1)               |        rcu_irq_exit() {
2502    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2503    1)   3.125 us    |        }
2504    1) ! 227.812 us  |      }
2505    1) ! 457.395 us  |    }
2506    1) @ 119760.2 us |  }
2507
2508    [...]
2509
2510    2)               |    handle_IPI() {
2511    1)   6.979 us    |                  }
2512    2)   0.417 us    |      scheduler_ipi();
2513    1)   9.791 us    |                }
2514    1) + 12.917 us   |              }
2515    2)   3.490 us    |    }
2516    1) + 15.729 us   |            }
2517    1) + 18.542 us   |          }
2518    2) $ 3594274 us  |  }
2519
2520Flags::
2521
2522  + means that the function exceeded 10 usecs.
2523  ! means that the function exceeded 100 usecs.
2524  # means that the function exceeded 1000 usecs.
2525  * means that the function exceeded 10 msecs.
2526  @ means that the function exceeded 100 msecs.
2527  $ means that the function exceeded 1 sec.
2528
2529
2530- The task/pid field displays the thread cmdline and pid which
2531  executed the function. It is default disabled.
2532
2533	- hide: echo nofuncgraph-proc > trace_options
2534	- show: echo funcgraph-proc > trace_options
2535
2536  ie::
2537
2538    # tracer: function_graph
2539    #
2540    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2541    # |    |    |           |   |                     |   |   |   |
2542    0)    sh-4802     |               |                  d_free() {
2543    0)    sh-4802     |               |                    call_rcu() {
2544    0)    sh-4802     |               |                      __call_rcu() {
2545    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2546    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2547    0)    sh-4802     |   2.899 us    |                      }
2548    0)    sh-4802     |   4.040 us    |                    }
2549    0)    sh-4802     |   5.151 us    |                  }
2550    0)    sh-4802     | + 49.370 us   |                }
2551
2552
2553- The absolute time field is an absolute timestamp given by the
2554  system clock since it started. A snapshot of this time is
2555  given on each entry/exit of functions
2556
2557	- hide: echo nofuncgraph-abstime > trace_options
2558	- show: echo funcgraph-abstime > trace_options
2559
2560  ie::
2561
2562    #
2563    #      TIME       CPU  DURATION                  FUNCTION CALLS
2564    #       |         |     |   |                     |   |   |   |
2565    360.774522 |   1)   0.541 us    |                                          }
2566    360.774522 |   1)   4.663 us    |                                        }
2567    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2568    360.774524 |   1)   6.796 us    |                                      }
2569    360.774524 |   1)   7.952 us    |                                    }
2570    360.774525 |   1)   9.063 us    |                                  }
2571    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2572    360.774527 |   1)   0.578 us    |                                  __brelse();
2573    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2574    360.774528 |   1)               |                                    unlock_buffer() {
2575    360.774529 |   1)               |                                      wake_up_bit() {
2576    360.774529 |   1)               |                                        bit_waitqueue() {
2577    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2578
2579
2580The function name is always displayed after the closing bracket
2581for a function if the start of that function is not in the
2582trace buffer.
2583
2584Display of the function name after the closing bracket may be
2585enabled for functions whose start is in the trace buffer,
2586allowing easier searching with grep for function durations.
2587It is default disabled.
2588
2589	- hide: echo nofuncgraph-tail > trace_options
2590	- show: echo funcgraph-tail > trace_options
2591
2592  Example with nofuncgraph-tail (default)::
2593
2594    0)               |      putname() {
2595    0)               |        kmem_cache_free() {
2596    0)   0.518 us    |          __phys_addr();
2597    0)   1.757 us    |        }
2598    0)   2.861 us    |      }
2599
2600  Example with funcgraph-tail::
2601
2602    0)               |      putname() {
2603    0)               |        kmem_cache_free() {
2604    0)   0.518 us    |          __phys_addr();
2605    0)   1.757 us    |        } /* kmem_cache_free() */
2606    0)   2.861 us    |      } /* putname() */
2607
2608You can put some comments on specific functions by using
2609trace_printk() For example, if you want to put a comment inside
2610the __might_sleep() function, you just have to include
2611<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2612
2613	trace_printk("I'm a comment!\n")
2614
2615will produce::
2616
2617   1)               |             __might_sleep() {
2618   1)               |                /* I'm a comment! */
2619   1)   1.449 us    |             }
2620
2621
2622You might find other useful features for this tracer in the
2623following "dynamic ftrace" section such as tracing only specific
2624functions or tasks.
