1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a framework of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Throughout the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured.
99
100  available_tracers:
101
102	This holds the different types of tracers that
103	have been compiled into the kernel. The
104	tracers listed here can be configured by
105	echoing their name into current_tracer.
106
107  tracing_on:
108
109	This sets or displays whether writing to the trace
110	ring buffer is enabled. Echo 0 into this file to disable
111	the tracer or 1 to enable it. Note, this only disables
112	writing to the ring buffer, the tracing overhead may
113	still be occurring.
114
115	The kernel function tracing_off() can be used within the
116	kernel to disable writing to the ring buffer, which will
117	set this file to "0". User space can re-enable tracing by
118	echoing "1" into the file.
119
120	Note, the function and event trigger "traceoff" will also
121	set this file to zero and stop tracing. Which can also
122	be re-enabled by user space using this file.
123
124  trace:
125
126	This file holds the output of the trace in a human
127	readable format (described below). Note, tracing is temporarily
128	disabled while this file is being read (opened).
129
130  trace_pipe:
131
132	The output is the same as the "trace" file but this
133	file is meant to be streamed with live tracing.
134	Reads from this file will block until new data is
135	retrieved.  Unlike the "trace" file, this file is a
136	consumer. This means reading from this file causes
137	sequential reads to display more current data. Once
138	data is read from this file, it is consumed, and
139	will not be read again with a sequential read. The
140	"trace" file is static, and if the tracer is not
141	adding more data, it will display the same
142	information every time it is read. This file will not
143	disable tracing while being read.
144
145  trace_options:
146
147	This file lets the user control the amount of data
148	that is displayed in one of the above output
149	files. Options also exist to modify how a tracer
150	or events work (stack traces, timestamps, etc).
151
152  options:
153
154	This is a directory that has a file for every available
155	trace option (also in trace_options). Options may also be set
156	or cleared by writing a "1" or "0" respectively into the
157	corresponding file with the option name.
158
159  tracing_max_latency:
160
161	Some of the tracers record the max latency.
162	For example, the maximum time that interrupts are disabled.
163	The maximum time is saved in this file. The max trace will also be
164	stored,	and displayed by "trace". A new max trace will only be
165	recorded if the latency is greater than the value in this file
166	(in microseconds).
167
168	By echoing in a time into this file, no latency will be recorded
169	unless it is greater than the time in this file.
170
171  tracing_thresh:
172
173	Some latency tracers will record a trace whenever the
174	latency is greater than the number in this file.
175	Only active when the file contains a number greater than 0.
176	(in microseconds)
177
178  buffer_size_kb:
179
180	This sets or displays the number of kilobytes each CPU
181	buffer holds. By default, the trace buffers are the same size
182	for each CPU. The displayed number is the size of the
183	CPU buffer and not total size of all buffers. The
184	trace buffers are allocated in pages (blocks of memory
185	that the kernel uses for allocation, usually 4 KB in size).
186	If the last page allocated has room for more bytes
187	than requested, the rest of the page will be used,
188	making the actual allocation bigger than requested or shown.
189	( Note, the size may not be a multiple of the page size
190	due to buffer management meta-data. )
191
192	Buffer sizes for individual CPUs may vary
193	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194	this file will show "X".
195
196  buffer_total_size_kb:
197
198	This displays the total combined size of all the trace buffers.
199
200  free_buffer:
201
202	If a process is performing tracing, and the ring buffer	should be
203	shrunk "freed" when the process is finished, even if it were to be
204	killed by a signal, this file can be used for that purpose. On close
205	of this file, the ring buffer will be resized to its minimum size.
206	Having a process that is tracing also open this file, when the process
207	exits its file descriptor for this file will be closed, and in doing so,
208	the ring buffer will be "freed".
209
210	It may also stop tracing if disable_on_free option is set.
211
212  tracing_cpumask:
213
214	This is a mask that lets the user only trace on specified CPUs.
215	The format is a hex string representing the CPUs.
216
217  set_ftrace_filter:
218
219	When dynamic ftrace is configured in (see the
220	section below "dynamic ftrace"), the code is dynamically
221	modified (code text rewrite) to disable calling of the
222	function profiler (mcount). This lets tracing be configured
223	in with practically no overhead in performance.  This also
224	has a side effect of enabling or disabling specific functions
225	to be traced. Echoing names of functions into this file
226	will limit the trace to only those functions.
227	This influences the tracers "function" and "function_graph"
228	and thus also function profiling (see "function_profile_enabled").
229
230	The functions listed in "available_filter_functions" are what
231	can be written into this file.
232
233	This interface also allows for commands to be used. See the
234	"Filter commands" section for more details.
235
236	As a speed up, since processing strings can't be quite expensive
237	and requires a check of all functions registered to tracing, instead
238	an index can be written into this file. A number (starting with "1")
239	written will instead select the same corresponding at the line position
240	of the "available_filter_functions" file.
241
242  set_ftrace_notrace:
243
244	This has an effect opposite to that of
245	set_ftrace_filter. Any function that is added here will not
246	be traced. If a function exists in both set_ftrace_filter
247	and set_ftrace_notrace,	the function will _not_ be traced.
248
249  set_ftrace_pid:
250
251	Have the function tracer only trace the threads whose PID are
252	listed in this file.
253
254	If the "function-fork" option is set, then when a task whose
255	PID is listed in this file forks, the child's PID will
256	automatically be added to this file, and the child will be
257	traced by the function tracer as well. This option will also
258	cause PIDs of tasks that exit to be removed from the file.
259
260  set_event_pid:
261
262	Have the events only trace a task with a PID listed in this file.
263	Note, sched_switch and sched_wake_up will also trace events
264	listed in this file.
265
266	To have the PIDs of children of tasks with their PID in this file
267	added on fork, enable the "event-fork" option. That option will also
268	cause the PIDs of tasks to be removed from this file when the task
269	exits.
270
271  set_graph_function:
272
273	Functions listed in this file will cause the function graph
274	tracer to only trace these functions and the functions that
275	they call. (See the section "dynamic ftrace" for more details).
276	Note, set_ftrace_filter and set_ftrace_notrace still affects
277	what functions are being traced.
278
279  set_graph_notrace:
280
281	Similar to set_graph_function, but will disable function graph
282	tracing when the function is hit until it exits the function.
283	This makes it possible to ignore tracing functions that are called
284	by a specific function.
285
286  available_filter_functions:
287
288	This lists the functions that ftrace has processed and can trace.
289	These are the function names that you can pass to
290	"set_ftrace_filter", "set_ftrace_notrace",
291	"set_graph_function", or "set_graph_notrace".
292	(See the section "dynamic ftrace" below for more details.)
293
294  dyn_ftrace_total_info:
295
296	This file is for debugging purposes. The number of functions that
297	have been converted to nops and are available to be traced.
298
299  enabled_functions:
300
301	This file is more for debugging ftrace, but can also be useful
302	in seeing if any function has a callback attached to it.
303	Not only does the trace infrastructure use ftrace function
304	trace utility, but other subsystems might too. This file
305	displays all functions that have a callback attached to them
306	as well as the number of callbacks that have been attached.
307	Note, a callback may also call multiple functions which will
308	not be listed in this count.
309
310	If the callback registered to be traced by a function with
311	the "save regs" attribute (thus even more overhead), a 'R'
312	will be displayed on the same line as the function that
313	is returning registers.
314
315	If the callback registered to be traced by a function with
316	the "ip modify" attribute (thus the regs->ip can be changed),
317	an 'I' will be displayed on the same line as the function that
318	can be overridden.
319
320	If the architecture supports it, it will also show what callback
321	is being directly called by the function. If the count is greater
322	than 1 it most likely will be ftrace_ops_list_func().
323
324	If the callback of the function jumps to a trampoline that is
325	specific to a the callback and not the standard trampoline,
326	its address will be printed as well as the function that the
327	trampoline calls.
328
329  function_profile_enabled:
330
331	When set it will enable all functions with either the function
332	tracer, or if configured, the function graph tracer. It will
333	keep a histogram of the number of functions that were called
334	and if the function graph tracer was configured, it will also keep
335	track of the time spent in those functions. The histogram
336	content can be displayed in the files:
337
338	trace_stat/function<cpu> ( function0, function1, etc).
