xref: /openbmc/linux/Documentation/trace/ftrace.rst (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a frame work of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Through out the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured.
99
100  available_tracers:
101
102	This holds the different types of tracers that
103	have been compiled into the kernel. The
104	tracers listed here can be configured by
105	echoing their name into current_tracer.
106
107  tracing_on:
108
109	This sets or displays whether writing to the trace
110	ring buffer is enabled. Echo 0 into this file to disable
111	the tracer or 1 to enable it. Note, this only disables
112	writing to the ring buffer, the tracing overhead may
113	still be occurring.
114
115	The kernel function tracing_off() can be used within the
116	kernel to disable writing to the ring buffer, which will
117	set this file to "0". User space can re-enable tracing by
118	echoing "1" into the file.
119
120	Note, the function and event trigger "traceoff" will also
121	set this file to zero and stop tracing. Which can also
122	be re-enabled by user space using this file.
123
124  trace:
125
126	This file holds the output of the trace in a human
127	readable format (described below). Note, tracing is temporarily
128	disabled while this file is being read (opened).
129
130  trace_pipe:
131
132	The output is the same as the "trace" file but this
133	file is meant to be streamed with live tracing.
134	Reads from this file will block until new data is
135	retrieved.  Unlike the "trace" file, this file is a
136	consumer. This means reading from this file causes
137	sequential reads to display more current data. Once
138	data is read from this file, it is consumed, and
139	will not be read again with a sequential read. The
140	"trace" file is static, and if the tracer is not
141	adding more data, it will display the same
142	information every time it is read. This file will not
143	disable tracing while being read.
144
145  trace_options:
146
147	This file lets the user control the amount of data
148	that is displayed in one of the above output
149	files. Options also exist to modify how a tracer
150	or events work (stack traces, timestamps, etc).
151
152  options:
153
154	This is a directory that has a file for every available
155	trace option (also in trace_options). Options may also be set
156	or cleared by writing a "1" or "0" respectively into the
157	corresponding file with the option name.
158
159  tracing_max_latency:
160
161	Some of the tracers record the max latency.
162	For example, the maximum time that interrupts are disabled.
163	The maximum time is saved in this file. The max trace will also be
164	stored,	and displayed by "trace". A new max trace will only be
165	recorded if the latency is greater than the value in this file
166	(in microseconds).
167
168	By echoing in a time into this file, no latency will be recorded
169	unless it is greater than the time in this file.
170
171  tracing_thresh:
172
173	Some latency tracers will record a trace whenever the
174	latency is greater than the number in this file.
175	Only active when the file contains a number greater than 0.
176	(in microseconds)
177
178  buffer_size_kb:
179
180	This sets or displays the number of kilobytes each CPU
181	buffer holds. By default, the trace buffers are the same size
182	for each CPU. The displayed number is the size of the
183	CPU buffer and not total size of all buffers. The
184	trace buffers are allocated in pages (blocks of memory
185	that the kernel uses for allocation, usually 4 KB in size).
186	If the last page allocated has room for more bytes
187	than requested, the rest of the page will be used,
188	making the actual allocation bigger than requested or shown.
189	( Note, the size may not be a multiple of the page size
190	due to buffer management meta-data. )
191
192	Buffer sizes for individual CPUs may vary
193	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194	this file will show "X".
195
196  buffer_total_size_kb:
197
198	This displays the total combined size of all the trace buffers.
199
200  free_buffer:
201
202	If a process is performing tracing, and the ring buffer	should be
203	shrunk "freed" when the process is finished, even if it were to be
204	killed by a signal, this file can be used for that purpose. On close
205	of this file, the ring buffer will be resized to its minimum size.
206	Having a process that is tracing also open this file, when the process
207	exits its file descriptor for this file will be closed, and in doing so,
208	the ring buffer will be "freed".
209
210	It may also stop tracing if disable_on_free option is set.
211
212  tracing_cpumask:
213
214	This is a mask that lets the user only trace on specified CPUs.
215	The format is a hex string representing the CPUs.
216
217  set_ftrace_filter:
218
219	When dynamic ftrace is configured in (see the
220	section below "dynamic ftrace"), the code is dynamically
221	modified (code text rewrite) to disable calling of the
222	function profiler (mcount). This lets tracing be configured
223	in with practically no overhead in performance.  This also
224	has a side effect of enabling or disabling specific functions
225	to be traced. Echoing names of functions into this file
226	will limit the trace to only those functions.
227
228	The functions listed in "available_filter_functions" are what
229	can be written into this file.
230
231	This interface also allows for commands to be used. See the
232	"Filter commands" section for more details.
233
234  set_ftrace_notrace:
235
236	This has an effect opposite to that of
237	set_ftrace_filter. Any function that is added here will not
238	be traced. If a function exists in both set_ftrace_filter
239	and set_ftrace_notrace,	the function will _not_ be traced.
240
241  set_ftrace_pid:
242
243	Have the function tracer only trace the threads whose PID are
244	listed in this file.
245
246	If the "function-fork" option is set, then when a task whose
247	PID is listed in this file forks, the child's PID will
248	automatically be added to this file, and the child will be
249	traced by the function tracer as well. This option will also
250	cause PIDs of tasks that exit to be removed from the file.
251
252  set_event_pid:
253
254	Have the events only trace a task with a PID listed in this file.
255	Note, sched_switch and sched_wake_up will also trace events
256	listed in this file.
257
258	To have the PIDs of children of tasks with their PID in this file
259	added on fork, enable the "event-fork" option. That option will also
260	cause the PIDs of tasks to be removed from this file when the task
261	exits.
262
263  set_graph_function:
264
265	Functions listed in this file will cause the function graph
266	tracer to only trace these functions and the functions that
267	they call. (See the section "dynamic ftrace" for more details).
268
269  set_graph_notrace:
270
271	Similar to set_graph_function, but will disable function graph
272	tracing when the function is hit until it exits the function.
273	This makes it possible to ignore tracing functions that are called
274	by a specific function.
275
276  available_filter_functions:
277
278	This lists the functions that ftrace has processed and can trace.
279	These are the function names that you can pass to
280	"set_ftrace_filter" or "set_ftrace_notrace".
281	(See the section "dynamic ftrace" below for more details.)
282
283  dyn_ftrace_total_info:
284
285	This file is for debugging purposes. The number of functions that
286	have been converted to nops and are available to be traced.
287
288  enabled_functions:
289
290	This file is more for debugging ftrace, but can also be useful
291	in seeing if any function has a callback attached to it.
292	Not only does the trace infrastructure use ftrace function
293	trace utility, but other subsystems might too. This file
294	displays all functions that have a callback attached to them
295	as well as the number of callbacks that have been attached.
296	Note, a callback may also call multiple functions which will
297	not be listed in this count.
298
299	If the callback registered to be traced by a function with
300	the "save regs" attribute (thus even more overhead), a 'R'
301	will be displayed on the same line as the function that
302	is returning registers.
303
304	If the callback registered to be traced by a function with
305	the "ip modify" attribute (thus the regs->ip can be changed),
306	an 'I' will be displayed on the same line as the function that
307	can be overridden.
308
309	If the architecture supports it, it will also show what callback
310	is being directly called by the function. If the count is greater
311	than 1 it most likely will be ftrace_ops_list_func().
312
313	If the callback of the function jumps to a trampoline that is
314	specific to a the callback and not the standard trampoline,
315	its address will be printed as well as the function that the
316	trampoline calls.
317
318  function_profile_enabled:
319
320	When set it will enable all functions with either the function
321	tracer, or if configured, the function graph tracer. It will
322	keep a histogram of the number of functions that were called
323	and if the function graph tracer was configured, it will also keep
324	track of the time spent in those functions. The histogram
325	content can be displayed in the files:
326
327	trace_stats/function<cpu> ( function0, function1, etc).
328
329  trace_stats:
330
331	A directory that holds different tracing stats.
332
333  kprobe_events:
334
335	Enable dynamic trace points. See kprobetrace.txt.
336
337  kprobe_profile:
338
339	Dynamic trace points stats. See kprobetrace.txt.
340
341  max_graph_depth:
342
343	Used with the function graph tracer. This is the max depth
344	it will trace into a function. Setting this to a value of
345	one will show only the first kernel function that is called
346	from user space.
347
348  printk_formats:
349
350	This is for tools that read the raw format files. If an event in
351	the ring buffer references a string, only a pointer to the string
352	is recorded into the buffer and not the string itself. This prevents
353	tools from knowing what that string was. This file displays the string
354	and address for	the string allowing tools to map the pointers to what
355	the strings were.
356
357  saved_cmdlines:
358
359	Only the pid of the task is recorded in a trace event unless
360	the event specifically saves the task comm as well. Ftrace
361	makes a cache of pid mappings to comms to try to display
362	comms for events. If a pid for a comm is not listed, then
363	"<...>" is displayed in the output.
364
365	If the option "record-cmd" is set to "0", then comms of tasks
366	will not be saved during recording. By default, it is enabled.
367
368  saved_cmdlines_size:
369
370	By default, 128 comms are saved (see "saved_cmdlines" above). To
371	increase or decrease the amount of comms that are cached, echo
372	in a the number of comms to cache, into this file.
373
374  saved_tgids:
375
376	If the option "record-tgid" is set, on each scheduling context switch
377	the Task Group ID of a task is saved in a table mapping the PID of
378	the thread to its TGID. By default, the "record-tgid" option is
379	disabled.
380
381  snapshot:
382
383	This displays the "snapshot" buffer and also lets the user
384	take a snapshot of the current running trace.
385	See the "Snapshot" section below for more details.
386
387  stack_max_size:
388
389	When the stack tracer is activated, this will display the
390	maximum stack size it has encountered.
391	See the "Stack Trace" section below.
392
393  stack_trace:
394
395	This displays the stack back trace of the largest stack
396	that was encountered when the stack tracer is activated.
397	See the "Stack Trace" section below.
398
399  stack_trace_filter:
400
401	This is similar to "set_ftrace_filter" but it limits what
402	functions the stack tracer will check.
403
404  trace_clock:
405
406	Whenever an event is recorded into the ring buffer, a
407	"timestamp" is added. This stamp comes from a specified
408	clock. By default, ftrace uses the "local" clock. This
409	clock is very fast and strictly per cpu, but on some
410	systems it may not be monotonic with respect to other
411	CPUs. In other words, the local clocks may not be in sync
412	with local clocks on other CPUs.
413
414	Usual clocks for tracing::
415
416	  # cat trace_clock
417	  [local] global counter x86-tsc
418
419	The clock with the square brackets around it is the one in effect.
420
421	local:
422		Default clock, but may not be in sync across CPUs
423
424	global:
425		This clock is in sync with all CPUs but may
426		be a bit slower than the local clock.
427
428	counter:
429		This is not a clock at all, but literally an atomic
430		counter. It counts up one by one, but is in sync
431		with all CPUs. This is useful when you need to
432		know exactly the order events occurred with respect to
433		each other on different CPUs.
434
435	uptime:
436		This uses the jiffies counter and the time stamp
437		is relative to the time since boot up.
438
439	perf:
440		This makes ftrace use the same clock that perf uses.
441		Eventually perf will be able to read ftrace buffers
442		and this will help out in interleaving the data.
443
444	x86-tsc:
445		Architectures may define their own clocks. For
446		example, x86 uses its own TSC cycle clock here.
447
448	ppc-tb:
449		This uses the powerpc timebase register value.
450		This is in sync across CPUs and can also be used
451		to correlate events across hypervisor/guest if
452		tb_offset is known.
453
454	mono:
455		This uses the fast monotonic clock (CLOCK_MONOTONIC)
456		which is monotonic and is subject to NTP rate adjustments.
457
458	mono_raw:
459		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
460		which is montonic but is not subject to any rate adjustments
461		and ticks at the same rate as the hardware clocksource.
462
463	boot:
464		Same as mono. Used to be a separate clock which accounted
465		for the time spent in suspend while CLOCK_MONOTONIC did
466		not.