2625
2626dynamic ftrace
2627--------------
2628
2629If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2630virtually no overhead when function tracing is disabled. The way
2631this works is the mcount function call (placed at the start of
2632every kernel function, produced by the -pg switch in gcc),
2633starts of pointing to a simple return. (Enabling FTRACE will
2634include the -pg switch in the compiling of the kernel.)
2635
2636At compile time every C file object is run through the
2637recordmcount program (located in the scripts directory). This
2638program will parse the ELF headers in the C object to find all
2639the locations in the .text section that call mcount. Starting
2640with gcc version 4.6, the -mfentry has been added for x86, which
2641calls "__fentry__" instead of "mcount". Which is called before
2642the creation of the stack frame.
2643
2644Note, not all sections are traced. They may be prevented by either
2645a notrace, or blocked another way and all inline functions are not
2646traced. Check the "available_filter_functions" file to see what functions
2647can be traced.
2648
2649A section called "__mcount_loc" is created that holds
2650references to all the mcount/fentry call sites in the .text section.
2651The recordmcount program re-links this section back into the
2652original object. The final linking stage of the kernel will add all these
2653references into a single table.
2654
2655On boot up, before SMP is initialized, the dynamic ftrace code
2656scans this table and updates all the locations into nops. It
2657also records the locations, which are added to the
2658available_filter_functions list.  Modules are processed as they
2659are loaded and before they are executed.  When a module is
2660unloaded, it also removes its functions from the ftrace function
2661list. This is automatic in the module unload code, and the
2662module author does not need to worry about it.
2663
2664When tracing is enabled, the process of modifying the function
2665tracepoints is dependent on architecture. The old method is to use
2666kstop_machine to prevent races with the CPUs executing code being
2667modified (which can cause the CPU to do undesirable things, especially
2668if the modified code crosses cache (or page) boundaries), and the nops are
2669patched back to calls. But this time, they do not call mcount
2670(which is just a function stub). They now call into the ftrace
2671infrastructure.
2672
2673The new method of modifying the function tracepoints is to place
2674a breakpoint at the location to be modified, sync all CPUs, modify
2675the rest of the instruction not covered by the breakpoint. Sync
2676all CPUs again, and then remove the breakpoint with the finished
2677version to the ftrace call site.
2678
2679Some archs do not even need to monkey around with the synchronization,
2680and can just slap the new code on top of the old without any
2681problems with other CPUs executing it at the same time.
2682
2683One special side-effect to the recording of the functions being
2684traced is that we can now selectively choose which functions we
2685wish to trace and which ones we want the mcount calls to remain
2686as nops.
2687
2688Two files are used, one for enabling and one for disabling the
2689tracing of specified functions. They are:
2690
2691  set_ftrace_filter
2692
2693and
2694
2695  set_ftrace_notrace
2696
2697A list of available functions that you can add to these files is
2698listed in:
2699
2700   available_filter_functions
2701
2702::
2703
2704  # cat available_filter_functions
2705  put_prev_task_idle
2706  kmem_cache_create
2707  pick_next_task_rt
2708  get_online_cpus
2709  pick_next_task_fair
2710  mutex_lock
2711  [...]