339
340  trace_stat:
341
342	A directory that holds different tracing stats.
343
344  kprobe_events:
345
346	Enable dynamic trace points. See kprobetrace.txt.
347
348  kprobe_profile:
349
350	Dynamic trace points stats. See kprobetrace.txt.
351
352  max_graph_depth:
353
354	Used with the function graph tracer. This is the max depth
355	it will trace into a function. Setting this to a value of
356	one will show only the first kernel function that is called
357	from user space.
358
359  printk_formats:
360
361	This is for tools that read the raw format files. If an event in
362	the ring buffer references a string, only a pointer to the string
363	is recorded into the buffer and not the string itself. This prevents
364	tools from knowing what that string was. This file displays the string
365	and address for	the string allowing tools to map the pointers to what
366	the strings were.
367
368  saved_cmdlines:
369
370	Only the pid of the task is recorded in a trace event unless
371	the event specifically saves the task comm as well. Ftrace
372	makes a cache of pid mappings to comms to try to display
373	comms for events. If a pid for a comm is not listed, then
374	"<...>" is displayed in the output.
375
376	If the option "record-cmd" is set to "0", then comms of tasks
377	will not be saved during recording. By default, it is enabled.
378
379  saved_cmdlines_size:
380
381	By default, 128 comms are saved (see "saved_cmdlines" above). To
382	increase or decrease the amount of comms that are cached, echo
383	in a the number of comms to cache, into this file.
384
385  saved_tgids:
386
387	If the option "record-tgid" is set, on each scheduling context switch
388	the Task Group ID of a task is saved in a table mapping the PID of
389	the thread to its TGID. By default, the "record-tgid" option is
390	disabled.
391
392  snapshot:
393
394	This displays the "snapshot" buffer and also lets the user
395	take a snapshot of the current running trace.
396	See the "Snapshot" section below for more details.
397
398  stack_max_size:
399
400	When the stack tracer is activated, this will display the
401	maximum stack size it has encountered.
402	See the "Stack Trace" section below.
403
404  stack_trace:
405
406	This displays the stack back trace of the largest stack
407	that was encountered when the stack tracer is activated.
408	See the "Stack Trace" section below.
409
410  stack_trace_filter:
411
412	This is similar to "set_ftrace_filter" but it limits what
413	functions the stack tracer will check.
414
415  trace_clock:
416
417	Whenever an event is recorded into the ring buffer, a
418	"timestamp" is added. This stamp comes from a specified
419	clock. By default, ftrace uses the "local" clock. This
420	clock is very fast and strictly per cpu, but on some
421	systems it may not be monotonic with respect to other
422	CPUs. In other words, the local clocks may not be in sync
423	with local clocks on other CPUs.
424
425	Usual clocks for tracing::
426
427	  # cat trace_clock
428	  [local] global counter x86-tsc
429
430	The clock with the square brackets around it is the one in effect.
431
432	local:
433		Default clock, but may not be in sync across CPUs
434
435	global:
436		This clock is in sync with all CPUs but may
437		be a bit slower than the local clock.
438
439	counter:
440		This is not a clock at all, but literally an atomic
441		counter. It counts up one by one, but is in sync
442		with all CPUs. This is useful when you need to
443		know exactly the order events occurred with respect to
444		each other on different CPUs.
445
446	uptime:
447		This uses the jiffies counter and the time stamp
448		is relative to the time since boot up.
449
450	perf:
451		This makes ftrace use the same clock that perf uses.
452		Eventually perf will be able to read ftrace buffers
453		and this will help out in interleaving the data.
454
455	x86-tsc:
456		Architectures may define their own clocks. For
457		example, x86 uses its own TSC cycle clock here.
458
459	ppc-tb:
460		This uses the powerpc timebase register value.
461		This is in sync across CPUs and can also be used
462		to correlate events across hypervisor/guest if
463		tb_offset is known.
464
465	mono:
466		This uses the fast monotonic clock (CLOCK_MONOTONIC)
467		which is monotonic and is subject to NTP rate adjustments.
468
469	mono_raw:
470		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
471		which is monotonic but is not subject to any rate adjustments
472		and ticks at the same rate as the hardware clocksource.
473
474	boot:
475		This is the boot clock (CLOCK_BOOTTIME) and is based on the
476		fast monotonic clock, but also accounts for time spent in
477		suspend. Since the clock access is designed for use in
478		tracing in the suspend path, some side effects are possible
479		if clock is accessed after the suspend time is accounted before
480		the fast mono clock is updated. In this case, the clock update
481		appears to happen slightly sooner than it normally would have.
482		Also on 32-bit systems, it's possible that the 64-bit boot offset
483		sees a partial update. These effects are rare and post
484		processing should be able to handle them. See comments in the
485		ktime_get_boot_fast_ns() function for more information.
486
487	To set a clock, simply echo the clock name into this file::
488
489	  # echo global > trace_clock
490
491  trace_marker:
492
493	This is a very useful file for synchronizing user space
494	with events happening in the kernel. Writing strings into
495	this file will be written into the ftrace buffer.
496
497	It is useful in applications to open this file at the start
498	of the application and just reference the file descriptor
499	for the file::
500
501		void trace_write(const char *fmt, ...)
502		{
503			va_list ap;
504			char buf[256];
505			int n;
506
507			if (trace_fd < 0)
508				return;
509
510			va_start(ap, fmt);
511			n = vsnprintf(buf, 256, fmt, ap);
512			va_end(ap);
513
514			write(trace_fd, buf, n);
515		}
516
517	start::
518
519		trace_fd = open("trace_marker", WR_ONLY);
520
521	Note: Writing into the trace_marker file can also initiate triggers
522	      that are written into /sys/kernel/tracing/events/ftrace/print/trigger
523	      See "Event triggers" in Documentation/trace/events.rst and an
524              example in Documentation/trace/histogram.rst (Section 3.)
525
526  trace_marker_raw:
527
528	This is similar to trace_marker above, but is meant for for binary data
529	to be written to it, where a tool can be used to parse the data
530	from trace_pipe_raw.
531
532  uprobe_events:
533
534	Add dynamic tracepoints in programs.
535	See uprobetracer.txt
536
537  uprobe_profile:
538
539	Uprobe statistics. See uprobetrace.txt
540
541  instances:
542
543	This is a way to make multiple trace buffers where different
544	events can be recorded in different buffers.
545	See "Instances" section below.
546
547  events:
548
549	This is the trace event directory. It holds event tracepoints
550	(also known as static tracepoints) that have been compiled
551	into the kernel. It shows what event tracepoints exist
552	and how they are grouped by system. There are "enable"
553	files at various levels that can enable the tracepoints
554	when a "1" is written to them.
555
556	See events.txt for more information.
557
558  set_event:
559
560	By echoing in the event into this file, will enable that event.
561
562	See events.txt for more information.
563
564  available_events:
565
566	A list of events that can be enabled in tracing.
567
568	See events.txt for more information.
569
570  timestamp_mode:
571
572	Certain tracers may change the timestamp mode used when
573	logging trace events into the event buffer.  Events with
574	different modes can coexist within a buffer but the mode in
575	effect when an event is logged determines which timestamp mode
576	is used for that event.  The default timestamp mode is
577	'delta'.
578
579	Usual timestamp modes for tracing:
580
581	  # cat timestamp_mode
582	  [delta] absolute
583
584	  The timestamp mode with the square brackets around it is the
585	  one in effect.
586
587	  delta: Default timestamp mode - timestamp is a delta against
588	         a per-buffer timestamp.
589
590	  absolute: The timestamp is a full timestamp, not a delta
591                 against some other value.  As such it takes up more
592                 space and is less efficient.
593
594  hwlat_detector:
595
596	Directory for the Hardware Latency Detector.
597	See "Hardware Latency Detector" section below.
598
599  per_cpu:
600
601	This is a directory that contains the trace per_cpu information.
602
603  per_cpu/cpu0/buffer_size_kb:
604
605	The ftrace buffer is defined per_cpu. That is, there's a separate
606	buffer for each CPU to allow writes to be done atomically,
607	and free from cache bouncing. These buffers may have different
608	size buffers. This file is similar to the buffer_size_kb
609	file, but it only displays or sets the buffer size for the
610	specific CPU. (here cpu0).
611
612  per_cpu/cpu0/trace:
613
614	This is similar to the "trace" file, but it will only display
615	the data specific for the CPU. If written to, it only clears
616	the specific CPU buffer.