467
468	To set a clock, simply echo the clock name into this file::
469
470	  # echo global > trace_clock
471
472  trace_marker:
473
474	This is a very useful file for synchronizing user space
475	with events happening in the kernel. Writing strings into
476	this file will be written into the ftrace buffer.
477
478	It is useful in applications to open this file at the start
479	of the application and just reference the file descriptor
480	for the file::
481
482		void trace_write(const char *fmt, ...)
483		{
484			va_list ap;
485			char buf[256];
486			int n;
487
488			if (trace_fd < 0)
489				return;
490
491			va_start(ap, fmt);
492			n = vsnprintf(buf, 256, fmt, ap);
493			va_end(ap);
494
495			write(trace_fd, buf, n);
496		}
497
498	start::
499
500		trace_fd = open("trace_marker", WR_ONLY);
501
502  trace_marker_raw:
503
504	This is similar to trace_marker above, but is meant for for binary data
505	to be written to it, where a tool can be used to parse the data
506	from trace_pipe_raw.
507
508  uprobe_events:
509
510	Add dynamic tracepoints in programs.
511	See uprobetracer.txt
512
513  uprobe_profile:
514
515	Uprobe statistics. See uprobetrace.txt
516
517  instances:
518
519	This is a way to make multiple trace buffers where different
520	events can be recorded in different buffers.
521	See "Instances" section below.
522
523  events:
524
525	This is the trace event directory. It holds event tracepoints
526	(also known as static tracepoints) that have been compiled
527	into the kernel. It shows what event tracepoints exist
528	and how they are grouped by system. There are "enable"
529	files at various levels that can enable the tracepoints
530	when a "1" is written to them.
531
532	See events.txt for more information.
533
534  set_event:
535
536	By echoing in the event into this file, will enable that event.
537
538	See events.txt for more information.
539
540  available_events:
541
542	A list of events that can be enabled in tracing.
543
544	See events.txt for more information.
545
546  timestamp_mode:
547
548	Certain tracers may change the timestamp mode used when
549	logging trace events into the event buffer.  Events with
550	different modes can coexist within a buffer but the mode in
551	effect when an event is logged determines which timestamp mode
552	is used for that event.  The default timestamp mode is
553	'delta'.
554
555	Usual timestamp modes for tracing:
556
557	  # cat timestamp_mode
558	  [delta] absolute
559
560	  The timestamp mode with the square brackets around it is the
561	  one in effect.
562
563	  delta: Default timestamp mode - timestamp is a delta against
564	         a per-buffer timestamp.
565
566	  absolute: The timestamp is a full timestamp, not a delta
567                 against some other value.  As such it takes up more
568                 space and is less efficient.
569
570  hwlat_detector:
571
572	Directory for the Hardware Latency Detector.
573	See "Hardware Latency Detector" section below.
574
575  per_cpu:
576
577	This is a directory that contains the trace per_cpu information.
578
579  per_cpu/cpu0/buffer_size_kb:
580
581	The ftrace buffer is defined per_cpu. That is, there's a separate
582	buffer for each CPU to allow writes to be done atomically,
583	and free from cache bouncing. These buffers may have different
584	size buffers. This file is similar to the buffer_size_kb
585	file, but it only displays or sets the buffer size for the
586	specific CPU. (here cpu0).
587
588  per_cpu/cpu0/trace:
589
590	This is similar to the "trace" file, but it will only display
591	the data specific for the CPU. If written to, it only clears
592	the specific CPU buffer.
593
594  per_cpu/cpu0/trace_pipe
595
596	This is similar to the "trace_pipe" file, and is a consuming
597	read, but it will only display (and consume) the data specific
598	for the CPU.
599
600  per_cpu/cpu0/trace_pipe_raw
601
602	For tools that can parse the ftrace ring buffer binary format,
603	the trace_pipe_raw file can be used to extract the data
604	from the ring buffer directly. With the use of the splice()
605	system call, the buffer data can be quickly transferred to
606	a file or to the network where a server is collecting the
607	data.
608
609	Like trace_pipe, this is a consuming reader, where multiple
610	reads will always produce different data.
611
612  per_cpu/cpu0/snapshot:
613
614	This is similar to the main "snapshot" file, but will only
615	snapshot the current CPU (if supported). It only displays
616	the content of the snapshot for a given CPU, and if
617	written to, only clears this CPU buffer.
618
619  per_cpu/cpu0/snapshot_raw:
620
621	Similar to the trace_pipe_raw, but will read the binary format
622	from the snapshot buffer for the given CPU.
623
624  per_cpu/cpu0/stats:
625
626	This displays certain stats about the ring buffer:
627
628	entries:
629		The number of events that are still in the buffer.
630
631	overrun:
632		The number of lost events due to overwriting when
633		the buffer was full.
634
635	commit overrun:
636		Should always be zero.
637		This gets set if so many events happened within a nested
638		event (ring buffer is re-entrant), that it fills the
639		buffer and starts dropping events.
640
641	bytes:
642		Bytes actually read (not overwritten).
643
644	oldest event ts:
645		The oldest timestamp in the buffer
646
647	now ts:
648		The current timestamp
649
650	dropped events:
651		Events lost due to overwrite option being off.
652
653	read events:
654		The number of events read.
655
656The Tracers
657-----------
658
659Here is the list of current tracers that may be configured.
660
661  "function"
662
663	Function call tracer to trace all kernel functions.
664
665  "function_graph"
666
667	Similar to the function tracer except that the
668	function tracer probes the functions on their entry
669	whereas the function graph tracer traces on both entry
670	and exit of the functions. It then provides the ability
671	to draw a graph of function calls similar to C code
672	source.
673
674  "blk"
675
676	The block tracer. The tracer used by the blktrace user
677	application.
678
679  "hwlat"
680
681	The Hardware Latency tracer is used to detect if the hardware
682	produces any latency. See "Hardware Latency Detector" section
683	below.
684
685  "irqsoff"
686
687	Traces the areas that disable interrupts and saves
688	the trace with the longest max latency.
689	See tracing_max_latency. When a new max is recorded,
690	it replaces the old trace. It is best to view this
691	trace with the latency-format option enabled, which
692	happens automatically when the tracer is selected.
693
694  "preemptoff"
695
696	Similar to irqsoff but traces and records the amount of
697	time for which preemption is disabled.
698
699  "preemptirqsoff"
700
701	Similar to irqsoff and preemptoff, but traces and
702	records the largest time for which irqs and/or preemption
703	is disabled.
704
705  "wakeup"
706
707	Traces and records the max latency that it takes for
708	the highest priority task to get scheduled after
709	it has been woken up.
710        Traces all tasks as an average developer would expect.
711
712  "wakeup_rt"
713
714        Traces and records the max latency that it takes for just
715        RT tasks (as the current "wakeup" does). This is useful
716        for those interested in wake up timings of RT tasks.
717
718  "wakeup_dl"
719
720	Traces and records the max latency that it takes for
721	a SCHED_DEADLINE task to be woken (as the "wakeup" and
722	"wakeup_rt" does).
723
724  "mmiotrace"
725
726	A special tracer that is used to trace binary module.
727	It will trace all the calls that a module makes to the
728	hardware. Everything it writes and reads from the I/O
729	as well.
730
731  "branch"
732
733	This tracer can be configured when tracing likely/unlikely
734	calls within the kernel. It will trace when a likely and
735	unlikely branch is hit and if it was correct in its prediction
736	of being correct.
737
738  "nop"
739
740	This is the "trace nothing" tracer. To remove all
741	tracers from tracing simply echo "nop" into
742	current_tracer.
743
744
745Examples of using the tracer
746----------------------------
747
748Here are typical examples of using the tracers when controlling
749them only with the tracefs interface (without using any
750user-land utilities).
751
752Output format:
753--------------
754
755Here is an example of the output format of the file "trace"::
756
757  # tracer: function
758  #
759  # entries-in-buffer/entries-written: 140080/250280   #P:4
760  #
761  #                              _-----=> irqs-off
762  #                             / _----=> need-resched
763  #                            | / _---=> hardirq/softirq
764  #                            || / _--=> preempt-depth
765  #                            ||| /     delay
766  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
767  #              | |       |   ||||       |         |
768              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
769              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
770              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
771              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
772              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
773              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
774              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
775              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
776              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
777              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
778              ....
779
780A header is printed with the tracer name that is represented by
781the trace. In this case the tracer is "function". Then it shows the
782number of events in the buffer as well as the total number of entries
783that were written. The difference is the number of entries that were
784lost due to the buffer filling up (250280 - 140080 = 110200 events
785lost).
786
787The header explains the content of the events. Task name "bash", the task
788PID "1977", the CPU that it was running on "000", the latency format
789(explained below), the timestamp in <secs>.<usecs> format, the
790function name that was traced "sys_close" and the parent function that
791called this function "system_call_fastpath". The timestamp is the time
792at which the function was entered.
793
794Latency trace format
795--------------------
796
797When the latency-format option is enabled or when one of the latency
798tracers is set, the trace file gives somewhat more information to see
799why a latency happened. Here is a typical trace::
800
801  # tracer: irqsoff
802  #
803  # irqsoff latency trace v1.1.5 on 3.8.0-test+
804  # --------------------------------------------------------------------
805  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
806  #    -----------------
807  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
808  #    -----------------
809  #  => started at: __lock_task_sighand
810  #  => ended at:   _raw_spin_unlock_irqrestore
811  #
812  #
813  #                  _------=> CPU#
814  #                 / _-----=> irqs-off
815  #                | / _----=> need-resched
816  #                || / _---=> hardirq/softirq
817  #                ||| / _--=> preempt-depth
818  #                |||| /     delay
819  #  cmd     pid   ||||| time  |   caller
820  #     \   /      |||||  \    |   /
821        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
822        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
823        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
824        ps-6143    2d..1  306us : <stack trace>
825   => trace_hardirqs_on_caller
826   => trace_hardirqs_on
827   => _raw_spin_unlock_irqrestore
828   => do_task_stat
829   => proc_tgid_stat
830   => proc_single_show
831   => seq_read
832   => vfs_read
833   => sys_read
834   => system_call_fastpath
835
836
837This shows that the current tracer is "irqsoff" tracing the time
838for which interrupts were disabled. It gives the trace version (which
839never changes) and the version of the kernel upon which this was executed on
840(3.8). Then it displays the max latency in microseconds (259 us). The number
841of trace entries displayed and the total number (both are four: #4/4).
842VP, KP, SP, and HP are always zero and are reserved for later use.
843#P is the number of online CPUs (#P:4).
844
845The task is the process that was running when the latency
846occurred. (ps pid: 6143).
847
848The start and stop (the functions in which the interrupts were
849disabled and enabled respectively) that caused the latencies:
850
851  - __lock_task_sighand is where the interrupts were disabled.
852  - _raw_spin_unlock_irqrestore is where they were enabled again.
853
854The next lines after the header are the trace itself. The header
855explains which is which.
856
857  cmd: The name of the process in the trace.
858
859  pid: The PID of that process.
860
861  CPU#: The CPU which the process was running on.
862
863  irqs-off: 'd' interrupts are disabled. '.' otherwise.
864	.. caution:: If the architecture does not support a way to
865		read the irq flags variable, an 'X' will always
866		be printed here.
867
868  need-resched:
869	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
870	- 'n' only TIF_NEED_RESCHED is set,
871	- 'p' only PREEMPT_NEED_RESCHED is set,
872	- '.' otherwise.
873
874  hardirq/softirq:
875	- 'Z' - NMI occurred inside a hardirq
876	- 'z' - NMI is running
877	- 'H' - hard irq occurred inside a softirq.
878	- 'h' - hard irq is running
879	- 's' - soft irq is running
880	- '.' - normal context.
881
882  preempt-depth: The level of preempt_disabled
883
884The above is mostly meaningful for kernel developers.
885
886  time:
887	When the latency-format option is enabled, the trace file
888	output includes a timestamp relative to the start of the
889	trace. This differs from the output when latency-format
890	is disabled, which includes an absolute timestamp.