2712
2713If I am only interested in sys_nanosleep and hrtimer_interrupt::
2714
2715  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2716  # echo function > current_tracer
2717  # echo 1 > tracing_on
2718  # usleep 1
2719  # echo 0 > tracing_on
2720  # cat trace
2721  # tracer: function
2722  #
2723  # entries-in-buffer/entries-written: 5/5   #P:4
2724  #
2725  #                              _-----=> irqs-off
2726  #                             / _----=> need-resched
2727  #                            | / _---=> hardirq/softirq
2728  #                            || / _--=> preempt-depth
2729  #                            ||| /     delay
2730  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2731  #              | |       |   ||||       |         |
2732            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2733            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2734            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2735            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2736            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2737
2738To see which functions are being traced, you can cat the file:
2739::
2740
2741  # cat set_ftrace_filter
2742  hrtimer_interrupt
2743  sys_nanosleep
2744
2745
2746Perhaps this is not enough. The filters also allow glob(7) matching.
2747
2748  ``<match>*``
2749	will match functions that begin with <match>
2750  ``*<match>``
2751	will match functions that end with <match>
2752  ``*<match>*``
2753	will match functions that have <match> in it
2754  ``<match1>*<match2>``
2755	will match functions that begin with <match1> and end with <match2>
2756
2757.. note::
2758      It is better to use quotes to enclose the wild cards,
2759      otherwise the shell may expand the parameters into names
2760      of files in the local directory.
2761
2762::
2763
2764  # echo 'hrtimer_*' > set_ftrace_filter
2765
2766Produces::
2767
2768  # tracer: function
2769  #
2770  # entries-in-buffer/entries-written: 897/897   #P:4
2771  #
2772  #                              _-----=> irqs-off
2773  #                             / _----=> need-resched
2774  #                            | / _---=> hardirq/softirq
2775  #                            || / _--=> preempt-depth
2776  #                            ||| /     delay
2777  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2778  #              | |       |   ||||       |         |
2779            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2780            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2781            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2782            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2783            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2784            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2785            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2786            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2787
2788Notice that we lost the sys_nanosleep.
2789::
2790
2791  # cat set_ftrace_filter
2792  hrtimer_run_queues
2793  hrtimer_run_pending
2794  hrtimer_init
2795  hrtimer_cancel
2796  hrtimer_try_to_cancel
2797  hrtimer_forward
2798  hrtimer_start
2799  hrtimer_reprogram
2800  hrtimer_force_reprogram
2801  hrtimer_get_next_event
2802  hrtimer_interrupt
2803  hrtimer_nanosleep
2804  hrtimer_wakeup
2805  hrtimer_get_remaining
2806  hrtimer_get_res
2807  hrtimer_init_sleeper
2808
2809
2810This is because the '>' and '>>' act just like they do in bash.
2811To rewrite the filters, use '>'
2812To append to the filters, use '>>'
2813
2814To clear out a filter so that all functions will be recorded
2815again::
2816
2817 # echo > set_ftrace_filter
2818 # cat set_ftrace_filter
2819 #
2820
2821Again, now we want to append.
2822
2823::
2824
2825  # echo sys_nanosleep > set_ftrace_filter
2826  # cat set_ftrace_filter
2827  sys_nanosleep
2828  # echo 'hrtimer_*' >> set_ftrace_filter
2829  # cat set_ftrace_filter
2830  hrtimer_run_queues
2831  hrtimer_run_pending
2832  hrtimer_init
2833  hrtimer_cancel
2834  hrtimer_try_to_cancel
2835  hrtimer_forward
2836  hrtimer_start
2837  hrtimer_reprogram
2838  hrtimer_force_reprogram
2839  hrtimer_get_next_event
2840  hrtimer_interrupt
2841  sys_nanosleep
2842  hrtimer_nanosleep
2843  hrtimer_wakeup
2844  hrtimer_get_remaining
2845  hrtimer_get_res
2846  hrtimer_init_sleeper
2847
2848
2849The set_ftrace_notrace prevents those functions from being
2850traced.