617
618  per_cpu/cpu0/trace_pipe
619
620	This is similar to the "trace_pipe" file, and is a consuming
621	read, but it will only display (and consume) the data specific
622	for the CPU.
623
624  per_cpu/cpu0/trace_pipe_raw
625
626	For tools that can parse the ftrace ring buffer binary format,
627	the trace_pipe_raw file can be used to extract the data
628	from the ring buffer directly. With the use of the splice()
629	system call, the buffer data can be quickly transferred to
630	a file or to the network where a server is collecting the
631	data.
632
633	Like trace_pipe, this is a consuming reader, where multiple
634	reads will always produce different data.
635
636  per_cpu/cpu0/snapshot:
637
638	This is similar to the main "snapshot" file, but will only
639	snapshot the current CPU (if supported). It only displays
640	the content of the snapshot for a given CPU, and if
641	written to, only clears this CPU buffer.
642
643  per_cpu/cpu0/snapshot_raw:
644
645	Similar to the trace_pipe_raw, but will read the binary format
646	from the snapshot buffer for the given CPU.
647
648  per_cpu/cpu0/stats:
649
650	This displays certain stats about the ring buffer:
651
652	entries:
653		The number of events that are still in the buffer.
654
655	overrun:
656		The number of lost events due to overwriting when
657		the buffer was full.
658
659	commit overrun:
660		Should always be zero.
661		This gets set if so many events happened within a nested
662		event (ring buffer is re-entrant), that it fills the
663		buffer and starts dropping events.
664
665	bytes:
666		Bytes actually read (not overwritten).
667
668	oldest event ts:
669		The oldest timestamp in the buffer
670
671	now ts:
672		The current timestamp
673
674	dropped events:
675		Events lost due to overwrite option being off.
676
677	read events:
678		The number of events read.
679
680The Tracers
681-----------
682
683Here is the list of current tracers that may be configured.
684
685  "function"
686
687	Function call tracer to trace all kernel functions.
688
689  "function_graph"
690
691	Similar to the function tracer except that the
692	function tracer probes the functions on their entry
693	whereas the function graph tracer traces on both entry
694	and exit of the functions. It then provides the ability
695	to draw a graph of function calls similar to C code
696	source.
697
698  "blk"
699
700	The block tracer. The tracer used by the blktrace user
701	application.
702
703  "hwlat"
704
705	The Hardware Latency tracer is used to detect if the hardware
706	produces any latency. See "Hardware Latency Detector" section
707	below.
708
709  "irqsoff"
710
711	Traces the areas that disable interrupts and saves
712	the trace with the longest max latency.
713	See tracing_max_latency. When a new max is recorded,
714	it replaces the old trace. It is best to view this
715	trace with the latency-format option enabled, which
716	happens automatically when the tracer is selected.
717
718  "preemptoff"
719
720	Similar to irqsoff but traces and records the amount of
721	time for which preemption is disabled.
722
723  "preemptirqsoff"
724
725	Similar to irqsoff and preemptoff, but traces and
726	records the largest time for which irqs and/or preemption
727	is disabled.
728
729  "wakeup"
730
731	Traces and records the max latency that it takes for
732	the highest priority task to get scheduled after
733	it has been woken up.
734        Traces all tasks as an average developer would expect.
735
736  "wakeup_rt"
737
738        Traces and records the max latency that it takes for just
739        RT tasks (as the current "wakeup" does). This is useful
740        for those interested in wake up timings of RT tasks.
741
742  "wakeup_dl"
743
744	Traces and records the max latency that it takes for
745	a SCHED_DEADLINE task to be woken (as the "wakeup" and
746	"wakeup_rt" does).
747
748  "mmiotrace"
749
750	A special tracer that is used to trace binary module.
751	It will trace all the calls that a module makes to the
752	hardware. Everything it writes and reads from the I/O
753	as well.
754
755  "branch"
756
757	This tracer can be configured when tracing likely/unlikely
758	calls within the kernel. It will trace when a likely and
759	unlikely branch is hit and if it was correct in its prediction
760	of being correct.
761
762  "nop"
763
764	This is the "trace nothing" tracer. To remove all
765	tracers from tracing simply echo "nop" into
766	current_tracer.
767
768
769Examples of using the tracer
770----------------------------
771
772Here are typical examples of using the tracers when controlling
773them only with the tracefs interface (without using any
774user-land utilities).
775
776Output format:
777--------------
778
779Here is an example of the output format of the file "trace"::
780
781  # tracer: function
782  #
783  # entries-in-buffer/entries-written: 140080/250280   #P:4
784  #
785  #                              _-----=> irqs-off
786  #                             / _----=> need-resched
787  #                            | / _---=> hardirq/softirq
788  #                            || / _--=> preempt-depth
789  #                            ||| /     delay
790  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
791  #              | |       |   ||||       |         |
792              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
793              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
794              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
795              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
796              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
797              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
798              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
799              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
800              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
801              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
802              ....
803
804A header is printed with the tracer name that is represented by
805the trace. In this case the tracer is "function". Then it shows the
806number of events in the buffer as well as the total number of entries
807that were written. The difference is the number of entries that were
808lost due to the buffer filling up (250280 - 140080 = 110200 events
809lost).
810
811The header explains the content of the events. Task name "bash", the task
812PID "1977", the CPU that it was running on "000", the latency format
813(explained below), the timestamp in <secs>.<usecs> format, the
814function name that was traced "sys_close" and the parent function that
815called this function "system_call_fastpath". The timestamp is the time
816at which the function was entered.
817
818Latency trace format
819--------------------
820
821When the latency-format option is enabled or when one of the latency
822tracers is set, the trace file gives somewhat more information to see
823why a latency happened. Here is a typical trace::
824
825  # tracer: irqsoff
826  #
827  # irqsoff latency trace v1.1.5 on 3.8.0-test+
828  # --------------------------------------------------------------------
829  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
830  #    -----------------
831  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
832  #    -----------------
833  #  => started at: __lock_task_sighand
834  #  => ended at:   _raw_spin_unlock_irqrestore
835  #
836  #
837  #                  _------=> CPU#
838  #                 / _-----=> irqs-off
839  #                | / _----=> need-resched
840  #                || / _---=> hardirq/softirq
841  #                ||| / _--=> preempt-depth
842  #                |||| /     delay
843  #  cmd     pid   ||||| time  |   caller
844  #     \   /      |||||  \    |   /
845        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
846        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
847        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
848        ps-6143    2d..1  306us : <stack trace>
849   => trace_hardirqs_on_caller
850   => trace_hardirqs_on
851   => _raw_spin_unlock_irqrestore
852   => do_task_stat
853   => proc_tgid_stat
854   => proc_single_show
855   => seq_read
856   => vfs_read
857   => sys_read
858   => system_call_fastpath
859
860
861This shows that the current tracer is "irqsoff" tracing the time
862for which interrupts were disabled. It gives the trace version (which
863never changes) and the version of the kernel upon which this was executed on
864(3.8). Then it displays the max latency in microseconds (259 us). The number
865of trace entries displayed and the total number (both are four: #4/4).
866VP, KP, SP, and HP are always zero and are reserved for later use.
867#P is the number of online CPUs (#P:4).
868
869The task is the process that was running when the latency
870occurred. (ps pid: 6143).
871
872The start and stop (the functions in which the interrupts were
873disabled and enabled respectively) that caused the latencies:
874
875  - __lock_task_sighand is where the interrupts were disabled.
876  - _raw_spin_unlock_irqrestore is where they were enabled again.
877
878The next lines after the header are the trace itself. The header
879explains which is which.
880
881  cmd: The name of the process in the trace.
882
883  pid: The PID of that process.
884
885  CPU#: The CPU which the process was running on.
886
887  irqs-off: 'd' interrupts are disabled. '.' otherwise.
888	.. caution:: If the architecture does not support a way to
889		read the irq flags variable, an 'X' will always
890		be printed here.
891
892  need-resched:
893	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
894	- 'n' only TIF_NEED_RESCHED is set,
895	- 'p' only PREEMPT_NEED_RESCHED is set,
896	- '.' otherwise.
897
898  hardirq/softirq:
899	- 'Z' - NMI occurred inside a hardirq
900	- 'z' - NMI is running
901	- 'H' - hard irq occurred inside a softirq.