891
892  delay:
893	This is just to help catch your eye a bit better. And
894	needs to be fixed to be only relative to the same CPU.
895	The marks are determined by the difference between this
896	current trace and the next trace.
897
898	  - '$' - greater than 1 second
899	  - '@' - greater than 100 milisecond
900	  - '*' - greater than 10 milisecond
901	  - '#' - greater than 1000 microsecond
902	  - '!' - greater than 100 microsecond
903	  - '+' - greater than 10 microsecond
904	  - ' ' - less than or equal to 10 microsecond.
905
906  The rest is the same as the 'trace' file.
907
908  Note, the latency tracers will usually end with a back trace
909  to easily find where the latency occurred.
910
911trace_options
912-------------
913
914The trace_options file (or the options directory) is used to control
915what gets printed in the trace output, or manipulate the tracers.
916To see what is available, simply cat the file::
917
918  cat trace_options
919	print-parent
920	nosym-offset
921	nosym-addr
922	noverbose
923	noraw
924	nohex
925	nobin
926	noblock
927	trace_printk
928	annotate
929	nouserstacktrace
930	nosym-userobj
931	noprintk-msg-only
932	context-info
933	nolatency-format
934	record-cmd
935	norecord-tgid
936	overwrite
937	nodisable_on_free
938	irq-info
939	markers
940	noevent-fork
941	function-trace
942	nofunction-fork
943	nodisplay-graph
944	nostacktrace
945	nobranch
946
947To disable one of the options, echo in the option prepended with
948"no"::
949
950  echo noprint-parent > trace_options
951
952To enable an option, leave off the "no"::
953
954  echo sym-offset > trace_options
955
956Here are the available options:
957
958  print-parent
959	On function traces, display the calling (parent)
960	function as well as the function being traced.
961	::
962
963	  print-parent:
964	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
965
966	  noprint-parent:
967	   bash-4000  [01]  1477.606694: simple_strtoul
968
969
970  sym-offset
971	Display not only the function name, but also the
972	offset in the function. For example, instead of
973	seeing just "ktime_get", you will see
974	"ktime_get+0xb/0x20".
975	::
976
977	  sym-offset:
978	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
979
980  sym-addr
981	This will also display the function address as well
982	as the function name.
983	::
984
985	  sym-addr:
986	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
987
988  verbose
989	This deals with the trace file when the
990        latency-format option is enabled.
991	::
992
993	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
994	    (+0.000ms): simple_strtoul (kstrtoul)
995
996  raw
997	This will display raw numbers. This option is best for
998	use with user applications that can translate the raw
999	numbers better than having it done in the kernel.
1000
1001  hex
1002	Similar to raw, but the numbers will be in a hexadecimal format.
1003
1004  bin
1005	This will print out the formats in raw binary.
1006
1007  block
1008	When set, reading trace_pipe will not block when polled.
1009
1010  trace_printk
1011	Can disable trace_printk() from writing into the buffer.
1012
1013  annotate
1014	It is sometimes confusing when the CPU buffers are full
1015	and one CPU buffer had a lot of events recently, thus
1016	a shorter time frame, were another CPU may have only had
1017	a few events, which lets it have older events. When
1018	the trace is reported, it shows the oldest events first,
1019	and it may look like only one CPU ran (the one with the
1020	oldest events). When the annotate option is set, it will
1021	display when a new CPU buffer started::
1022
1023			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1024			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1025			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1026		##### CPU 2 buffer started ####
1027			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1028			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1029			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1030
1031  userstacktrace
1032	This option changes the trace. It records a
1033	stacktrace of the current user space thread after
1034	each trace event.
1035
1036  sym-userobj
1037	when user stacktrace are enabled, look up which
1038	object the address belongs to, and print a
1039	relative address. This is especially useful when
1040	ASLR is on, otherwise you don't get a chance to
1041	resolve the address to object/file/line after
1042	the app is no longer running
1043
1044	The lookup is performed when you read
1045	trace,trace_pipe. Example::
1046
1047		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1048		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1049
1050
1051  printk-msg-only
1052	When set, trace_printk()s will only show the format
1053	and not their parameters (if trace_bprintk() or
1054	trace_bputs() was used to save the trace_printk()).
1055
1056  context-info
1057	Show only the event data. Hides the comm, PID,
1058	timestamp, CPU, and other useful data.
1059
1060  latency-format
1061	This option changes the trace output. When it is enabled,
1062	the trace displays additional information about the
1063	latency, as described in "Latency trace format".
1064
1065  record-cmd
1066	When any event or tracer is enabled, a hook is enabled
1067	in the sched_switch trace point to fill comm cache
1068	with mapped pids and comms. But this may cause some
1069	overhead, and if you only care about pids, and not the
1070	name of the task, disabling this option can lower the
1071	impact of tracing. See "saved_cmdlines".
1072
1073  record-tgid
1074	When any event or tracer is enabled, a hook is enabled
1075	in the sched_switch trace point to fill the cache of
1076	mapped Thread Group IDs (TGID) mapping to pids. See
1077	"saved_tgids".
1078
1079  overwrite
1080	This controls what happens when the trace buffer is
1081	full. If "1" (default), the oldest events are
1082	discarded and overwritten. If "0", then the newest
1083	events are discarded.
1084	(see per_cpu/cpu0/stats for overrun and dropped)
1085
1086  disable_on_free
1087	When the free_buffer is closed, tracing will
1088	stop (tracing_on set to 0).
1089
1090  irq-info
1091	Shows the interrupt, preempt count, need resched data.
1092	When disabled, the trace looks like::
1093
1094		# tracer: function
1095		#
1096		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1097		#
1098		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1099		#              | |       |          |         |
1100			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1101			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1102			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1103
1104
1105  markers
1106	When set, the trace_marker is writable (only by root).
1107	When disabled, the trace_marker will error with EINVAL
1108	on write.
1109
1110  event-fork
1111	When set, tasks with PIDs listed in set_event_pid will have
1112	the PIDs of their children added to set_event_pid when those
1113	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1114	their PIDs will be removed from the file.
1115
1116  function-trace
1117	The latency tracers will enable function tracing
1118	if this option is enabled (default it is). When
1119	it is disabled, the latency tracers do not trace
1120	functions. This keeps the overhead of the tracer down
1121	when performing latency tests.
1122
1123  function-fork
1124	When set, tasks with PIDs listed in set_ftrace_pid will
1125	have the PIDs of their children added to set_ftrace_pid
1126	when those tasks fork. Also, when tasks with PIDs in
1127	set_ftrace_pid exit, their PIDs will be removed from the
1128	file.
1129
1130  display-graph
1131	When set, the latency tracers (irqsoff, wakeup, etc) will
1132	use function graph tracing instead of function tracing.
1133
1134  stacktrace
1135	When set, a stack trace is recorded after any trace event
1136	is recorded.
1137
1138  branch
1139	Enable branch tracing with the tracer. This enables branch
1140	tracer along with the currently set tracer. Enabling this
1141	with the "nop" tracer is the same as just enabling the
1142	"branch" tracer.
1143
1144.. tip:: Some tracers have their own options. They only appear in this
1145       file when the tracer is active. They always appear in the
1146       options directory.
1147
1148
1149Here are the per tracer options:
1150
1151Options for function tracer:
1152
1153  func_stack_trace
1154	When set, a stack trace is recorded after every
1155	function that is recorded. NOTE! Limit the functions
1156	that are recorded before enabling this, with
1157	"set_ftrace_filter" otherwise the system performance
1158	will be critically degraded. Remember to disable
1159	this option before clearing the function filter.
1160
1161Options for function_graph tracer:
1162
1163 Since the function_graph tracer has a slightly different output
1164 it has its own options to control what is displayed.
1165
1166  funcgraph-overrun
1167	When set, the "overrun" of the graph stack is
1168	displayed after each function traced. The
1169	overrun, is when the stack depth of the calls
1170	is greater than what is reserved for each task.
1171	Each task has a fixed array of functions to
1172	trace in the call graph. If the depth of the
1173	calls exceeds that, the function is not traced.
1174	The overrun is the number of functions missed
1175	due to exceeding this array.
1176
1177  funcgraph-cpu
1178	When set, the CPU number of the CPU where the trace
1179	occurred is displayed.
1180
1181  funcgraph-overhead
1182	When set, if the function takes longer than
1183	A certain amount, then a delay marker is
1184	displayed. See "delay" above, under the
1185	header description.
1186
1187  funcgraph-proc
1188	Unlike other tracers, the process' command line
1189	is not displayed by default, but instead only
1190	when a task is traced in and out during a context
1191	switch. Enabling this options has the command
1192	of each process displayed at every line.
1193
1194  funcgraph-duration
1195	At the end of each function (the return)
1196	the duration of the amount of time in the
1197	function is displayed in microseconds.
1198
1199  funcgraph-abstime
1200	When set, the timestamp is displayed at each line.
1201
1202  funcgraph-irqs
1203	When disabled, functions that happen inside an
1204	interrupt will not be traced.
1205
1206  funcgraph-tail
1207	When set, the return event will include the function
1208	that it represents. By default this is off, and
1209	only a closing curly bracket "}" is displayed for
1210	the return of a function.
1211
1212  sleep-time
1213	When running function graph tracer, to include
1214	the time a task schedules out in its function.
1215	When enabled, it will account time the task has been
1216	scheduled out as part of the function call.
1217
1218  graph-time
1219	When running function profiler with function graph tracer,
1220	to include the time to call nested functions. When this is
1221	not set, the time reported for the function will only
1222	include the time the function itself executed for, not the
1223	time for functions that it called.
1224
1225Options for blk tracer:
1226
1227  blk_classic
1228	Shows a more minimalistic output.
1229
1230
1231irqsoff
1232-------
1233
1234When interrupts are disabled, the CPU can not react to any other
1235external event (besides NMIs and SMIs). This prevents the timer
1236interrupt from triggering or the mouse interrupt from letting
1237the kernel know of a new mouse event. The result is a latency
1238with the reaction time.
1239
1240The irqsoff tracer tracks the time for which interrupts are
1241disabled. When a new maximum latency is hit, the tracer saves
1242the trace leading up to that latency point so that every time a
1243new maximum is reached, the old saved trace is discarded and the
1244new trace is saved.
1245
1246To reset the maximum, echo 0 into tracing_max_latency. Here is
1247an example::
1248
1249  # echo 0 > options/function-trace
1250  # echo irqsoff > current_tracer
1251  # echo 1 > tracing_on
1252  # echo 0 > tracing_max_latency
1253  # ls -ltr
1254  [...]
1255  # echo 0 > tracing_on
1256  # cat trace
1257  # tracer: irqsoff
1258  #
1259  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1260  # --------------------------------------------------------------------
1261  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1262  #    -----------------
1263  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1264  #    -----------------
1265  #  => started at: run_timer_softirq
1266  #  => ended at:   run_timer_softirq
1267  #
1268  #
1269  #                  _------=> CPU#
1270  #                 / _-----=> irqs-off
1271  #                | / _----=> need-resched
1272  #                || / _---=> hardirq/softirq
1273  #                ||| / _--=> preempt-depth
1274  #                |||| /     delay
1275  #  cmd     pid   ||||| time  |   caller
1276  #     \   /      |||||  \    |   /
1277    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1278    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1279    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1280    <idle>-0       0dNs3   25us : <stack trace>
1281   => _raw_spin_unlock_irq
1282   => run_timer_softirq
1283   => __do_softirq
1284   => call_softirq
1285   => do_softirq
1286   => irq_exit
1287   => smp_apic_timer_interrupt
1288   => apic_timer_interrupt
1289   => rcu_idle_exit
1290   => cpu_idle
1291   => rest_init
1292   => start_kernel
1293   => x86_64_start_reservations
1294   => x86_64_start_kernel
1295
1296Here we see that that we had a latency of 16 microseconds (which is
1297very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1298interrupts. The difference between the 16 and the displayed
1299timestamp 25us occurred because the clock was incremented
1300between the time of recording the max latency and the time of
1301recording the function that had that latency.