2851::
2852
2853  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2854
2855Produces::
2856
2857  # tracer: function
2858  #
2859  # entries-in-buffer/entries-written: 39608/39608   #P:4
2860  #
2861  #                              _-----=> irqs-off
2862  #                             / _----=> need-resched
2863  #                            | / _---=> hardirq/softirq
2864  #                            || / _--=> preempt-depth
2865  #                            ||| /     delay
2866  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2867  #              | |       |   ||||       |         |
2868              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2869              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2870              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2871              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2872              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2873              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2874              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2875              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2876              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2877              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2878              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2879              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2880
2881We can see that there's no more lock or preempt tracing.
2882
2883Selecting function filters via index
2884------------------------------------
2885
2886Because processing of strings is expensive (the address of the function
2887needs to be looked up before comparing to the string being passed in),
2888an index can be used as well to enable functions. This is useful in the
2889case of setting thousands of specific functions at a time. By passing
2890in a list of numbers, no string processing will occur. Instead, the function
2891at the specific location in the internal array (which corresponds to the
2892functions in the "available_filter_functions" file), is selected.
2893
2894::
2895
2896  # echo 1 > set_ftrace_filter
2897
2898Will select the first function listed in "available_filter_functions"
2899
2900::
2901
2902  # head -1 available_filter_functions
2903  trace_initcall_finish_cb
2904
2905  # cat set_ftrace_filter
2906  trace_initcall_finish_cb
2907
2908  # head -50 available_filter_functions | tail -1
2909  x86_pmu_commit_txn
2910
2911  # echo 1 50 > set_ftrace_filter
2912  # cat set_ftrace_filter
2913  trace_initcall_finish_cb
2914  x86_pmu_commit_txn
2915
2916Dynamic ftrace with the function graph tracer
2917---------------------------------------------
2918
2919Although what has been explained above concerns both the
2920function tracer and the function-graph-tracer, there are some
2921special features only available in the function-graph tracer.
2922
2923If you want to trace only one function and all of its children,
2924you just have to echo its name into set_graph_function::
2925
2926 echo __do_fault > set_graph_function
2927
2928will produce the following "expanded" trace of the __do_fault()
2929function::
2930
2931   0)               |  __do_fault() {
2932   0)               |    filemap_fault() {
2933   0)               |      find_lock_page() {
2934   0)   0.804 us    |        find_get_page();
2935   0)               |        __might_sleep() {
2936   0)   1.329 us    |        }
2937   0)   3.904 us    |      }
2938   0)   4.979 us    |    }
2939   0)   0.653 us    |    _spin_lock();
2940   0)   0.578 us    |    page_add_file_rmap();
2941   0)   0.525 us    |    native_set_pte_at();
2942   0)   0.585 us    |    _spin_unlock();
2943   0)               |    unlock_page() {
2944   0)   0.541 us    |      page_waitqueue();
2945   0)   0.639 us    |      __wake_up_bit();
2946   0)   2.786 us    |    }
2947   0) + 14.237 us   |  }
2948   0)               |  __do_fault() {
2949   0)               |    filemap_fault() {
2950   0)               |      find_lock_page() {
2951   0)   0.698 us    |        find_get_page();
2952   0)               |        __might_sleep() {
2953   0)   1.412 us    |        }
2954   0)   3.950 us    |      }
2955   0)   5.098 us    |    }
2956   0)   0.631 us    |    _spin_lock();
2957   0)   0.571 us    |    page_add_file_rmap();
2958   0)   0.526 us    |    native_set_pte_at();
2959   0)   0.586 us    |    _spin_unlock();
2960   0)               |    unlock_page() {
2961   0)   0.533 us    |      page_waitqueue();
2962   0)   0.638 us    |      __wake_up_bit();
2963   0)   2.793 us    |    }
2964   0) + 14.012 us   |  }
2965
2966You can also expand several functions at once::
2967
2968 echo sys_open > set_graph_function
2969 echo sys_close >> set_graph_function
2970
2971Now if you want to go back to trace all functions you can clear
2972this special filter via::
2973
2974 echo > set_graph_function
2975
2976
2977ftrace_enabled
2978--------------
2979
2980Note, the proc sysctl ftrace_enable is a big on/off switch for the
2981function tracer. By default it is enabled (when function tracing is
2982enabled in the kernel). If it is disabled, all function tracing is
2983disabled. This includes not only the function tracers for ftrace, but
2984also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
2985cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
2986registered.