902	- 'h' - hard irq is running
903	- 's' - soft irq is running
904	- '.' - normal context.
905
906  preempt-depth: The level of preempt_disabled
907
908The above is mostly meaningful for kernel developers.
909
910  time:
911	When the latency-format option is enabled, the trace file
912	output includes a timestamp relative to the start of the
913	trace. This differs from the output when latency-format
914	is disabled, which includes an absolute timestamp.
915
916  delay:
917	This is just to help catch your eye a bit better. And
918	needs to be fixed to be only relative to the same CPU.
919	The marks are determined by the difference between this
920	current trace and the next trace.
921
922	  - '$' - greater than 1 second
923	  - '@' - greater than 100 millisecond
924	  - '*' - greater than 10 millisecond
925	  - '#' - greater than 1000 microsecond
926	  - '!' - greater than 100 microsecond
927	  - '+' - greater than 10 microsecond
928	  - ' ' - less than or equal to 10 microsecond.
929
930  The rest is the same as the 'trace' file.
931
932  Note, the latency tracers will usually end with a back trace
933  to easily find where the latency occurred.
934
935trace_options
936-------------
937
938The trace_options file (or the options directory) is used to control
939what gets printed in the trace output, or manipulate the tracers.
940To see what is available, simply cat the file::
941
942  cat trace_options
943	print-parent
944	nosym-offset
945	nosym-addr
946	noverbose
947	noraw
948	nohex
949	nobin
950	noblock
951	trace_printk
952	annotate
953	nouserstacktrace
954	nosym-userobj
955	noprintk-msg-only
956	context-info
957	nolatency-format
958	record-cmd
959	norecord-tgid
960	overwrite
961	nodisable_on_free
962	irq-info
963	markers
964	noevent-fork
965	function-trace
966	nofunction-fork
967	nodisplay-graph
968	nostacktrace
969	nobranch
970
971To disable one of the options, echo in the option prepended with
972"no"::
973
974  echo noprint-parent > trace_options
975
976To enable an option, leave off the "no"::
977
978  echo sym-offset > trace_options
979
980Here are the available options:
981
982  print-parent
983	On function traces, display the calling (parent)
984	function as well as the function being traced.
985	::
986
987	  print-parent:
988	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
989
990	  noprint-parent:
991	   bash-4000  [01]  1477.606694: simple_strtoul
992
993
994  sym-offset
995	Display not only the function name, but also the
996	offset in the function. For example, instead of
997	seeing just "ktime_get", you will see
998	"ktime_get+0xb/0x20".
999	::
1000
1001	  sym-offset:
1002	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
1003
1004  sym-addr
1005	This will also display the function address as well
1006	as the function name.
1007	::
1008
1009	  sym-addr:
1010	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
1011
1012  verbose
1013	This deals with the trace file when the
1014        latency-format option is enabled.
1015	::
1016
1017	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1018	    (+0.000ms): simple_strtoul (kstrtoul)
1019
1020  raw
1021	This will display raw numbers. This option is best for
1022	use with user applications that can translate the raw
1023	numbers better than having it done in the kernel.
1024
1025  hex
1026	Similar to raw, but the numbers will be in a hexadecimal format.
1027
1028  bin
1029	This will print out the formats in raw binary.
1030
1031  block
1032	When set, reading trace_pipe will not block when polled.
1033
1034  trace_printk
1035	Can disable trace_printk() from writing into the buffer.
1036
1037  annotate
1038	It is sometimes confusing when the CPU buffers are full
1039	and one CPU buffer had a lot of events recently, thus
1040	a shorter time frame, were another CPU may have only had
1041	a few events, which lets it have older events. When
1042	the trace is reported, it shows the oldest events first,
1043	and it may look like only one CPU ran (the one with the
1044	oldest events). When the annotate option is set, it will
1045	display when a new CPU buffer started::
1046
1047			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1048			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1049			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1050		##### CPU 2 buffer started ####
1051			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1052			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1053			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1054
1055  userstacktrace
1056	This option changes the trace. It records a
1057	stacktrace of the current user space thread after
1058	each trace event.
1059
1060  sym-userobj
1061	when user stacktrace are enabled, look up which
1062	object the address belongs to, and print a
1063	relative address. This is especially useful when
1064	ASLR is on, otherwise you don't get a chance to
1065	resolve the address to object/file/line after
1066	the app is no longer running
1067
1068	The lookup is performed when you read
1069	trace,trace_pipe. Example::
1070
1071		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1072		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1073
1074
1075  printk-msg-only
1076	When set, trace_printk()s will only show the format
1077	and not their parameters (if trace_bprintk() or
1078	trace_bputs() was used to save the trace_printk()).
1079
1080  context-info
1081	Show only the event data. Hides the comm, PID,
1082	timestamp, CPU, and other useful data.
1083
1084  latency-format
1085	This option changes the trace output. When it is enabled,
1086	the trace displays additional information about the
1087	latency, as described in "Latency trace format".
1088
1089  record-cmd
1090	When any event or tracer is enabled, a hook is enabled
1091	in the sched_switch trace point to fill comm cache
1092	with mapped pids and comms. But this may cause some
1093	overhead, and if you only care about pids, and not the
1094	name of the task, disabling this option can lower the
1095	impact of tracing. See "saved_cmdlines".
1096
1097  record-tgid
1098	When any event or tracer is enabled, a hook is enabled
1099	in the sched_switch trace point to fill the cache of
1100	mapped Thread Group IDs (TGID) mapping to pids. See
1101	"saved_tgids".
1102
1103  overwrite
1104	This controls what happens when the trace buffer is
1105	full. If "1" (default), the oldest events are
1106	discarded and overwritten. If "0", then the newest
1107	events are discarded.
1108	(see per_cpu/cpu0/stats for overrun and dropped)
1109
1110  disable_on_free
1111	When the free_buffer is closed, tracing will
1112	stop (tracing_on set to 0).
1113
1114  irq-info
1115	Shows the interrupt, preempt count, need resched data.
1116	When disabled, the trace looks like::
1117
1118		# tracer: function
1119		#
1120		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1121		#
1122		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1123		#              | |       |          |         |
1124			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1125			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1126			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1127
1128
1129  markers
1130	When set, the trace_marker is writable (only by root).
1131	When disabled, the trace_marker will error with EINVAL
1132	on write.
1133
1134  event-fork
1135	When set, tasks with PIDs listed in set_event_pid will have
1136	the PIDs of their children added to set_event_pid when those
1137	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1138	their PIDs will be removed from the file.
1139
1140  function-trace
1141	The latency tracers will enable function tracing
1142	if this option is enabled (default it is). When
1143	it is disabled, the latency tracers do not trace
1144	functions. This keeps the overhead of the tracer down
1145	when performing latency tests.
1146
1147  function-fork
1148	When set, tasks with PIDs listed in set_ftrace_pid will
1149	have the PIDs of their children added to set_ftrace_pid
1150	when those tasks fork. Also, when tasks with PIDs in
1151	set_ftrace_pid exit, their PIDs will be removed from the
1152	file.
1153
1154  display-graph
1155	When set, the latency tracers (irqsoff, wakeup, etc) will
1156	use function graph tracing instead of function tracing.
1157
1158  stacktrace
1159	When set, a stack trace is recorded after any trace event
1160	is recorded.
1161
1162  branch
1163	Enable branch tracing with the tracer. This enables branch
1164	tracer along with the currently set tracer. Enabling this
1165	with the "nop" tracer is the same as just enabling the
1166	"branch" tracer.
1167
1168.. tip:: Some tracers have their own options. They only appear in this
1169       file when the tracer is active. They always appear in the
1170       options directory.
1171
1172
1173Here are the per tracer options:
1174
1175Options for function tracer:
1176
1177  func_stack_trace
1178	When set, a stack trace is recorded after every
1179	function that is recorded. NOTE! Limit the functions
1180	that are recorded before enabling this, with
1181	"set_ftrace_filter" otherwise the system performance
1182	will be critically degraded. Remember to disable
1183	this option before clearing the function filter.
1184
1185Options for function_graph tracer:
1186
1187 Since the function_graph tracer has a slightly different output
1188 it has its own options to control what is displayed.
1189
1190  funcgraph-overrun
1191	When set, the "overrun" of the graph stack is
1192	displayed after each function traced. The
1193	overrun, is when the stack depth of the calls
1194	is greater than what is reserved for each task.