1302
1303Note the above example had function-trace not set. If we set
1304function-trace, we get a much larger output::
1305
1306 with echo 1 > options/function-trace
1307
1308  # tracer: irqsoff
1309  #
1310  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1311  # --------------------------------------------------------------------
1312  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1313  #    -----------------
1314  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1315  #    -----------------
1316  #  => started at: ata_scsi_queuecmd
1317  #  => ended at:   ata_scsi_queuecmd
1318  #
1319  #
1320  #                  _------=> CPU#
1321  #                 / _-----=> irqs-off
1322  #                | / _----=> need-resched
1323  #                || / _---=> hardirq/softirq
1324  #                ||| / _--=> preempt-depth
1325  #                |||| /     delay
1326  #  cmd     pid   ||||| time  |   caller
1327  #     \   /      |||||  \    |   /
1328      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1329      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1330      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1331      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1332      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1333      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1334      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1335      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1336      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1337  [...]
1338      bash-2042    3d..1   67us : delay_tsc <-__delay
1339      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1340      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1341      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1342      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1343      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1344      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1345      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1346      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1347      bash-2042    3d..1  120us : <stack trace>
1348   => _raw_spin_unlock_irqrestore
1349   => ata_scsi_queuecmd
1350   => scsi_dispatch_cmd
1351   => scsi_request_fn
1352   => __blk_run_queue_uncond
1353   => __blk_run_queue
1354   => blk_queue_bio
1355   => generic_make_request
1356   => submit_bio
1357   => submit_bh
1358   => __ext3_get_inode_loc
1359   => ext3_iget
1360   => ext3_lookup
1361   => lookup_real
1362   => __lookup_hash
1363   => walk_component
1364   => lookup_last
1365   => path_lookupat
1366   => filename_lookup
1367   => user_path_at_empty
1368   => user_path_at
1369   => vfs_fstatat
1370   => vfs_stat
1371   => sys_newstat
1372   => system_call_fastpath
1373
1374
1375Here we traced a 71 microsecond latency. But we also see all the
1376functions that were called during that time. Note that by
1377enabling function tracing, we incur an added overhead. This
1378overhead may extend the latency times. But nevertheless, this
1379trace has provided some very helpful debugging information.
1380
1381
1382preemptoff
1383----------
1384
1385When preemption is disabled, we may be able to receive
1386interrupts but the task cannot be preempted and a higher
1387priority task must wait for preemption to be enabled again
1388before it can preempt a lower priority task.
1389
1390The preemptoff tracer traces the places that disable preemption.
1391Like the irqsoff tracer, it records the maximum latency for
1392which preemption was disabled. The control of preemptoff tracer
1393is much like the irqsoff tracer.
1394::
1395
1396  # echo 0 > options/function-trace
1397  # echo preemptoff > current_tracer
1398  # echo 1 > tracing_on
1399  # echo 0 > tracing_max_latency
1400  # ls -ltr
1401  [...]
1402  # echo 0 > tracing_on
1403  # cat trace
1404  # tracer: preemptoff
1405  #
1406  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1407  # --------------------------------------------------------------------
1408  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1409  #    -----------------
1410  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1411  #    -----------------
1412  #  => started at: do_IRQ
1413  #  => ended at:   do_IRQ
1414  #
1415  #
1416  #                  _------=> CPU#
1417  #                 / _-----=> irqs-off
1418  #                | / _----=> need-resched
1419  #                || / _---=> hardirq/softirq
1420  #                ||| / _--=> preempt-depth
1421  #                |||| /     delay
1422  #  cmd     pid   ||||| time  |   caller
1423  #     \   /      |||||  \    |   /
1424      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1425      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1426      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1427      sshd-1991    1d..1   52us : <stack trace>
1428   => sub_preempt_count
1429   => irq_exit
1430   => do_IRQ
1431   => ret_from_intr
1432
1433
1434This has some more changes. Preemption was disabled when an
1435interrupt came in (notice the 'h'), and was enabled on exit.
1436But we also see that interrupts have been disabled when entering
1437the preempt off section and leaving it (the 'd'). We do not know if
1438interrupts were enabled in the mean time or shortly after this
1439was over.
1440::
1441
1442  # tracer: preemptoff
1443  #
1444  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1445  # --------------------------------------------------------------------
1446  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1447  #    -----------------
1448  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1449  #    -----------------
1450  #  => started at: wake_up_new_task
1451  #  => ended at:   task_rq_unlock
1452  #
1453  #
1454  #                  _------=> CPU#
1455  #                 / _-----=> irqs-off
1456  #                | / _----=> need-resched
1457  #                || / _---=> hardirq/softirq
1458  #                ||| / _--=> preempt-depth
1459  #                |||| /     delay
1460  #  cmd     pid   ||||| time  |   caller
1461  #     \   /      |||||  \    |   /
1462      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1463      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1464      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1465      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1466      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1467  [...]
1468      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1469      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1470      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1471      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1472      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1473      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1474      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1475      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1476  [...]
1477      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1478      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1479      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1480      bash-1994    1d..2   36us : do_softirq <-irq_exit
1481      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1482      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1483      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1484      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1485      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1486      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1487  [...]
1488      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1489      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1490      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1491      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1492      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1493      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1494      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1495      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1496      bash-1994    1.N.1  104us : <stack trace>
1497   => sub_preempt_count
1498   => _raw_spin_unlock_irqrestore
1499   => task_rq_unlock
1500   => wake_up_new_task
1501   => do_fork
1502   => sys_clone
1503   => stub_clone
1504
1505
1506The above is an example of the preemptoff trace with
1507function-trace set. Here we see that interrupts were not disabled
1508the entire time. The irq_enter code lets us know that we entered
1509an interrupt 'h'. Before that, the functions being traced still
1510show that it is not in an interrupt, but we can see from the
1511functions themselves that this is not the case.
1512
1513preemptirqsoff
1514--------------
1515
1516Knowing the locations that have interrupts disabled or
1517preemption disabled for the longest times is helpful. But
1518sometimes we would like to know when either preemption and/or
1519interrupts are disabled.
1520
1521Consider the following code::
1522
1523    local_irq_disable();
1524    call_function_with_irqs_off();
1525    preempt_disable();
1526    call_function_with_irqs_and_preemption_off();
1527    local_irq_enable();
1528    call_function_with_preemption_off();
1529    preempt_enable();
1530
1531The irqsoff tracer will record the total length of
1532call_function_with_irqs_off() and
1533call_function_with_irqs_and_preemption_off().
1534
1535The preemptoff tracer will record the total length of
1536call_function_with_irqs_and_preemption_off() and
1537call_function_with_preemption_off().
1538
1539But neither will trace the time that interrupts and/or
1540preemption is disabled. This total time is the time that we can
1541not schedule. To record this time, use the preemptirqsoff
1542tracer.
1543
1544Again, using this trace is much like the irqsoff and preemptoff
1545tracers.
1546::
1547
1548  # echo 0 > options/function-trace
1549  # echo preemptirqsoff > current_tracer
1550  # echo 1 > tracing_on
1551  # echo 0 > tracing_max_latency
1552  # ls -ltr
1553  [...]
1554  # echo 0 > tracing_on
1555  # cat trace
1556  # tracer: preemptirqsoff
1557  #
1558  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1559  # --------------------------------------------------------------------
1560  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1561  #    -----------------
1562  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1563  #    -----------------
1564  #  => started at: ata_scsi_queuecmd
1565  #  => ended at:   ata_scsi_queuecmd
1566  #
1567  #
1568  #                  _------=> CPU#
1569  #                 / _-----=> irqs-off
1570  #                | / _----=> need-resched
1571  #                || / _---=> hardirq/softirq
1572  #                ||| / _--=> preempt-depth
1573  #                |||| /     delay
1574  #  cmd     pid   ||||| time  |   caller
1575  #     \   /      |||||  \    |   /
1576        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1577        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1578        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1579        ls-2230    3...1  111us : <stack trace>
1580   => sub_preempt_count
1581   => _raw_spin_unlock_irqrestore
1582   => ata_scsi_queuecmd
1583   => scsi_dispatch_cmd
1584   => scsi_request_fn
1585   => __blk_run_queue_uncond
1586   => __blk_run_queue
1587   => blk_queue_bio
1588   => generic_make_request
1589   => submit_bio
1590   => submit_bh
1591   => ext3_bread
1592   => ext3_dir_bread
1593   => htree_dirblock_to_tree
1594   => ext3_htree_fill_tree
1595   => ext3_readdir
1596   => vfs_readdir
1597   => sys_getdents
1598   => system_call_fastpath
1599
1600
1601The trace_hardirqs_off_thunk is called from assembly on x86 when
1602interrupts are disabled in the assembly code. Without the
1603function tracing, we do not know if interrupts were enabled
1604within the preemption points. We do see that it started with
1605preemption enabled.
1606
1607Here is a trace with function-trace set::
1608
1609  # tracer: preemptirqsoff
1610  #
1611  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1612  # --------------------------------------------------------------------
1613  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1614  #    -----------------
1615  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1616  #    -----------------
1617  #  => started at: schedule
1618  #  => ended at:   mutex_unlock
1619  #
1620  #
1621  #                  _------=> CPU#
1622  #                 / _-----=> irqs-off
1623  #                | / _----=> need-resched
1624  #                || / _---=> hardirq/softirq
1625  #                ||| / _--=> preempt-depth
1626  #                |||| /     delay
1627  #  cmd     pid   ||||| time  |   caller
1628  #     \   /      |||||  \    |   /
1629  kworker/-59      3...1    0us : __schedule <-schedule
1630  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1631  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1632  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1633  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1634  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1635  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1636  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1637  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1638  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1639  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1640  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1641  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1642  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1643  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1644  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1645  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1646  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1647  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1648  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1649  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1650  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1651  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1652  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1653  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1654        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1655        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1656        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1657        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1658        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1659        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1660        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1661  [...]
1662        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1663        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1664        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1665        ls-2269    3d..3   21us : do_softirq <-irq_exit
1666        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1667        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1668        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1669        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1670        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1671        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1672        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1673  [...]
1674        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1675        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1676        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1677        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1678        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1679        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1680  [...]
1681        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1682        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1683        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1684        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1685        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1686        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1687        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1688        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1689        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1690        ls-2269    3d...  186us : <stack trace>
1691   => __mutex_unlock_slowpath
1692   => mutex_unlock
1693   => process_output
1694   => n_tty_write
1695   => tty_write
1696   => vfs_write
1697   => sys_write
1698   => system_call_fastpath
1699
1700This is an interesting trace. It started with kworker running and
1701scheduling out and ls taking over. But as soon as ls released the
1702rq lock and enabled interrupts (but not preemption) an interrupt
1703triggered. When the interrupt finished, it started running softirqs.
1704But while the softirq was running, another interrupt triggered.
1705When an interrupt is running inside a softirq, the annotation is 'H'.
1706
1707
1708wakeup
1709------
1710
1711One common case that people are interested in tracing is the
1712time it takes for a task that is woken to actually wake up.
1713Now for non Real-Time tasks, this can be arbitrary. But tracing
1714it none the less can be interesting.
1715
1716Without function tracing::
1717
1718  # echo 0 > options/function-trace
1719  # echo wakeup > current_tracer
1720  # echo 1 > tracing_on
1721  # echo 0 > tracing_max_latency
1722  # chrt -f 5 sleep 1
1723  # echo 0 > tracing_on
1724  # cat trace
1725  # tracer: wakeup
1726  #
1727  # wakeup latency trace v1.1.5 on 3.8.0-test+
1728  # --------------------------------------------------------------------
1729  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1730  #    -----------------
1731  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1732  #    -----------------
1733  #
1734  #                  _------=> CPU#
1735  #                 / _-----=> irqs-off
1736  #                | / _----=> need-resched
1737  #                || / _---=> hardirq/softirq
1738  #                ||| / _--=> preempt-depth
1739  #                |||| /     delay
1740  #  cmd     pid   ||||| time  |   caller
1741  #     \   /      |||||  \    |   /
1742    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1743    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1744    <idle>-0       3d..3   15us : __schedule <-schedule
1745    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1746
1747The tracer only traces the highest priority task in the system
1748to avoid tracing the normal circumstances. Here we see that
1749the kworker with a nice priority of -20 (not very nice), took
1750just 15 microseconds from the time it woke up, to the time it
1751ran.