2987
2988Please disable this with care.
2989
2990This can be disable (and enabled) with::
2991
2992  sysctl kernel.ftrace_enabled=0
2993  sysctl kernel.ftrace_enabled=1
2994
2995 or
2996
2997  echo 0 > /proc/sys/kernel/ftrace_enabled
2998  echo 1 > /proc/sys/kernel/ftrace_enabled
2999
3000
3001Filter commands
3002---------------
3003
3004A few commands are supported by the set_ftrace_filter interface.
3005Trace commands have the following format::
3006
3007  <function>:<command>:<parameter>
3008
3009The following commands are supported:
3010
3011- mod:
3012  This command enables function filtering per module. The
3013  parameter defines the module. For example, if only the write*
3014  functions in the ext3 module are desired, run:
3015
3016   echo 'write*:mod:ext3' > set_ftrace_filter
3017
3018  This command interacts with the filter in the same way as
3019  filtering based on function names. Thus, adding more functions
3020  in a different module is accomplished by appending (>>) to the
3021  filter file. Remove specific module functions by prepending
3022  '!'::
3023
3024   echo '!writeback*:mod:ext3' >> set_ftrace_filter
3025
3026  Mod command supports module globbing. Disable tracing for all
3027  functions except a specific module::
3028
3029   echo '!*:mod:!ext3' >> set_ftrace_filter
3030
3031  Disable tracing for all modules, but still trace kernel::
3032
3033   echo '!*:mod:*' >> set_ftrace_filter
3034
3035  Enable filter only for kernel::
3036
3037   echo '*write*:mod:!*' >> set_ftrace_filter
3038
3039  Enable filter for module globbing::
3040
3041   echo '*write*:mod:*snd*' >> set_ftrace_filter
3042
3043- traceon/traceoff:
3044  These commands turn tracing on and off when the specified
3045  functions are hit. The parameter determines how many times the
3046  tracing system is turned on and off. If unspecified, there is
3047  no limit. For example, to disable tracing when a schedule bug
3048  is hit the first 5 times, run::
3049
3050   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3051
3052  To always disable tracing when __schedule_bug is hit::
3053
3054   echo '__schedule_bug:traceoff' > set_ftrace_filter
3055
3056  These commands are cumulative whether or not they are appended
3057  to set_ftrace_filter. To remove a command, prepend it by '!'
3058  and drop the parameter::
3059
3060   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3061
3062  The above removes the traceoff command for __schedule_bug
3063  that have a counter. To remove commands without counters::
3064
3065   echo '!__schedule_bug:traceoff' > set_ftrace_filter
3066
3067- snapshot:
3068  Will cause a snapshot to be triggered when the function is hit.
3069  ::
3070
3071   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3072
3073  To only snapshot once:
3074  ::
3075
3076   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3077
3078  To remove the above commands::
3079
3080   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3081   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3082
3083- enable_event/disable_event:
3084  These commands can enable or disable a trace event. Note, because
3085  function tracing callbacks are very sensitive, when these commands
3086  are registered, the trace point is activated, but disabled in
3087  a "soft" mode. That is, the tracepoint will be called, but
3088  just will not be traced. The event tracepoint stays in this mode
3089  as long as there's a command that triggers it.
3090  ::
3091
3092   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3093   	 set_ftrace_filter
3094
3095  The format is::
3096
3097    <function>:enable_event:<system>:<event>[:count]
3098    <function>:disable_event:<system>:<event>[:count]
3099
3100  To remove the events commands::
3101
3102   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3103   	 set_ftrace_filter
3104   echo '!schedule:disable_event:sched:sched_switch' > \
3105   	 set_ftrace_filter
3106
3107- dump:
3108  When the function is hit, it will dump the contents of the ftrace
3109  ring buffer to the console. This is useful if you need to debug
3110  something, and want to dump the trace when a certain function
3111  is hit. Perhaps it's a function that is called before a triple
3112  fault happens and does not allow you to get a regular dump.