1195	Each task has a fixed array of functions to
1196	trace in the call graph. If the depth of the
1197	calls exceeds that, the function is not traced.
1198	The overrun is the number of functions missed
1199	due to exceeding this array.
1200
1201  funcgraph-cpu
1202	When set, the CPU number of the CPU where the trace
1203	occurred is displayed.
1204
1205  funcgraph-overhead
1206	When set, if the function takes longer than
1207	A certain amount, then a delay marker is
1208	displayed. See "delay" above, under the
1209	header description.
1210
1211  funcgraph-proc
1212	Unlike other tracers, the process' command line
1213	is not displayed by default, but instead only
1214	when a task is traced in and out during a context
1215	switch. Enabling this options has the command
1216	of each process displayed at every line.
1217
1218  funcgraph-duration
1219	At the end of each function (the return)
1220	the duration of the amount of time in the
1221	function is displayed in microseconds.
1222
1223  funcgraph-abstime
1224	When set, the timestamp is displayed at each line.
1225
1226  funcgraph-irqs
1227	When disabled, functions that happen inside an
1228	interrupt will not be traced.
1229
1230  funcgraph-tail
1231	When set, the return event will include the function
1232	that it represents. By default this is off, and
1233	only a closing curly bracket "}" is displayed for
1234	the return of a function.
1235
1236  sleep-time
1237	When running function graph tracer, to include
1238	the time a task schedules out in its function.
1239	When enabled, it will account time the task has been
1240	scheduled out as part of the function call.
1241
1242  graph-time
1243	When running function profiler with function graph tracer,
1244	to include the time to call nested functions. When this is
1245	not set, the time reported for the function will only
1246	include the time the function itself executed for, not the
1247	time for functions that it called.
1248
1249Options for blk tracer:
1250
1251  blk_classic
1252	Shows a more minimalistic output.
1253
1254
1255irqsoff
1256-------
1257
1258When interrupts are disabled, the CPU can not react to any other
1259external event (besides NMIs and SMIs). This prevents the timer
1260interrupt from triggering or the mouse interrupt from letting
1261the kernel know of a new mouse event. The result is a latency
1262with the reaction time.
1263
1264The irqsoff tracer tracks the time for which interrupts are
1265disabled. When a new maximum latency is hit, the tracer saves
1266the trace leading up to that latency point so that every time a
1267new maximum is reached, the old saved trace is discarded and the
1268new trace is saved.
1269
1270To reset the maximum, echo 0 into tracing_max_latency. Here is
1271an example::
1272
1273  # echo 0 > options/function-trace
1274  # echo irqsoff > current_tracer
1275  # echo 1 > tracing_on
1276  # echo 0 > tracing_max_latency
1277  # ls -ltr
1278  [...]
1279  # echo 0 > tracing_on
1280  # cat trace
1281  # tracer: irqsoff
1282  #
1283  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1284  # --------------------------------------------------------------------
1285  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1286  #    -----------------
1287  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1288  #    -----------------
1289  #  => started at: run_timer_softirq
1290  #  => ended at:   run_timer_softirq
1291  #
1292  #
1293  #                  _------=> CPU#
1294  #                 / _-----=> irqs-off
1295  #                | / _----=> need-resched
1296  #                || / _---=> hardirq/softirq
1297  #                ||| / _--=> preempt-depth
1298  #                |||| /     delay
1299  #  cmd     pid   ||||| time  |   caller
1300  #     \   /      |||||  \    |   /
1301    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1302    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1303    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1304    <idle>-0       0dNs3   25us : <stack trace>
1305   => _raw_spin_unlock_irq
1306   => run_timer_softirq
1307   => __do_softirq
1308   => call_softirq
1309   => do_softirq
1310   => irq_exit
1311   => smp_apic_timer_interrupt
1312   => apic_timer_interrupt
1313   => rcu_idle_exit
1314   => cpu_idle
1315   => rest_init
1316   => start_kernel
1317   => x86_64_start_reservations
1318   => x86_64_start_kernel
1319
1320Here we see that that we had a latency of 16 microseconds (which is
1321very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1322interrupts. The difference between the 16 and the displayed
1323timestamp 25us occurred because the clock was incremented
1324between the time of recording the max latency and the time of
1325recording the function that had that latency.
1326
1327Note the above example had function-trace not set. If we set
1328function-trace, we get a much larger output::
1329
1330 with echo 1 > options/function-trace
1331
1332  # tracer: irqsoff
1333  #
1334  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1335  # --------------------------------------------------------------------
1336  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1337  #    -----------------
1338  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1339  #    -----------------
1340  #  => started at: ata_scsi_queuecmd
1341  #  => ended at:   ata_scsi_queuecmd
1342  #
1343  #
1344  #                  _------=> CPU#
1345  #                 / _-----=> irqs-off
1346  #                | / _----=> need-resched
1347  #                || / _---=> hardirq/softirq
1348  #                ||| / _--=> preempt-depth
1349  #                |||| /     delay
1350  #  cmd     pid   ||||| time  |   caller
1351  #     \   /      |||||  \    |   /
1352      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1353      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1354      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1355      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1356      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1357      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1358      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1359      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1360      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1361  [...]
1362      bash-2042    3d..1   67us : delay_tsc <-__delay
1363      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1364      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1365      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1366      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1367      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1368      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1369      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1370      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1371      bash-2042    3d..1  120us : <stack trace>
1372   => _raw_spin_unlock_irqrestore
1373   => ata_scsi_queuecmd
1374   => scsi_dispatch_cmd
1375   => scsi_request_fn
1376   => __blk_run_queue_uncond
1377   => __blk_run_queue
1378   => blk_queue_bio
1379   => generic_make_request
1380   => submit_bio
1381   => submit_bh
1382   => __ext3_get_inode_loc
1383   => ext3_iget
1384   => ext3_lookup
1385   => lookup_real
1386   => __lookup_hash
1387   => walk_component
1388   => lookup_last
1389   => path_lookupat
1390   => filename_lookup
1391   => user_path_at_empty
1392   => user_path_at
1393   => vfs_fstatat
1394   => vfs_stat
1395   => sys_newstat
1396   => system_call_fastpath
1397
1398
1399Here we traced a 71 microsecond latency. But we also see all the
1400functions that were called during that time. Note that by
1401enabling function tracing, we incur an added overhead. This
1402overhead may extend the latency times. But nevertheless, this
1403trace has provided some very helpful debugging information.
1404
1405If we prefer function graph output instead of function, we can set
1406display-graph option::
1407 with echo 1 > options/display-graph
1408
1409  # tracer: irqsoff
1410  #
1411  # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1412  # --------------------------------------------------------------------
1413  # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1414  #    -----------------
1415  #    | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1416  #    -----------------
1417  #  => started at: free_debug_processing
1418  #  => ended at:   return_to_handler
1419  #
1420  #
1421  #                                       _-----=> irqs-off
1422  #                                      / _----=> need-resched
1423  #                                     | / _---=> hardirq/softirq
1424  #                                     || / _--=> preempt-depth
1425  #                                     ||| /
1426  #   REL TIME      CPU  TASK/PID       ||||     DURATION                  FUNCTION CALLS
1427  #      |          |     |    |        ||||      |   |                     |   |   |   |
1428          0 us |   0)   bash-1507    |  d... |   0.000 us    |  _raw_spin_lock_irqsave();
1429          0 us |   0)   bash-1507    |  d..1 |   0.378 us    |    do_raw_spin_trylock();
1430          1 us |   0)   bash-1507    |  d..2 |               |    set_track() {
1431          2 us |   0)   bash-1507    |  d..2 |               |      save_stack_trace() {
1432          2 us |   0)   bash-1507    |  d..2 |               |        __save_stack_trace() {
1433          3 us |   0)   bash-1507    |  d..2 |               |          __unwind_start() {
1434          3 us |   0)   bash-1507    |  d..2 |               |            get_stack_info() {
1435          3 us |   0)   bash-1507    |  d..2 |   0.351 us    |              in_task_stack();
1436          4 us |   0)   bash-1507    |  d..2 |   1.107 us    |            }
1437  [...]