1752
1753Non Real-Time tasks are not that interesting. A more interesting
1754trace is to concentrate only on Real-Time tasks.
1755
1756wakeup_rt
1757---------
1758
1759In a Real-Time environment it is very important to know the
1760wakeup time it takes for the highest priority task that is woken
1761up to the time that it executes. This is also known as "schedule
1762latency". I stress the point that this is about RT tasks. It is
1763also important to know the scheduling latency of non-RT tasks,
1764but the average schedule latency is better for non-RT tasks.
1765Tools like LatencyTop are more appropriate for such
1766measurements.
1767
1768Real-Time environments are interested in the worst case latency.
1769That is the longest latency it takes for something to happen,
1770and not the average. We can have a very fast scheduler that may
1771only have a large latency once in a while, but that would not
1772work well with Real-Time tasks.  The wakeup_rt tracer was designed
1773to record the worst case wakeups of RT tasks. Non-RT tasks are
1774not recorded because the tracer only records one worst case and
1775tracing non-RT tasks that are unpredictable will overwrite the
1776worst case latency of RT tasks (just run the normal wakeup
1777tracer for a while to see that effect).
1778
1779Since this tracer only deals with RT tasks, we will run this
1780slightly differently than we did with the previous tracers.
1781Instead of performing an 'ls', we will run 'sleep 1' under
1782'chrt' which changes the priority of the task.
1783::
1784
1785  # echo 0 > options/function-trace
1786  # echo wakeup_rt > current_tracer
1787  # echo 1 > tracing_on
1788  # echo 0 > tracing_max_latency
1789  # chrt -f 5 sleep 1
1790  # echo 0 > tracing_on
1791  # cat trace
1792  # tracer: wakeup
1793  #
1794  # tracer: wakeup_rt
1795  #
1796  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1797  # --------------------------------------------------------------------
1798  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1799  #    -----------------
1800  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1801  #    -----------------
1802  #
1803  #                  _------=> CPU#
1804  #                 / _-----=> irqs-off
1805  #                | / _----=> need-resched
1806  #                || / _---=> hardirq/softirq
1807  #                ||| / _--=> preempt-depth
1808  #                |||| /     delay
1809  #  cmd     pid   ||||| time  |   caller
1810  #     \   /      |||||  \    |   /
1811    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1812    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1813    <idle>-0       3d..3    5us : __schedule <-schedule
1814    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1815
1816
1817Running this on an idle system, we see that it only took 5 microseconds
1818to perform the task switch.  Note, since the trace point in the schedule
1819is before the actual "switch", we stop the tracing when the recorded task
1820is about to schedule in. This may change if we add a new marker at the
1821end of the scheduler.
1822
1823Notice that the recorded task is 'sleep' with the PID of 2389
1824and it has an rt_prio of 5. This priority is user-space priority
1825and not the internal kernel priority. The policy is 1 for
1826SCHED_FIFO and 2 for SCHED_RR.
1827
1828Note, that the trace data shows the internal priority (99 - rtprio).
1829::
1830
1831  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1832
1833The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1834and in the running state 'R'. The sleep task was scheduled in with
18352389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1836and it too is in the running state.
1837
1838Doing the same with chrt -r 5 and function-trace set.
1839::
1840
1841  echo 1 > options/function-trace
1842
1843  # tracer: wakeup_rt
1844  #
1845  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1846  # --------------------------------------------------------------------
1847  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1848  #    -----------------
1849  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1850  #    -----------------
1851  #
1852  #                  _------=> CPU#
1853  #                 / _-----=> irqs-off
1854  #                | / _----=> need-resched
1855  #                || / _---=> hardirq/softirq
1856  #                ||| / _--=> preempt-depth
1857  #                |||| /     delay
1858  #  cmd     pid   ||||| time  |   caller
1859  #     \   /      |||||  \    |   /
1860    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1861    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1862    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1863    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1864    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1865    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1866    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1867    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1868    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1869    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1870    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1871    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1872    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1873    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1874    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1875    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1876    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1877    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1878    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1879    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1880    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1881    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1882    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1883    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1884    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1885    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1886    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1887    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1888    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1889    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1890    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1891    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
1892    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1893    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
1894    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
1895    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
1896    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1897    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1898    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1899    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1900    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1901    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1902    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1903    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1904    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1905    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1906    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1907    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1908    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1909    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1910    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1911    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1912    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1913    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1914    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1915    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1916    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1917    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1918    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1919    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1920    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1921    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1922    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1923    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1924    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1925    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1926    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1927    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1928    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1929    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1930    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1931    <idle>-0       3.N..   25us : schedule <-cpu_idle
1932    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1933    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1934    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1935    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1936    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1937    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1938    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1939    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1940    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1941    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1942    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1943    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1944    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1945
1946This isn't that big of a trace, even with function tracing enabled,
1947so I included the entire trace.
1948
1949The interrupt went off while when the system was idle. Somewhere
1950before task_woken_rt() was called, the NEED_RESCHED flag was set,
1951this is indicated by the first occurrence of the 'N' flag.
1952
1953Latency tracing and events
1954--------------------------
1955As function tracing can induce a much larger latency, but without
1956seeing what happens within the latency it is hard to know what
1957caused it. There is a middle ground, and that is with enabling
1958events.
1959::
1960
1961  # echo 0 > options/function-trace
1962  # echo wakeup_rt > current_tracer
1963  # echo 1 > events/enable
1964  # echo 1 > tracing_on
1965  # echo 0 > tracing_max_latency
1966  # chrt -f 5 sleep 1
1967  # echo 0 > tracing_on
1968  # cat trace
1969  # tracer: wakeup_rt
1970  #
1971  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1972  # --------------------------------------------------------------------
1973  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1974  #    -----------------
1975  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1976  #    -----------------
1977  #
1978  #                  _------=> CPU#
1979  #                 / _-----=> irqs-off
1980  #                | / _----=> need-resched
1981  #                || / _---=> hardirq/softirq
1982  #                ||| / _--=> preempt-depth
1983  #                |||| /     delay
1984  #  cmd     pid   ||||| time  |   caller
1985  #     \   /      |||||  \    |   /
1986    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
1987    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1988    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1989    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1990    <idle>-0       2.N.2    2us : power_end: cpu_id=2
1991    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
1992    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1993    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1994    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
1995    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
1996    <idle>-0       2d..3    6us : __schedule <-schedule
1997    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
1998
1999
2000Hardware Latency Detector
2001-------------------------
2002
2003The hardware latency detector is executed by enabling the "hwlat" tracer.
2004
2005NOTE, this tracer will affect the performance of the system as it will
2006periodically make a CPU constantly busy with interrupts disabled.
2007::
2008
2009  # echo hwlat > current_tracer
2010  # sleep 100
2011  # cat trace
2012  # tracer: hwlat
2013  #
2014  #                              _-----=> irqs-off
2015  #                             / _----=> need-resched
2016  #                            | / _---=> hardirq/softirq
2017  #                            || / _--=> preempt-depth
2018  #                            ||| /     delay
2019  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2020  #              | |       |   ||||       |         |
2021             <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
2022             <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
2023             <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
2024             <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
2025             <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
2026             <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1
2027
2028
2029The above output is somewhat the same in the header. All events will have
2030interrupts disabled 'd'. Under the FUNCTION title there is:
2031
2032 #1
2033	This is the count of events recorded that were greater than the
2034	tracing_threshold (See below).
2035
2036 inner/outer(us):   12/14
2037
2038      This shows two numbers as "inner latency" and "outer latency". The test
2039      runs in a loop checking a timestamp twice. The latency detected within
2040      the two timestamps is the "inner latency" and the latency detected
2041      after the previous timestamp and the next timestamp in the loop is
2042      the "outer latency".
2043
2044 ts:1499801089.066141940
2045
2046      The absolute timestamp that the event happened.
2047
2048 nmi-total:4 nmi-count:1
2049
2050      On architectures that support it, if an NMI comes in during the
2051      test, the time spent in NMI is reported in "nmi-total" (in
2052      microseconds).
2053
2054      All architectures that have NMIs will show the "nmi-count" if an
2055      NMI comes in during the test.
2056
2057hwlat files:
2058
2059  tracing_threshold
2060	This gets automatically set to "10" to represent 10
2061	microseconds. This is the threshold of latency that
2062	needs to be detected before the trace will be recorded.
2063
2064	Note, when hwlat tracer is finished (another tracer is
2065	written into "current_tracer"), the original value for
2066	tracing_threshold is placed back into this file.
2067
2068  hwlat_detector/width
2069	The length of time the test runs with interrupts disabled.
2070
2071  hwlat_detector/window
2072	The length of time of the window which the test
2073	runs. That is, the test will run for "width"
2074	microseconds per "window" microseconds
2075
2076  tracing_cpumask
2077	When the test is started. A kernel thread is created that
2078	runs the test. This thread will alternate between CPUs
2079	listed in the tracing_cpumask between each period
2080	(one "window"). To limit the test to specific CPUs
2081	set the mask in this file to only the CPUs that the test
2082	should run on.
2083
2084function
2085--------
2086
2087This tracer is the function tracer. Enabling the function tracer
2088can be done from the debug file system. Make sure the
2089ftrace_enabled is set; otherwise this tracer is a nop.
2090See the "ftrace_enabled" section below.
2091::
2092
2093  # sysctl kernel.ftrace_enabled=1
2094  # echo function > current_tracer
2095  # echo 1 > tracing_on
2096  # usleep 1
2097  # echo 0 > tracing_on
2098  # cat trace
2099  # tracer: function
2100  #
2101  # entries-in-buffer/entries-written: 24799/24799   #P:4
2102  #
2103  #                              _-----=> irqs-off
2104  #                             / _----=> need-resched
2105  #                            | / _---=> hardirq/softirq
2106  #                            || / _--=> preempt-depth
2107  #                            ||| /     delay
2108  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2109  #              | |       |   ||||       |         |
2110              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2111              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2112              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2113              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2114              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2115              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2116              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2117              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2118  [...]
2119
2120
2121Note: function tracer uses ring buffers to store the above
2122entries. The newest data may overwrite the oldest data.
2123Sometimes using echo to stop the trace is not sufficient because
2124the tracing could have overwritten the data that you wanted to
2125record. For this reason, it is sometimes better to disable
2126tracing directly from a program. This allows you to stop the
2127tracing at the point that you hit the part that you are
2128interested in. To disable the tracing directly from a C program,
2129something like following code snippet can be used::
2130
2131	int trace_fd;
2132	[...]
2133	int main(int argc, char *argv[]) {
2134		[...]
2135		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2136		[...]
2137		if (condition_hit()) {
2138			write(trace_fd, "0", 1);
2139		}
2140		[...]
2141	}
2142
2143
2144Single thread tracing
2145---------------------
2146
2147By writing into set_ftrace_pid you can trace a
2148single thread. For example::
2149
2150  # cat set_ftrace_pid
2151  no pid
2152  # echo 3111 > set_ftrace_pid
2153  # cat set_ftrace_pid
2154  3111
2155  # echo function > current_tracer
2156  # cat trace | head
2157  # tracer: function
2158  #
2159  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2160  #              | |       |          |         |
2161      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2162      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2163      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2164      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2165      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2166      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2167  # echo > set_ftrace_pid
2168  # cat trace |head
2169  # tracer: function
2170  #
2171  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2172  #              | |       |          |         |
2173  ##### CPU 3 buffer started ####
2174      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2175      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2176      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2177      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2178      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2179
2180If you want to trace a function when executing, you could use
2181something like this simple program.