3113
3114- cpudump:
3115  When the function is hit, it will dump the contents of the ftrace
3116  ring buffer for the current CPU to the console. Unlike the "dump"
3117  command, it only prints out the contents of the ring buffer for the
3118  CPU that executed the function that triggered the dump.
3119
3120- stacktrace:
3121  When the function is hit, a stack trace is recorded.
3122
3123trace_pipe
3124----------
3125
3126The trace_pipe outputs the same content as the trace file, but
3127the effect on the tracing is different. Every read from
3128trace_pipe is consumed. This means that subsequent reads will be
3129different. The trace is live.
3130::
3131
3132  # echo function > current_tracer
3133  # cat trace_pipe > /tmp/trace.out &
3134  [1] 4153
3135  # echo 1 > tracing_on
3136  # usleep 1
3137  # echo 0 > tracing_on
3138  # cat trace
3139  # tracer: function
3140  #
3141  # entries-in-buffer/entries-written: 0/0   #P:4
3142  #
3143  #                              _-----=> irqs-off
3144  #                             / _----=> need-resched
3145  #                            | / _---=> hardirq/softirq
3146  #                            || / _--=> preempt-depth
3147  #                            ||| /     delay
3148  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3149  #              | |       |   ||||       |         |
3150
3151  #
3152  # cat /tmp/trace.out
3153             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3154             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3155             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3156             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3157             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3158             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3159             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3160             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3161             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3162
3163
3164Note, reading the trace_pipe file will block until more input is
3165added. This is contrary to the trace file. If any process opened
3166the trace file for reading, it will actually disable tracing and
3167prevent new entries from being added. The trace_pipe file does
3168not have this limitation.
3169
3170trace entries
3171-------------
3172
3173Having too much or not enough data can be troublesome in
3174diagnosing an issue in the kernel. The file buffer_size_kb is
3175used to modify the size of the internal trace buffers. The
3176number listed is the number of entries that can be recorded per
3177CPU. To know the full size, multiply the number of possible CPUs
3178with the number of entries.
3179::
3180
3181  # cat buffer_size_kb
3182  1408 (units kilobytes)
3183
3184Or simply read buffer_total_size_kb
3185::
3186
3187  # cat buffer_total_size_kb
3188  5632
3189
3190To modify the buffer, simple echo in a number (in 1024 byte segments).
3191::
3192
3193  # echo 10000 > buffer_size_kb
3194  # cat buffer_size_kb
3195  10000 (units kilobytes)
3196
3197It will try to allocate as much as possible. If you allocate too
3198much, it can cause Out-Of-Memory to trigger.
3199::
3200
3201  # echo 1000000000000 > buffer_size_kb
3202  -bash: echo: write error: Cannot allocate memory
3203  # cat buffer_size_kb
3204  85
3205
3206The per_cpu buffers can be changed individually as well:
3207::
3208
3209  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3210  # echo 100 > per_cpu/cpu1/buffer_size_kb
3211
3212When the per_cpu buffers are not the same, the buffer_size_kb
3213at the top level will just show an X
3214::
3215
3216  # cat buffer_size_kb
3217  X
3218
3219This is where the buffer_total_size_kb is useful:
3220::
3221
3222  # cat buffer_total_size_kb
3223  12916
3224
3225Writing to the top level buffer_size_kb will reset all the buffers
3226to be the same again.
3227
3228Snapshot
3229--------
3230CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3231available to all non latency tracers. (Latency tracers which
3232record max latency, such as "irqsoff" or "wakeup", can't use
3233this feature, since those are already using the snapshot
3234mechanism internally.)
3235
3236Snapshot preserves a current trace buffer at a particular point
3237in time without stopping tracing. Ftrace swaps the current
3238buffer with a spare buffer, and tracing continues in the new
3239current (=previous spare) buffer.