1438       3750 us |   0)   bash-1507    |  d..1 |   0.516 us    |      do_raw_spin_unlock();
1439       3750 us |   0)   bash-1507    |  d..1 |   0.000 us    |  _raw_spin_unlock_irqrestore();
1440       3764 us |   0)   bash-1507    |  d..1 |   0.000 us    |  tracer_hardirqs_on();
1441      bash-1507    0d..1 3792us : <stack trace>
1442   => free_debug_processing
1443   => __slab_free
1444   => kmem_cache_free
1445   => vm_area_free
1446   => remove_vma
1447   => exit_mmap
1448   => mmput
1449   => flush_old_exec
1450   => load_elf_binary
1451   => search_binary_handler
1452   => __do_execve_file.isra.32
1453   => __x64_sys_execve
1454   => do_syscall_64
1455   => entry_SYSCALL_64_after_hwframe
1456
1457preemptoff
1458----------
1459
1460When preemption is disabled, we may be able to receive
1461interrupts but the task cannot be preempted and a higher
1462priority task must wait for preemption to be enabled again
1463before it can preempt a lower priority task.
1464
1465The preemptoff tracer traces the places that disable preemption.
1466Like the irqsoff tracer, it records the maximum latency for
1467which preemption was disabled. The control of preemptoff tracer
1468is much like the irqsoff tracer.
1469::
1470
1471  # echo 0 > options/function-trace
1472  # echo preemptoff > current_tracer
1473  # echo 1 > tracing_on
1474  # echo 0 > tracing_max_latency
1475  # ls -ltr
1476  [...]
1477  # echo 0 > tracing_on
1478  # cat trace
1479  # tracer: preemptoff
1480  #
1481  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1482  # --------------------------------------------------------------------
1483  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1484  #    -----------------
1485  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1486  #    -----------------
1487  #  => started at: do_IRQ
1488  #  => ended at:   do_IRQ
1489  #
1490  #
1491  #                  _------=> CPU#
1492  #                 / _-----=> irqs-off
1493  #                | / _----=> need-resched
1494  #                || / _---=> hardirq/softirq
1495  #                ||| / _--=> preempt-depth
1496  #                |||| /     delay
1497  #  cmd     pid   ||||| time  |   caller
1498  #     \   /      |||||  \    |   /
1499      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1500      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1501      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1502      sshd-1991    1d..1   52us : <stack trace>
1503   => sub_preempt_count
1504   => irq_exit
1505   => do_IRQ
1506   => ret_from_intr
1507
1508
1509This has some more changes. Preemption was disabled when an
1510interrupt came in (notice the 'h'), and was enabled on exit.
1511But we also see that interrupts have been disabled when entering
1512the preempt off section and leaving it (the 'd'). We do not know if
1513interrupts were enabled in the mean time or shortly after this
1514was over.
1515::
1516
1517  # tracer: preemptoff
1518  #
1519  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1520  # --------------------------------------------------------------------
1521  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1522  #    -----------------
1523  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1524  #    -----------------
1525  #  => started at: wake_up_new_task
1526  #  => ended at:   task_rq_unlock
1527  #
1528  #
1529  #                  _------=> CPU#
1530  #                 / _-----=> irqs-off
1531  #                | / _----=> need-resched
1532  #                || / _---=> hardirq/softirq
1533  #                ||| / _--=> preempt-depth
1534  #                |||| /     delay
1535  #  cmd     pid   ||||| time  |   caller
1536  #     \   /      |||||  \    |   /
1537      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1538      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1539      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1540      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1541      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1542  [...]
1543      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1544      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1545      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1546      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1547      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1548      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1549      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1550      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1551  [...]
1552      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1553      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1554      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1555      bash-1994    1d..2   36us : do_softirq <-irq_exit
1556      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1557      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1558      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1559      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1560      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1561      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1562  [...]
1563      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1564      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1565      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1566      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1567      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1568      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1569      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1570      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1571      bash-1994    1.N.1  104us : <stack trace>
1572   => sub_preempt_count
1573   => _raw_spin_unlock_irqrestore
1574   => task_rq_unlock
1575   => wake_up_new_task
1576   => do_fork
1577   => sys_clone
1578   => stub_clone
1579
1580
1581The above is an example of the preemptoff trace with
1582function-trace set. Here we see that interrupts were not disabled
1583the entire time. The irq_enter code lets us know that we entered
1584an interrupt 'h'. Before that, the functions being traced still
1585show that it is not in an interrupt, but we can see from the
1586functions themselves that this is not the case.
1587
1588preemptirqsoff
1589--------------
1590
1591Knowing the locations that have interrupts disabled or
1592preemption disabled for the longest times is helpful. But
1593sometimes we would like to know when either preemption and/or
1594interrupts are disabled.
1595
1596Consider the following code::
1597
1598    local_irq_disable();
1599    call_function_with_irqs_off();
1600    preempt_disable();
1601    call_function_with_irqs_and_preemption_off();
1602    local_irq_enable();
1603    call_function_with_preemption_off();
1604    preempt_enable();
1605
1606The irqsoff tracer will record the total length of
1607call_function_with_irqs_off() and
1608call_function_with_irqs_and_preemption_off().
1609
1610The preemptoff tracer will record the total length of
1611call_function_with_irqs_and_preemption_off() and
1612call_function_with_preemption_off().
1613
1614But neither will trace the time that interrupts and/or
1615preemption is disabled. This total time is the time that we can
1616not schedule. To record this time, use the preemptirqsoff
1617tracer.
1618
1619Again, using this trace is much like the irqsoff and preemptoff
1620tracers.
1621::
1622
1623  # echo 0 > options/function-trace
1624  # echo preemptirqsoff > current_tracer
1625  # echo 1 > tracing_on
1626  # echo 0 > tracing_max_latency
1627  # ls -ltr
1628  [...]
1629  # echo 0 > tracing_on
1630  # cat trace
1631  # tracer: preemptirqsoff
1632  #
1633  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1634  # --------------------------------------------------------------------
1635  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1636  #    -----------------
1637  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1638  #    -----------------
1639  #  => started at: ata_scsi_queuecmd
1640  #  => ended at:   ata_scsi_queuecmd
1641  #
1642  #
1643  #                  _------=> CPU#
1644  #                 / _-----=> irqs-off
1645  #                | / _----=> need-resched
1646  #                || / _---=> hardirq/softirq
1647  #                ||| / _--=> preempt-depth
1648  #                |||| /     delay
1649  #  cmd     pid   ||||| time  |   caller
1650  #     \   /      |||||  \    |   /
1651        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1652        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1653        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1654        ls-2230    3...1  111us : <stack trace>
1655   => sub_preempt_count
1656   => _raw_spin_unlock_irqrestore
1657   => ata_scsi_queuecmd
1658   => scsi_dispatch_cmd
1659   => scsi_request_fn
1660   => __blk_run_queue_uncond
1661   => __blk_run_queue
1662   => blk_queue_bio
1663   => generic_make_request
1664   => submit_bio
1665   => submit_bh
1666   => ext3_bread
1667   => ext3_dir_bread
1668   => htree_dirblock_to_tree
1669   => ext3_htree_fill_tree
1670   => ext3_readdir
1671   => vfs_readdir
1672   => sys_getdents
1673   => system_call_fastpath
1674
1675
1676The trace_hardirqs_off_thunk is called from assembly on x86 when
1677interrupts are disabled in the assembly code. Without the
1678function tracing, we do not know if interrupts were enabled
1679within the preemption points. We do see that it started with
1680preemption enabled.
1681
1682Here is a trace with function-trace set::
1683
1684  # tracer: preemptirqsoff
1685  #
1686  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1687  # --------------------------------------------------------------------
1688  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1689  #    -----------------
1690  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1691  #    -----------------
1692  #  => started at: schedule
1693  #  => ended at:   mutex_unlock
1694  #
1695  #
1696  #                  _------=> CPU#
1697  #                 / _-----=> irqs-off
1698  #                | / _----=> need-resched
1699  #                || / _---=> hardirq/softirq
1700  #                ||| / _--=> preempt-depth
1701  #                |||| /     delay
1702  #  cmd     pid   ||||| time  |   caller
1703  #     \   /      |||||  \    |   /
1704  kworker/-59      3...1    0us : __schedule <-schedule
1705  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1706  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1707  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1708  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1709  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1710  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1711  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1712  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1713  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1714  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1715  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1716  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1717  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1718  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1719  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1720  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1721  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1722  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1723  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1724  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1725  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1726  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1727  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1728  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1729        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1730        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1731        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1732        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1733        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1734        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1735        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1736  [...]