2182::
2183
2184	#include <stdio.h>
2185	#include <stdlib.h>
2186	#include <sys/types.h>
2187	#include <sys/stat.h>
2188	#include <fcntl.h>
2189	#include <unistd.h>
2190	#include <string.h>
2191
2192	#define _STR(x) #x
2193	#define STR(x) _STR(x)
2194	#define MAX_PATH 256
2195
2196	const char *find_tracefs(void)
2197	{
2198	       static char tracefs[MAX_PATH+1];
2199	       static int tracefs_found;
2200	       char type[100];
2201	       FILE *fp;
2202
2203	       if (tracefs_found)
2204		       return tracefs;
2205
2206	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2207		       perror("/proc/mounts");
2208		       return NULL;
2209	       }
2210
2211	       while (fscanf(fp, "%*s %"
2212		             STR(MAX_PATH)
2213		             "s %99s %*s %*d %*d\n",
2214		             tracefs, type) == 2) {
2215		       if (strcmp(type, "tracefs") == 0)
2216		               break;
2217	       }
2218	       fclose(fp);
2219
2220	       if (strcmp(type, "tracefs") != 0) {
2221		       fprintf(stderr, "tracefs not mounted");
2222		       return NULL;
2223	       }
2224
2225	       strcat(tracefs, "/tracing/");
2226	       tracefs_found = 1;
2227
2228	       return tracefs;
2229	}
2230
2231	const char *tracing_file(const char *file_name)
2232	{
2233	       static char trace_file[MAX_PATH+1];
2234	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2235	       return trace_file;
2236	}
2237
2238	int main (int argc, char **argv)
2239	{
2240		if (argc < 1)
2241		        exit(-1);
2242
2243		if (fork() > 0) {
2244		        int fd, ffd;
2245		        char line[64];
2246		        int s;
2247
2248		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2249		        if (ffd < 0)
2250		                exit(-1);
2251		        write(ffd, "nop", 3);
2252
2253		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2254		        s = sprintf(line, "%d\n", getpid());
2255		        write(fd, line, s);
2256
2257		        write(ffd, "function", 8);
2258
2259		        close(fd);
2260		        close(ffd);
2261
2262		        execvp(argv[1], argv+1);
2263		}
2264
2265		return 0;
2266	}
2267
2268Or this simple script!
2269::
2270
2271  #!/bin/bash
2272
2273  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2274  echo nop > $tracefs/tracing/current_tracer
2275  echo 0 > $tracefs/tracing/tracing_on
2276  echo $$ > $tracefs/tracing/set_ftrace_pid
2277  echo function > $tracefs/tracing/current_tracer
2278  echo 1 > $tracefs/tracing/tracing_on
2279  exec "$@"
2280
2281
2282function graph tracer
2283---------------------------
2284
2285This tracer is similar to the function tracer except that it
2286probes a function on its entry and its exit. This is done by
2287using a dynamically allocated stack of return addresses in each
2288task_struct. On function entry the tracer overwrites the return
2289address of each function traced to set a custom probe. Thus the
2290original return address is stored on the stack of return address
2291in the task_struct.
2292
2293Probing on both ends of a function leads to special features
2294such as:
2295
2296- measure of a function's time execution
2297- having a reliable call stack to draw function calls graph
2298
2299This tracer is useful in several situations:
2300
2301- you want to find the reason of a strange kernel behavior and
2302  need to see what happens in detail on any areas (or specific
2303  ones).
2304
2305- you are experiencing weird latencies but it's difficult to
2306  find its origin.
2307
2308- you want to find quickly which path is taken by a specific
2309  function
2310
2311- you just want to peek inside a working kernel and want to see
2312  what happens there.
2313
2314::
2315
2316  # tracer: function_graph
2317  #
2318  # CPU  DURATION                  FUNCTION CALLS
2319  # |     |   |                     |   |   |   |
2320
2321   0)               |  sys_open() {
2322   0)               |    do_sys_open() {
2323   0)               |      getname() {
2324   0)               |        kmem_cache_alloc() {
2325   0)   1.382 us    |          __might_sleep();
2326   0)   2.478 us    |        }
2327   0)               |        strncpy_from_user() {
2328   0)               |          might_fault() {
2329   0)   1.389 us    |            __might_sleep();
2330   0)   2.553 us    |          }
2331   0)   3.807 us    |        }
2332   0)   7.876 us    |      }
2333   0)               |      alloc_fd() {
2334   0)   0.668 us    |        _spin_lock();
2335   0)   0.570 us    |        expand_files();
2336   0)   0.586 us    |        _spin_unlock();
2337
2338
2339There are several columns that can be dynamically
2340enabled/disabled. You can use every combination of options you
2341want, depending on your needs.
2342
2343- The cpu number on which the function executed is default
2344  enabled.  It is sometimes better to only trace one cpu (see
2345  tracing_cpu_mask file) or you might sometimes see unordered
2346  function calls while cpu tracing switch.
2347
2348	- hide: echo nofuncgraph-cpu > trace_options
2349	- show: echo funcgraph-cpu > trace_options
2350
2351- The duration (function's time of execution) is displayed on
2352  the closing bracket line of a function or on the same line
2353  than the current function in case of a leaf one. It is default
2354  enabled.
2355
2356	- hide: echo nofuncgraph-duration > trace_options
2357	- show: echo funcgraph-duration > trace_options
2358
2359- The overhead field precedes the duration field in case of
2360  reached duration thresholds.
2361
2362	- hide: echo nofuncgraph-overhead > trace_options
2363	- show: echo funcgraph-overhead > trace_options
2364	- depends on: funcgraph-duration
2365
2366  ie::
2367
2368    3) # 1837.709 us |          } /* __switch_to */
2369    3)               |          finish_task_switch() {
2370    3)   0.313 us    |            _raw_spin_unlock_irq();
2371    3)   3.177 us    |          }
2372    3) # 1889.063 us |        } /* __schedule */
2373    3) ! 140.417 us  |      } /* __schedule */
2374    3) # 2034.948 us |    } /* schedule */
2375    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2376
2377    [...]
2378
2379    1)   0.260 us    |              msecs_to_jiffies();
2380    1)   0.313 us    |              __rcu_read_unlock();
2381    1) + 61.770 us   |            }
2382    1) + 64.479 us   |          }
2383    1)   0.313 us    |          rcu_bh_qs();
2384    1)   0.313 us    |          __local_bh_enable();
2385    1) ! 217.240 us  |        }
2386    1)   0.365 us    |        idle_cpu();
2387    1)               |        rcu_irq_exit() {
2388    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2389    1)   3.125 us    |        }
2390    1) ! 227.812 us  |      }
2391    1) ! 457.395 us  |    }
2392    1) @ 119760.2 us |  }
2393
2394    [...]
2395
2396    2)               |    handle_IPI() {
2397    1)   6.979 us    |                  }
2398    2)   0.417 us    |      scheduler_ipi();
2399    1)   9.791 us    |                }
2400    1) + 12.917 us   |              }
2401    2)   3.490 us    |    }
2402    1) + 15.729 us   |            }
2403    1) + 18.542 us   |          }
2404    2) $ 3594274 us  |  }
2405
2406Flags::
2407
2408  + means that the function exceeded 10 usecs.
2409  ! means that the function exceeded 100 usecs.
2410  # means that the function exceeded 1000 usecs.
2411  * means that the function exceeded 10 msecs.
2412  @ means that the function exceeded 100 msecs.
2413  $ means that the function exceeded 1 sec.
2414
2415
2416- The task/pid field displays the thread cmdline and pid which
2417  executed the function. It is default disabled.
2418
2419	- hide: echo nofuncgraph-proc > trace_options
2420	- show: echo funcgraph-proc > trace_options
2421
2422  ie::
2423
2424    # tracer: function_graph
2425    #
2426    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2427    # |    |    |           |   |                     |   |   |   |
2428    0)    sh-4802     |               |                  d_free() {
2429    0)    sh-4802     |               |                    call_rcu() {
2430    0)    sh-4802     |               |                      __call_rcu() {
2431    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2432    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2433    0)    sh-4802     |   2.899 us    |                      }
2434    0)    sh-4802     |   4.040 us    |                    }
2435    0)    sh-4802     |   5.151 us    |                  }
2436    0)    sh-4802     | + 49.370 us   |                }
2437
2438
2439- The absolute time field is an absolute timestamp given by the
2440  system clock since it started. A snapshot of this time is
2441  given on each entry/exit of functions
2442
2443	- hide: echo nofuncgraph-abstime > trace_options
2444	- show: echo funcgraph-abstime > trace_options
2445
2446  ie::
2447
2448    #
2449    #      TIME       CPU  DURATION                  FUNCTION CALLS
2450    #       |         |     |   |                     |   |   |   |
2451    360.774522 |   1)   0.541 us    |                                          }
2452    360.774522 |   1)   4.663 us    |                                        }
2453    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2454    360.774524 |   1)   6.796 us    |                                      }
2455    360.774524 |   1)   7.952 us    |                                    }
2456    360.774525 |   1)   9.063 us    |                                  }
2457    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2458    360.774527 |   1)   0.578 us    |                                  __brelse();
2459    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2460    360.774528 |   1)               |                                    unlock_buffer() {
2461    360.774529 |   1)               |                                      wake_up_bit() {
2462    360.774529 |   1)               |                                        bit_waitqueue() {
2463    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2464
2465
2466The function name is always displayed after the closing bracket
2467for a function if the start of that function is not in the
2468trace buffer.
2469
2470Display of the function name after the closing bracket may be
2471enabled for functions whose start is in the trace buffer,
2472allowing easier searching with grep for function durations.
2473It is default disabled.
2474
2475	- hide: echo nofuncgraph-tail > trace_options
2476	- show: echo funcgraph-tail > trace_options
2477
2478  Example with nofuncgraph-tail (default)::
2479
2480    0)               |      putname() {
2481    0)               |        kmem_cache_free() {
2482    0)   0.518 us    |          __phys_addr();
2483    0)   1.757 us    |        }
2484    0)   2.861 us    |      }
2485
2486  Example with funcgraph-tail::
2487
2488    0)               |      putname() {
2489    0)               |        kmem_cache_free() {
2490    0)   0.518 us    |          __phys_addr();
2491    0)   1.757 us    |        } /* kmem_cache_free() */
2492    0)   2.861 us    |      } /* putname() */
2493
2494You can put some comments on specific functions by using
2495trace_printk() For example, if you want to put a comment inside
2496the __might_sleep() function, you just have to include
2497<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2498
2499	trace_printk("I'm a comment!\n")
2500
2501will produce::
2502
2503   1)               |             __might_sleep() {
2504   1)               |                /* I'm a comment! */
2505   1)   1.449 us    |             }
2506
2507
2508You might find other useful features for this tracer in the
2509following "dynamic ftrace" section such as tracing only specific
2510functions or tasks.
2511
2512dynamic ftrace
2513--------------
2514
2515If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2516virtually no overhead when function tracing is disabled. The way
2517this works is the mcount function call (placed at the start of
2518every kernel function, produced by the -pg switch in gcc),
2519starts of pointing to a simple return. (Enabling FTRACE will
2520include the -pg switch in the compiling of the kernel.)
2521
2522At compile time every C file object is run through the
2523recordmcount program (located in the scripts directory). This
2524program will parse the ELF headers in the C object to find all
2525the locations in the .text section that call mcount. Starting
2526with gcc verson 4.6, the -mfentry has been added for x86, which
2527calls "__fentry__" instead of "mcount". Which is called before
2528the creation of the stack frame.
2529
2530Note, not all sections are traced. They may be prevented by either
2531a notrace, or blocked another way and all inline functions are not
2532traced. Check the "available_filter_functions" file to see what functions
2533can be traced.
2534
2535A section called "__mcount_loc" is created that holds
2536references to all the mcount/fentry call sites in the .text section.
2537The recordmcount program re-links this section back into the
2538original object. The final linking stage of the kernel will add all these
2539references into a single table.