3240
3241The following tracefs files in "tracing" are related to this
3242feature:
3243
3244  snapshot:
3245
3246	This is used to take a snapshot and to read the output
3247	of the snapshot. Echo 1 into this file to allocate a
3248	spare buffer and to take a snapshot (swap), then read
3249	the snapshot from this file in the same format as
3250	"trace" (described above in the section "The File
3251	System"). Both reads snapshot and tracing are executable
3252	in parallel. When the spare buffer is allocated, echoing
3253	0 frees it, and echoing else (positive) values clear the
3254	snapshot contents.
3255	More details are shown in the table below.
3256
3257	+--------------+------------+------------+------------+
3258	|status\\input |     0      |     1      |    else    |
3259	+==============+============+============+============+
3260	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3261	+--------------+------------+------------+------------+
3262	|allocated     |    free    |    swap    |   clear    |
3263	+--------------+------------+------------+------------+
3264
3265Here is an example of using the snapshot feature.
3266::
3267
3268  # echo 1 > events/sched/enable
3269  # echo 1 > snapshot
3270  # cat snapshot
3271  # tracer: nop
3272  #
3273  # entries-in-buffer/entries-written: 71/71   #P:8
3274  #
3275  #                              _-----=> irqs-off
3276  #                             / _----=> need-resched
3277  #                            | / _---=> hardirq/softirq
3278  #                            || / _--=> preempt-depth
3279  #                            ||| /     delay
3280  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3281  #              | |       |   ||||       |         |
3282            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3283             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3284  [...]
3285          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3286
3287  # cat trace
3288  # tracer: nop
3289  #
3290  # entries-in-buffer/entries-written: 77/77   #P:8
3291  #
3292  #                              _-----=> irqs-off
3293  #                             / _----=> need-resched
3294  #                            | / _---=> hardirq/softirq
3295  #                            || / _--=> preempt-depth
3296  #                            ||| /     delay
3297  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3298  #              | |       |   ||||       |         |
3299            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3300   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3301  [...]
3302
3303
3304If you try to use this snapshot feature when current tracer is
3305one of the latency tracers, you will get the following results.
3306::
3307
3308  # echo wakeup > current_tracer
3309  # echo 1 > snapshot
3310  bash: echo: write error: Device or resource busy
3311  # cat snapshot
3312  cat: snapshot: Device or resource busy
3313
3314
3315Instances
3316---------
3317In the tracefs tracing directory is a directory called "instances".
3318This directory can have new directories created inside of it using
3319mkdir, and removing directories with rmdir. The directory created
3320with mkdir in this directory will already contain files and other
3321directories after it is created.
3322::
3323
3324  # mkdir instances/foo
3325  # ls instances/foo
3326  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3327  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3328  trace_pipe  tracing_on
3329
3330As you can see, the new directory looks similar to the tracing directory
3331itself. In fact, it is very similar, except that the buffer and
3332events are agnostic from the main director, or from any other
3333instances that are created.
3334
3335The files in the new directory work just like the files with the
3336same name in the tracing directory except the buffer that is used
3337is a separate and new buffer. The files affect that buffer but do not
3338affect the main buffer with the exception of trace_options. Currently,
3339the trace_options affect all instances and the top level buffer
3340the same, but this may change in future releases. That is, options
3341may become specific to the instance they reside in.
3342
3343Notice that none of the function tracer files are there, nor is
3344current_tracer and available_tracers. This is because the buffers
3345can currently only have events enabled for them.
3346::
3347
3348  # mkdir instances/foo
3349  # mkdir instances/bar
3350  # mkdir instances/zoot
3351  # echo 100000 > buffer_size_kb
3352  # echo 1000 > instances/foo/buffer_size_kb
3353  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3354  # echo function > current_trace
3355  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3356  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3357  # echo 1 > instances/foo/events/sched/sched_switch/enable
3358  # echo 1 > instances/bar/events/irq/enable
3359  # echo 1 > instances/zoot/events/syscalls/enable
3360  # cat trace_pipe
3361  CPU:2 [LOST 11745 EVENTS]
3362              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3363              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3364              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3365              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3366              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3367              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3368              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3369              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3370              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3371              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3372              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3373  [...]