1737        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1738        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1739        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1740        ls-2269    3d..3   21us : do_softirq <-irq_exit
1741        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1742        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1743        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1744        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1745        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1746        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1747        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1748  [...]
1749        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1750        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1751        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1752        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1753        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1754        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1755  [...]
1756        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1757        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1758        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1759        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1760        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1761        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1762        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1763        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1764        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1765        ls-2269    3d...  186us : <stack trace>
1766   => __mutex_unlock_slowpath
1767   => mutex_unlock
1768   => process_output
1769   => n_tty_write
1770   => tty_write
1771   => vfs_write
1772   => sys_write
1773   => system_call_fastpath
1774
1775This is an interesting trace. It started with kworker running and
1776scheduling out and ls taking over. But as soon as ls released the
1777rq lock and enabled interrupts (but not preemption) an interrupt
1778triggered. When the interrupt finished, it started running softirqs.
1779But while the softirq was running, another interrupt triggered.
1780When an interrupt is running inside a softirq, the annotation is 'H'.
1781
1782
1783wakeup
1784------
1785
1786One common case that people are interested in tracing is the
1787time it takes for a task that is woken to actually wake up.
1788Now for non Real-Time tasks, this can be arbitrary. But tracing
1789it none the less can be interesting.
1790
1791Without function tracing::
1792
1793  # echo 0 > options/function-trace
1794  # echo wakeup > current_tracer
1795  # echo 1 > tracing_on
1796  # echo 0 > tracing_max_latency
1797  # chrt -f 5 sleep 1
1798  # echo 0 > tracing_on
1799  # cat trace
1800  # tracer: wakeup
1801  #
1802  # wakeup latency trace v1.1.5 on 3.8.0-test+
1803  # --------------------------------------------------------------------
1804  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1805  #    -----------------
1806  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1807  #    -----------------
1808  #
1809  #                  _------=> CPU#
1810  #                 / _-----=> irqs-off
1811  #                | / _----=> need-resched
1812  #                || / _---=> hardirq/softirq
1813  #                ||| / _--=> preempt-depth
1814  #                |||| /     delay
1815  #  cmd     pid   ||||| time  |   caller
1816  #     \   /      |||||  \    |   /
1817    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1818    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1819    <idle>-0       3d..3   15us : __schedule <-schedule
1820    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1821
1822The tracer only traces the highest priority task in the system
1823to avoid tracing the normal circumstances. Here we see that
1824the kworker with a nice priority of -20 (not very nice), took
1825just 15 microseconds from the time it woke up, to the time it
1826ran.
1827
1828Non Real-Time tasks are not that interesting. A more interesting
1829trace is to concentrate only on Real-Time tasks.
1830
1831wakeup_rt
1832---------
1833
1834In a Real-Time environment it is very important to know the
1835wakeup time it takes for the highest priority task that is woken
1836up to the time that it executes. This is also known as "schedule
1837latency". I stress the point that this is about RT tasks. It is
1838also important to know the scheduling latency of non-RT tasks,
1839but the average schedule latency is better for non-RT tasks.
1840Tools like LatencyTop are more appropriate for such
1841measurements.
1842
1843Real-Time environments are interested in the worst case latency.
1844That is the longest latency it takes for something to happen,
1845and not the average. We can have a very fast scheduler that may
1846only have a large latency once in a while, but that would not
1847work well with Real-Time tasks.  The wakeup_rt tracer was designed
1848to record the worst case wakeups of RT tasks. Non-RT tasks are
1849not recorded because the tracer only records one worst case and
1850tracing non-RT tasks that are unpredictable will overwrite the
1851worst case latency of RT tasks (just run the normal wakeup
1852tracer for a while to see that effect).
1853
1854Since this tracer only deals with RT tasks, we will run this
1855slightly differently than we did with the previous tracers.
1856Instead of performing an 'ls', we will run 'sleep 1' under
1857'chrt' which changes the priority of the task.
1858::
1859
1860  # echo 0 > options/function-trace
1861  # echo wakeup_rt > current_tracer
1862  # echo 1 > tracing_on
1863  # echo 0 > tracing_max_latency
1864  # chrt -f 5 sleep 1
1865  # echo 0 > tracing_on
1866  # cat trace
1867  # tracer: wakeup
1868  #
1869  # tracer: wakeup_rt
1870  #
1871  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1872  # --------------------------------------------------------------------
1873  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1874  #    -----------------
1875  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1876  #    -----------------
1877  #
1878  #                  _------=> CPU#
1879  #                 / _-----=> irqs-off
1880  #                | / _----=> need-resched
1881  #                || / _---=> hardirq/softirq
1882  #                ||| / _--=> preempt-depth
1883  #                |||| /     delay
1884  #  cmd     pid   ||||| time  |   caller
1885  #     \   /      |||||  \    |   /
1886    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1887    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1888    <idle>-0       3d..3    5us : __schedule <-schedule
1889    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1890
1891
1892Running this on an idle system, we see that it only took 5 microseconds
1893to perform the task switch.  Note, since the trace point in the schedule
1894is before the actual "switch", we stop the tracing when the recorded task
1895is about to schedule in. This may change if we add a new marker at the
1896end of the scheduler.
1897
1898Notice that the recorded task is 'sleep' with the PID of 2389
1899and it has an rt_prio of 5. This priority is user-space priority
1900and not the internal kernel priority. The policy is 1 for
1901SCHED_FIFO and 2 for SCHED_RR.
1902
1903Note, that the trace data shows the internal priority (99 - rtprio).
1904::
1905
1906  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1907
1908The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1909and in the running state 'R'. The sleep task was scheduled in with
19102389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1911and it too is in the running state.
1912
1913Doing the same with chrt -r 5 and function-trace set.
1914::
1915
1916  echo 1 > options/function-trace
1917
1918  # tracer: wakeup_rt
1919  #
1920  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1921  # --------------------------------------------------------------------
1922  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1923  #    -----------------
1924  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1925  #    -----------------
1926  #
1927  #                  _------=> CPU#
1928  #                 / _-----=> irqs-off
1929  #                | / _----=> need-resched
1930  #                || / _---=> hardirq/softirq
1931  #                ||| / _--=> preempt-depth
1932  #                |||| /     delay
1933  #  cmd     pid   ||||| time  |   caller
1934  #     \   /      |||||  \    |   /
1935    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1936    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1937    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1938    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1939    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1940    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1941    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1942    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1943    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1944    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1945    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1946    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1947    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1948    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1949    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1950    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1951    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1952    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1953    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1954    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1955    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1956    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1957    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1958    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1959    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1960    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1961    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1962    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1963    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1964    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1965    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1966    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
1967    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1968    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
1969    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
1970    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
1971    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1972    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1973    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1974    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1975    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1976    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1977    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1978    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1979    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1980    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1981    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1982    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1983    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1984    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1985    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1986    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1987    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1988    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1989    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1990    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1991    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1992    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1993    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1994    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1995    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1996    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1997    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1998    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1999    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
2000    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
2001    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2002    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2003    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
2004    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
2005    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
2006    <idle>-0       3.N..   25us : schedule <-cpu_idle
2007    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
2008    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
2009    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
2010    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
2011    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
2012    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
2013    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
2014    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
2015    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
2016    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
2017    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
2018    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
2019    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
2020
2021This isn't that big of a trace, even with function tracing enabled,
2022so I included the entire trace.
2023
2024The interrupt went off while when the system was idle. Somewhere
2025before task_woken_rt() was called, the NEED_RESCHED flag was set,
2026this is indicated by the first occurrence of the 'N' flag.
2027
2028Latency tracing and events
2029--------------------------
2030As function tracing can induce a much larger latency, but without
2031seeing what happens within the latency it is hard to know what
2032caused it. There is a middle ground, and that is with enabling
2033events.