2540
2541On boot up, before SMP is initialized, the dynamic ftrace code
2542scans this table and updates all the locations into nops. It
2543also records the locations, which are added to the
2544available_filter_functions list.  Modules are processed as they
2545are loaded and before they are executed.  When a module is
2546unloaded, it also removes its functions from the ftrace function
2547list. This is automatic in the module unload code, and the
2548module author does not need to worry about it.
2549
2550When tracing is enabled, the process of modifying the function
2551tracepoints is dependent on architecture. The old method is to use
2552kstop_machine to prevent races with the CPUs executing code being
2553modified (which can cause the CPU to do undesirable things, especially
2554if the modified code crosses cache (or page) boundaries), and the nops are
2555patched back to calls. But this time, they do not call mcount
2556(which is just a function stub). They now call into the ftrace
2557infrastructure.
2558
2559The new method of modifying the function tracepoints is to place
2560a breakpoint at the location to be modified, sync all CPUs, modify
2561the rest of the instruction not covered by the breakpoint. Sync
2562all CPUs again, and then remove the breakpoint with the finished
2563version to the ftrace call site.
2564
2565Some archs do not even need to monkey around with the synchronization,
2566and can just slap the new code on top of the old without any
2567problems with other CPUs executing it at the same time.
2568
2569One special side-effect to the recording of the functions being
2570traced is that we can now selectively choose which functions we
2571wish to trace and which ones we want the mcount calls to remain
2572as nops.
2573
2574Two files are used, one for enabling and one for disabling the
2575tracing of specified functions. They are:
2576
2577  set_ftrace_filter
2578
2579and
2580
2581  set_ftrace_notrace
2582
2583A list of available functions that you can add to these files is
2584listed in:
2585
2586   available_filter_functions
2587
2588::
2589
2590  # cat available_filter_functions
2591  put_prev_task_idle
2592  kmem_cache_create
2593  pick_next_task_rt
2594  get_online_cpus
2595  pick_next_task_fair
2596  mutex_lock
2597  [...]
2598
2599If I am only interested in sys_nanosleep and hrtimer_interrupt::
2600
2601  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2602  # echo function > current_tracer
2603  # echo 1 > tracing_on
2604  # usleep 1
2605  # echo 0 > tracing_on
2606  # cat trace
2607  # tracer: function
2608  #
2609  # entries-in-buffer/entries-written: 5/5   #P:4
2610  #
2611  #                              _-----=> irqs-off
2612  #                             / _----=> need-resched
2613  #                            | / _---=> hardirq/softirq
2614  #                            || / _--=> preempt-depth
2615  #                            ||| /     delay
2616  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2617  #              | |       |   ||||       |         |
2618            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2619            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2620            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2621            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2622            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2623
2624To see which functions are being traced, you can cat the file:
2625::
2626
2627  # cat set_ftrace_filter
2628  hrtimer_interrupt
2629  sys_nanosleep
2630
2631
2632Perhaps this is not enough. The filters also allow glob(7) matching.
2633
2634  ``<match>*``
2635	will match functions that begin with <match>
2636  ``*<match>``
2637	will match functions that end with <match>
2638  ``*<match>*``
2639	will match functions that have <match> in it
2640  ``<match1>*<match2>``
2641	will match functions that begin with <match1> and end with <match2>
2642
2643.. note::
2644      It is better to use quotes to enclose the wild cards,
2645      otherwise the shell may expand the parameters into names
2646      of files in the local directory.
2647
2648::
2649
2650  # echo 'hrtimer_*' > set_ftrace_filter
2651
2652Produces::
2653
2654  # tracer: function
2655  #
2656  # entries-in-buffer/entries-written: 897/897   #P:4
2657  #
2658  #                              _-----=> irqs-off
2659  #                             / _----=> need-resched
2660  #                            | / _---=> hardirq/softirq
2661  #                            || / _--=> preempt-depth
2662  #                            ||| /     delay
2663  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2664  #              | |       |   ||||       |         |
2665            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2666            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2667            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2668            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2669            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2670            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2671            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2672            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2673
2674Notice that we lost the sys_nanosleep.
2675::
2676
2677  # cat set_ftrace_filter
2678  hrtimer_run_queues
2679  hrtimer_run_pending
2680  hrtimer_init
2681  hrtimer_cancel
2682  hrtimer_try_to_cancel
2683  hrtimer_forward
2684  hrtimer_start
2685  hrtimer_reprogram
2686  hrtimer_force_reprogram
2687  hrtimer_get_next_event
2688  hrtimer_interrupt
2689  hrtimer_nanosleep
2690  hrtimer_wakeup
2691  hrtimer_get_remaining
2692  hrtimer_get_res
2693  hrtimer_init_sleeper
2694
2695
2696This is because the '>' and '>>' act just like they do in bash.
2697To rewrite the filters, use '>'
2698To append to the filters, use '>>'
2699
2700To clear out a filter so that all functions will be recorded
2701again::
2702
2703 # echo > set_ftrace_filter
2704 # cat set_ftrace_filter
2705 #
2706
2707Again, now we want to append.
2708
2709::
2710
2711  # echo sys_nanosleep > set_ftrace_filter
2712  # cat set_ftrace_filter
2713  sys_nanosleep
2714  # echo 'hrtimer_*' >> set_ftrace_filter
2715  # cat set_ftrace_filter
2716  hrtimer_run_queues
2717  hrtimer_run_pending
2718  hrtimer_init
2719  hrtimer_cancel
2720  hrtimer_try_to_cancel
2721  hrtimer_forward
2722  hrtimer_start
2723  hrtimer_reprogram
2724  hrtimer_force_reprogram
2725  hrtimer_get_next_event
2726  hrtimer_interrupt
2727  sys_nanosleep
2728  hrtimer_nanosleep
2729  hrtimer_wakeup
2730  hrtimer_get_remaining
2731  hrtimer_get_res
2732  hrtimer_init_sleeper
2733
2734
2735The set_ftrace_notrace prevents those functions from being
2736traced.
2737::
2738
2739  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2740
2741Produces::
2742
2743  # tracer: function
2744  #
2745  # entries-in-buffer/entries-written: 39608/39608   #P:4
2746  #
2747  #                              _-----=> irqs-off
2748  #                             / _----=> need-resched
2749  #                            | / _---=> hardirq/softirq
2750  #                            || / _--=> preempt-depth
2751  #                            ||| /     delay
2752  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2753  #              | |       |   ||||       |         |
2754              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2755              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2756              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2757              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2758              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2759              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2760              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2761              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2762              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2763              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2764              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2765              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2766
2767We can see that there's no more lock or preempt tracing.
2768
2769
2770Dynamic ftrace with the function graph tracer
2771---------------------------------------------
2772
2773Although what has been explained above concerns both the
2774function tracer and the function-graph-tracer, there are some
2775special features only available in the function-graph tracer.
2776
2777If you want to trace only one function and all of its children,
2778you just have to echo its name into set_graph_function::
2779
2780 echo __do_fault > set_graph_function
2781
2782will produce the following "expanded" trace of the __do_fault()
2783function::
2784
2785   0)               |  __do_fault() {
2786   0)               |    filemap_fault() {
2787   0)               |      find_lock_page() {
2788   0)   0.804 us    |        find_get_page();
2789   0)               |        __might_sleep() {
2790   0)   1.329 us    |        }
2791   0)   3.904 us    |      }
2792   0)   4.979 us    |    }
2793   0)   0.653 us    |    _spin_lock();
2794   0)   0.578 us    |    page_add_file_rmap();
2795   0)   0.525 us    |    native_set_pte_at();
2796   0)   0.585 us    |    _spin_unlock();
2797   0)               |    unlock_page() {
2798   0)   0.541 us    |      page_waitqueue();
2799   0)   0.639 us    |      __wake_up_bit();
2800   0)   2.786 us    |    }
2801   0) + 14.237 us   |  }
2802   0)               |  __do_fault() {
2803   0)               |    filemap_fault() {
2804   0)               |      find_lock_page() {
2805   0)   0.698 us    |        find_get_page();
2806   0)               |        __might_sleep() {
2807   0)   1.412 us    |        }
2808   0)   3.950 us    |      }
2809   0)   5.098 us    |    }
2810   0)   0.631 us    |    _spin_lock();
2811   0)   0.571 us    |    page_add_file_rmap();
2812   0)   0.526 us    |    native_set_pte_at();
2813   0)   0.586 us    |    _spin_unlock();
2814   0)               |    unlock_page() {
2815   0)   0.533 us    |      page_waitqueue();
2816   0)   0.638 us    |      __wake_up_bit();
2817   0)   2.793 us    |    }
2818   0) + 14.012 us   |  }
2819
2820You can also expand several functions at once::
2821
2822 echo sys_open > set_graph_function
2823 echo sys_close >> set_graph_function
2824
2825Now if you want to go back to trace all functions you can clear
2826this special filter via::
2827
2828 echo > set_graph_function
2829
2830
2831ftrace_enabled
2832--------------
2833
2834Note, the proc sysctl ftrace_enable is a big on/off switch for the
2835function tracer. By default it is enabled (when function tracing is
2836enabled in the kernel). If it is disabled, all function tracing is
2837disabled. This includes not only the function tracers for ftrace, but
2838also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2839
2840Please disable this with care.
2841
2842This can be disable (and enabled) with::
2843
2844  sysctl kernel.ftrace_enabled=0
2845  sysctl kernel.ftrace_enabled=1
2846
2847 or
2848
2849  echo 0 > /proc/sys/kernel/ftrace_enabled
2850  echo 1 > /proc/sys/kernel/ftrace_enabled
2851
2852
2853Filter commands
2854---------------
2855
2856A few commands are supported by the set_ftrace_filter interface.
2857Trace commands have the following format::
2858
2859  <function>:<command>:<parameter>
2860
2861The following commands are supported:
2862
2863- mod:
2864  This command enables function filtering per module. The
2865  parameter defines the module. For example, if only the write*
2866  functions in the ext3 module are desired, run:
2867
2868   echo 'write*:mod:ext3' > set_ftrace_filter
2869
2870  This command interacts with the filter in the same way as
2871  filtering based on function names. Thus, adding more functions
2872  in a different module is accomplished by appending (>>) to the
2873  filter file. Remove specific module functions by prepending
2874  '!'::
2875
2876   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2877
2878  Mod command supports module globbing. Disable tracing for all
2879  functions except a specific module::
2880
2881   echo '!*:mod:!ext3' >> set_ftrace_filter
2882
2883  Disable tracing for all modules, but still trace kernel::
2884
2885   echo '!*:mod:*' >> set_ftrace_filter
2886
2887  Enable filter only for kernel::
2888
2889   echo '*write*:mod:!*' >> set_ftrace_filter
2890
2891  Enable filter for module globbing::
2892
2893   echo '*write*:mod:*snd*' >> set_ftrace_filter
2894
2895- traceon/traceoff:
2896  These commands turn tracing on and off when the specified
2897  functions are hit. The parameter determines how many times the
2898  tracing system is turned on and off. If unspecified, there is
2899  no limit. For example, to disable tracing when a schedule bug
2900  is hit the first 5 times, run::
2901
2902   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2903
2904  To always disable tracing when __schedule_bug is hit::
2905
2906   echo '__schedule_bug:traceoff' > set_ftrace_filter
2907
2908  These commands are cumulative whether or not they are appended
2909  to set_ftrace_filter. To remove a command, prepend it by '!'
2910  and drop the parameter::
2911
2912   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2913
2914  The above removes the traceoff command for __schedule_bug
2915  that have a counter. To remove commands without counters::
2916
2917   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2918
2919- snapshot:
2920  Will cause a snapshot to be triggered when the function is hit.
2921  ::
2922
2923   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2924
2925  To only snapshot once:
2926  ::
2927
2928   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2929
2930  To remove the above commands::
2931
2932   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2933   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2934
2935- enable_event/disable_event:
2936  These commands can enable or disable a trace event. Note, because
2937  function tracing callbacks are very sensitive, when these commands
2938  are registered, the trace point is activated, but disabled in
2939  a "soft" mode. That is, the tracepoint will be called, but
2940  just will not be traced. The event tracepoint stays in this mode
2941  as long as there's a command that triggers it.