3374
3375  # cat instances/foo/trace_pipe
3376              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3377              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3378            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3379            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3380       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3381              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3382              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3383              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3384       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3385       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3386  [...]
3387
3388  # cat instances/bar/trace_pipe
3389       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3390            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3391              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3392              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3393              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3394              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3395              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3396              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3397              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3398              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3399              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3400              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3401  [...]
3402
3403  # cat instances/zoot/trace
3404  # tracer: nop
3405  #
3406  # entries-in-buffer/entries-written: 18996/18996   #P:4
3407  #
3408  #                              _-----=> irqs-off
3409  #                             / _----=> need-resched
3410  #                            | / _---=> hardirq/softirq
3411  #                            || / _--=> preempt-depth
3412  #                            ||| /     delay
3413  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3414  #              | |       |   ||||       |         |
3415              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3416              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3417              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3418              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3419              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3420              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3421              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3422              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3423              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3424              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3425              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3426
3427You can see that the trace of the top most trace buffer shows only
3428the function tracing. The foo instance displays wakeups and task
3429switches.
3430
3431To remove the instances, simply delete their directories:
3432::
3433
3434  # rmdir instances/foo
3435  # rmdir instances/bar
3436  # rmdir instances/zoot
3437
3438Note, if a process has a trace file open in one of the instance
3439directories, the rmdir will fail with EBUSY.
3440
3441
3442Stack trace
3443-----------
3444Since the kernel has a fixed sized stack, it is important not to
3445waste it in functions. A kernel developer must be conscience of
3446what they allocate on the stack. If they add too much, the system
3447can be in danger of a stack overflow, and corruption will occur,
3448usually leading to a system panic.
3449
3450There are some tools that check this, usually with interrupts
3451periodically checking usage. But if you can perform a check
3452at every function call that will become very useful. As ftrace provides
3453a function tracer, it makes it convenient to check the stack size
3454at every function call. This is enabled via the stack tracer.
3455
3456CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3457To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3458::
3459
3460 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3461
3462You can also enable it from the kernel command line to trace
3463the stack size of the kernel during boot up, by adding "stacktrace"
3464to the kernel command line parameter.
3465
3466After running it for a few minutes, the output looks like:
3467::
3468
3469  # cat stack_max_size
3470  2928
3471
3472  # cat stack_trace
3473          Depth    Size   Location    (18 entries)
3474          -----    ----   --------
3475    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3476    1)     2704     160   find_busiest_group+0x31/0x1f1
3477    2)     2544     256   load_balance+0xd9/0x662
3478    3)     2288      80   idle_balance+0xbb/0x130
3479    4)     2208     128   __schedule+0x26e/0x5b9
3480    5)     2080      16   schedule+0x64/0x66
3481    6)     2064     128   schedule_timeout+0x34/0xe0
3482    7)     1936     112   wait_for_common+0x97/0xf1
3483    8)     1824      16   wait_for_completion+0x1d/0x1f
3484    9)     1808     128   flush_work+0xfe/0x119
3485   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3486   11)     1664      48   input_available_p+0x1d/0x5c
3487   12)     1616      48   n_tty_poll+0x6d/0x134
3488   13)     1568      64   tty_poll+0x64/0x7f
3489   14)     1504     880   do_select+0x31e/0x511
3490   15)      624     400   core_sys_select+0x177/0x216
3491   16)      224      96   sys_select+0x91/0xb9
3492   17)      128     128   system_call_fastpath+0x16/0x1b
3493
3494Note, if -mfentry is being used by gcc, functions get traced before
3495they set up the stack frame. This means that leaf level functions
3496are not tested by the stack tracer when -mfentry is used.
3497
3498Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3499
3500More
3501----
3502More details can be found in the source code, in the `kernel/trace/*.c` files.
3503