2942  ::
2943
2944   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2945   	 set_ftrace_filter
2946
2947  The format is::
2948
2949    <function>:enable_event:<system>:<event>[:count]
2950    <function>:disable_event:<system>:<event>[:count]
2951
2952  To remove the events commands::
2953
2954   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2955   	 set_ftrace_filter
2956   echo '!schedule:disable_event:sched:sched_switch' > \
2957   	 set_ftrace_filter
2958
2959- dump:
2960  When the function is hit, it will dump the contents of the ftrace
2961  ring buffer to the console. This is useful if you need to debug
2962  something, and want to dump the trace when a certain function
2963  is hit. Perhaps its a function that is called before a tripple
2964  fault happens and does not allow you to get a regular dump.
2965
2966- cpudump:
2967  When the function is hit, it will dump the contents of the ftrace
2968  ring buffer for the current CPU to the console. Unlike the "dump"
2969  command, it only prints out the contents of the ring buffer for the
2970  CPU that executed the function that triggered the dump.
2971
2972trace_pipe
2973----------
2974
2975The trace_pipe outputs the same content as the trace file, but
2976the effect on the tracing is different. Every read from
2977trace_pipe is consumed. This means that subsequent reads will be
2978different. The trace is live.
2979::
2980
2981  # echo function > current_tracer
2982  # cat trace_pipe > /tmp/trace.out &
2983  [1] 4153
2984  # echo 1 > tracing_on
2985  # usleep 1
2986  # echo 0 > tracing_on
2987  # cat trace
2988  # tracer: function
2989  #
2990  # entries-in-buffer/entries-written: 0/0   #P:4
2991  #
2992  #                              _-----=> irqs-off
2993  #                             / _----=> need-resched
2994  #                            | / _---=> hardirq/softirq
2995  #                            || / _--=> preempt-depth
2996  #                            ||| /     delay
2997  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2998  #              | |       |   ||||       |         |
2999
3000  #
3001  # cat /tmp/trace.out
3002             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3003             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3004             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3005             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3006             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3007             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3008             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3009             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3010             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3011
3012
3013Note, reading the trace_pipe file will block until more input is
3014added.
3015
3016trace entries
3017-------------
3018
3019Having too much or not enough data can be troublesome in
3020diagnosing an issue in the kernel. The file buffer_size_kb is
3021used to modify the size of the internal trace buffers. The
3022number listed is the number of entries that can be recorded per
3023CPU. To know the full size, multiply the number of possible CPUs
3024with the number of entries.
3025::
3026
3027  # cat buffer_size_kb
3028  1408 (units kilobytes)
3029
3030Or simply read buffer_total_size_kb
3031::
3032
3033  # cat buffer_total_size_kb
3034  5632
3035
3036To modify the buffer, simple echo in a number (in 1024 byte segments).
3037::
3038
3039  # echo 10000 > buffer_size_kb
3040  # cat buffer_size_kb
3041  10000 (units kilobytes)
3042
3043It will try to allocate as much as possible. If you allocate too
3044much, it can cause Out-Of-Memory to trigger.
3045::
3046
3047  # echo 1000000000000 > buffer_size_kb
3048  -bash: echo: write error: Cannot allocate memory
3049  # cat buffer_size_kb
3050  85
3051
3052The per_cpu buffers can be changed individually as well:
3053::
3054
3055  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3056  # echo 100 > per_cpu/cpu1/buffer_size_kb
3057
3058When the per_cpu buffers are not the same, the buffer_size_kb
3059at the top level will just show an X
3060::
3061
3062  # cat buffer_size_kb
3063  X
3064
3065This is where the buffer_total_size_kb is useful:
3066::
3067
3068  # cat buffer_total_size_kb
3069  12916
3070
3071Writing to the top level buffer_size_kb will reset all the buffers
3072to be the same again.
3073
3074Snapshot
3075--------
3076CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3077available to all non latency tracers. (Latency tracers which
3078record max latency, such as "irqsoff" or "wakeup", can't use
3079this feature, since those are already using the snapshot
3080mechanism internally.)
3081
3082Snapshot preserves a current trace buffer at a particular point
3083in time without stopping tracing. Ftrace swaps the current
3084buffer with a spare buffer, and tracing continues in the new
3085current (=previous spare) buffer.
3086
3087The following tracefs files in "tracing" are related to this
3088feature:
3089
3090  snapshot:
3091
3092	This is used to take a snapshot and to read the output
3093	of the snapshot. Echo 1 into this file to allocate a
3094	spare buffer and to take a snapshot (swap), then read
3095	the snapshot from this file in the same format as
3096	"trace" (described above in the section "The File
3097	System"). Both reads snapshot and tracing are executable
3098	in parallel. When the spare buffer is allocated, echoing
3099	0 frees it, and echoing else (positive) values clear the
3100	snapshot contents.
3101	More details are shown in the table below.
3102
3103	+--------------+------------+------------+------------+
3104	|status\\input |     0      |     1      |    else    |
3105	+==============+============+============+============+
3106	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3107	+--------------+------------+------------+------------+
3108	|allocated     |    free    |    swap    |   clear    |
3109	+--------------+------------+------------+------------+
3110
3111Here is an example of using the snapshot feature.
3112::
3113
3114  # echo 1 > events/sched/enable
3115  # echo 1 > snapshot
3116  # cat snapshot
3117  # tracer: nop
3118  #
3119  # entries-in-buffer/entries-written: 71/71   #P:8
3120  #
3121  #                              _-----=> irqs-off
3122  #                             / _----=> need-resched
3123  #                            | / _---=> hardirq/softirq
3124  #                            || / _--=> preempt-depth
3125  #                            ||| /     delay
3126  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3127  #              | |       |   ||||       |         |
3128            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3129             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3130  [...]
3131          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3132
3133  # cat trace
3134  # tracer: nop
3135  #
3136  # entries-in-buffer/entries-written: 77/77   #P:8
3137  #
3138  #                              _-----=> irqs-off
3139  #                             / _----=> need-resched
3140  #                            | / _---=> hardirq/softirq
3141  #                            || / _--=> preempt-depth
3142  #                            ||| /     delay
3143  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3144  #              | |       |   ||||       |         |
3145            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3146   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3147  [...]
3148
3149
3150If you try to use this snapshot feature when current tracer is
3151one of the latency tracers, you will get the following results.
3152::
3153
3154  # echo wakeup > current_tracer
3155  # echo 1 > snapshot
3156  bash: echo: write error: Device or resource busy
3157  # cat snapshot
3158  cat: snapshot: Device or resource busy
3159
3160
3161Instances
3162---------
3163In the tracefs tracing directory is a directory called "instances".
3164This directory can have new directories created inside of it using
3165mkdir, and removing directories with rmdir. The directory created
3166with mkdir in this directory will already contain files and other
3167directories after it is created.
3168::
3169
3170  # mkdir instances/foo
3171  # ls instances/foo
3172  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3173  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3174  trace_pipe  tracing_on
3175
3176As you can see, the new directory looks similar to the tracing directory
3177itself. In fact, it is very similar, except that the buffer and
3178events are agnostic from the main director, or from any other
3179instances that are created.
3180
3181The files in the new directory work just like the files with the
3182same name in the tracing directory except the buffer that is used
3183is a separate and new buffer. The files affect that buffer but do not
3184affect the main buffer with the exception of trace_options. Currently,
3185the trace_options affect all instances and the top level buffer
3186the same, but this may change in future releases. That is, options
3187may become specific to the instance they reside in.
3188
3189Notice that none of the function tracer files are there, nor is
3190current_tracer and available_tracers. This is because the buffers
3191can currently only have events enabled for them.
3192::
3193
3194  # mkdir instances/foo
3195  # mkdir instances/bar
3196  # mkdir instances/zoot
3197  # echo 100000 > buffer_size_kb
3198  # echo 1000 > instances/foo/buffer_size_kb
3199  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3200  # echo function > current_trace
3201  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3202  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3203  # echo 1 > instances/foo/events/sched/sched_switch/enable
3204  # echo 1 > instances/bar/events/irq/enable
3205  # echo 1 > instances/zoot/events/syscalls/enable
3206  # cat trace_pipe
3207  CPU:2 [LOST 11745 EVENTS]
3208              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3209              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3210              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3211              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3212              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3213              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3214              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3215              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3216              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3217              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3218              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3219  [...]
3220
3221  # cat instances/foo/trace_pipe
3222              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3223              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3224            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3225            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3226       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3227              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3228              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3229              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3230       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3231       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3232  [...]
3233
3234  # cat instances/bar/trace_pipe
3235       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3236            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3237              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3238              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3239              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3240              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3241              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3242              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3243              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3244              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3245              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3246              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3247  [...]
3248
3249  # cat instances/zoot/trace
3250  # tracer: nop
3251  #
3252  # entries-in-buffer/entries-written: 18996/18996   #P:4
3253  #
3254  #                              _-----=> irqs-off
3255  #                             / _----=> need-resched
3256  #                            | / _---=> hardirq/softirq
3257  #                            || / _--=> preempt-depth
3258  #                            ||| /     delay
3259  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3260  #              | |       |   ||||       |         |
3261              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3262              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3263              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3264              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3265              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3266              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3267              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3268              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3269              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3270              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3271              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3272
3273You can see that the trace of the top most trace buffer shows only
3274the function tracing. The foo instance displays wakeups and task
3275switches.
3276
3277To remove the instances, simply delete their directories:
3278::
3279
3280  # rmdir instances/foo
3281  # rmdir instances/bar
3282  # rmdir instances/zoot
3283
3284Note, if a process has a trace file open in one of the instance
3285directories, the rmdir will fail with EBUSY.
3286
3287
3288Stack trace
3289-----------
3290Since the kernel has a fixed sized stack, it is important not to
3291waste it in functions. A kernel developer must be conscience of
3292what they allocate on the stack. If they add too much, the system
3293can be in danger of a stack overflow, and corruption will occur,
3294usually leading to a system panic.
3295
3296There are some tools that check this, usually with interrupts
3297periodically checking usage. But if you can perform a check
3298at every function call that will become very useful. As ftrace provides
3299a function tracer, it makes it convenient to check the stack size
3300at every function call. This is enabled via the stack tracer.
3301
3302CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3303To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3304::
3305
3306 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3307
3308You can also enable it from the kernel command line to trace
3309the stack size of the kernel during boot up, by adding "stacktrace"
3310to the kernel command line parameter.
3311
3312After running it for a few minutes, the output looks like:
3313::
3314
3315  # cat stack_max_size
3316  2928
3317
3318  # cat stack_trace
3319          Depth    Size   Location    (18 entries)
3320          -----    ----   --------
3321    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3322    1)     2704     160   find_busiest_group+0x31/0x1f1
3323    2)     2544     256   load_balance+0xd9/0x662
3324    3)     2288      80   idle_balance+0xbb/0x130
3325    4)     2208     128   __schedule+0x26e/0x5b9
3326    5)     2080      16   schedule+0x64/0x66
3327    6)     2064     128   schedule_timeout+0x34/0xe0
3328    7)     1936     112   wait_for_common+0x97/0xf1
3329    8)     1824      16   wait_for_completion+0x1d/0x1f
3330    9)     1808     128   flush_work+0xfe/0x119
3331   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3332   11)     1664      48   input_available_p+0x1d/0x5c
3333   12)     1616      48   n_tty_poll+0x6d/0x134
3334   13)     1568      64   tty_poll+0x64/0x7f
3335   14)     1504     880   do_select+0x31e/0x511
3336   15)      624     400   core_sys_select+0x177/0x216
3337   16)      224      96   sys_select+0x91/0xb9
3338   17)      128     128   system_call_fastpath+0x16/0x1b
3339
3340Note, if -mfentry is being used by gcc, functions get traced before
3341they set up the stack frame. This means that leaf level functions
3342are not tested by the stack tracer when -mfentry is used.
3343
3344Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3345
3346More
3347----
3348More details can be found in the source code, in the `kernel/trace/*.c` files.
3349