2034::
2035
2036  # echo 0 > options/function-trace
2037  # echo wakeup_rt > current_tracer
2038  # echo 1 > events/enable
2039  # echo 1 > tracing_on
2040  # echo 0 > tracing_max_latency
2041  # chrt -f 5 sleep 1
2042  # echo 0 > tracing_on
2043  # cat trace
2044  # tracer: wakeup_rt
2045  #
2046  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2047  # --------------------------------------------------------------------
2048  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2049  #    -----------------
2050  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2051  #    -----------------
2052  #
2053  #                  _------=> CPU#
2054  #                 / _-----=> irqs-off
2055  #                | / _----=> need-resched
2056  #                || / _---=> hardirq/softirq
2057  #                ||| / _--=> preempt-depth
2058  #                |||| /     delay
2059  #  cmd     pid   ||||| time  |   caller
2060  #     \   /      |||||  \    |   /
2061    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
2062    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2063    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2064    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2065    <idle>-0       2.N.2    2us : power_end: cpu_id=2
2066    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
2067    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2068    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2069    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
2070    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
2071    <idle>-0       2d..3    6us : __schedule <-schedule
2072    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
2073
2074
2075Hardware Latency Detector
2076-------------------------
2077
2078The hardware latency detector is executed by enabling the "hwlat" tracer.
2079
2080NOTE, this tracer will affect the performance of the system as it will
2081periodically make a CPU constantly busy with interrupts disabled.
2082::
2083
2084  # echo hwlat > current_tracer
2085  # sleep 100
2086  # cat trace
2087  # tracer: hwlat
2088  #
2089  #                              _-----=> irqs-off
2090  #                             / _----=> need-resched
2091  #                            | / _---=> hardirq/softirq
2092  #                            || / _--=> preempt-depth
2093  #                            ||| /     delay
2094  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2095  #              | |       |   ||||       |         |
2096             <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
2097             <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
2098             <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
2099             <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
2100             <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
2101             <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1
2102
2103
2104The above output is somewhat the same in the header. All events will have
2105interrupts disabled 'd'. Under the FUNCTION title there is:
2106
2107 #1
2108	This is the count of events recorded that were greater than the
2109	tracing_threshold (See below).
2110
2111 inner/outer(us):   12/14
2112
2113      This shows two numbers as "inner latency" and "outer latency". The test
2114      runs in a loop checking a timestamp twice. The latency detected within
2115      the two timestamps is the "inner latency" and the latency detected
2116      after the previous timestamp and the next timestamp in the loop is
2117      the "outer latency".
2118
2119 ts:1499801089.066141940
2120
2121      The absolute timestamp that the event happened.
2122
2123 nmi-total:4 nmi-count:1
2124
2125      On architectures that support it, if an NMI comes in during the
2126      test, the time spent in NMI is reported in "nmi-total" (in
2127      microseconds).
2128
2129      All architectures that have NMIs will show the "nmi-count" if an
2130      NMI comes in during the test.
2131
2132hwlat files:
2133
2134  tracing_threshold
2135	This gets automatically set to "10" to represent 10
2136	microseconds. This is the threshold of latency that
2137	needs to be detected before the trace will be recorded.
2138
2139	Note, when hwlat tracer is finished (another tracer is
2140	written into "current_tracer"), the original value for
2141	tracing_threshold is placed back into this file.
2142
2143  hwlat_detector/width
2144	The length of time the test runs with interrupts disabled.
2145
2146  hwlat_detector/window
2147	The length of time of the window which the test
2148	runs. That is, the test will run for "width"
2149	microseconds per "window" microseconds
2150
2151  tracing_cpumask
2152	When the test is started. A kernel thread is created that
2153	runs the test. This thread will alternate between CPUs
2154	listed in the tracing_cpumask between each period
2155	(one "window"). To limit the test to specific CPUs
2156	set the mask in this file to only the CPUs that the test
2157	should run on.
2158
2159function
2160--------
2161
2162This tracer is the function tracer. Enabling the function tracer
2163can be done from the debug file system. Make sure the
2164ftrace_enabled is set; otherwise this tracer is a nop.
2165See the "ftrace_enabled" section below.
2166::
2167
2168  # sysctl kernel.ftrace_enabled=1
2169  # echo function > current_tracer
2170  # echo 1 > tracing_on
2171  # usleep 1
2172  # echo 0 > tracing_on
2173  # cat trace
2174  # tracer: function
2175  #
2176  # entries-in-buffer/entries-written: 24799/24799   #P:4
2177  #
2178  #                              _-----=> irqs-off
2179  #                             / _----=> need-resched
2180  #                            | / _---=> hardirq/softirq
2181  #                            || / _--=> preempt-depth
2182  #                            ||| /     delay
2183  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2184  #              | |       |   ||||       |         |
2185              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2186              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2187              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2188              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2189              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2190              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2191              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2192              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2193  [...]
2194
2195
2196Note: function tracer uses ring buffers to store the above
2197entries. The newest data may overwrite the oldest data.
2198Sometimes using echo to stop the trace is not sufficient because
2199the tracing could have overwritten the data that you wanted to
2200record. For this reason, it is sometimes better to disable
2201tracing directly from a program. This allows you to stop the
2202tracing at the point that you hit the part that you are
2203interested in. To disable the tracing directly from a C program,
2204something like following code snippet can be used::
2205
2206	int trace_fd;
2207	[...]
2208	int main(int argc, char *argv[]) {
2209		[...]
2210		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2211		[...]
2212		if (condition_hit()) {
2213			write(trace_fd, "0", 1);
2214		}
2215		[...]
2216	}
2217
2218
2219Single thread tracing
2220---------------------
2221
2222By writing into set_ftrace_pid you can trace a
2223single thread. For example::
2224
2225  # cat set_ftrace_pid
2226  no pid
2227  # echo 3111 > set_ftrace_pid
2228  # cat set_ftrace_pid
2229  3111
2230  # echo function > current_tracer
2231  # cat trace | head
2232  # tracer: function
2233  #
2234  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2235  #              | |       |          |         |
2236      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2237      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2238      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2239      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2240      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2241      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2242  # echo > set_ftrace_pid
2243  # cat trace |head
2244  # tracer: function
2245  #
2246  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2247  #              | |       |          |         |
2248  ##### CPU 3 buffer started ####
2249      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2250      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2251      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2252      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2253      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2254
2255If you want to trace a function when executing, you could use
2256something like this simple program.
2257::
2258
2259	#include <stdio.h>
2260	#include <stdlib.h>
2261	#include <sys/types.h>
2262	#include <sys/stat.h>
2263	#include <fcntl.h>
2264	#include <unistd.h>
2265	#include <string.h>
2266
2267	#define _STR(x) #x
2268	#define STR(x) _STR(x)
2269	#define MAX_PATH 256
2270
2271	const char *find_tracefs(void)
2272	{
2273	       static char tracefs[MAX_PATH+1];
2274	       static int tracefs_found;
2275	       char type[100];
2276	       FILE *fp;
2277
2278	       if (tracefs_found)
2279		       return tracefs;
2280
2281	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2282		       perror("/proc/mounts");
2283		       return NULL;
2284	       }
2285
2286	       while (fscanf(fp, "%*s %"
2287		             STR(MAX_PATH)
2288		             "s %99s %*s %*d %*d\n",
2289		             tracefs, type) == 2) {
2290		       if (strcmp(type, "tracefs") == 0)
2291		               break;
2292	       }
2293	       fclose(fp);
2294
2295	       if (strcmp(type, "tracefs") != 0) {
2296		       fprintf(stderr, "tracefs not mounted");
2297		       return NULL;
2298	       }
2299
2300	       strcat(tracefs, "/tracing/");
2301	       tracefs_found = 1;
2302
2303	       return tracefs;
2304	}
2305
2306	const char *tracing_file(const char *file_name)
2307	{
2308	       static char trace_file[MAX_PATH+1];
2309	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2310	       return trace_file;
2311	}
2312
2313	int main (int argc, char **argv)
2314	{
2315		if (argc < 1)
2316		        exit(-1);
2317
2318		if (fork() > 0) {
2319		        int fd, ffd;
2320		        char line[64];
2321		        int s;
2322
2323		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2324		        if (ffd < 0)
2325		                exit(-1);
2326		        write(ffd, "nop", 3);
2327
2328		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2329		        s = sprintf(line, "%d\n", getpid());
2330		        write(fd, line, s);
2331
2332		        write(ffd, "function", 8);
2333
2334		        close(fd);
2335		        close(ffd);
2336
2337		        execvp(argv[1], argv+1);
2338		}
2339
2340		return 0;
2341	}
2342
2343Or this simple script!
2344::
2345
2346  #!/bin/bash
2347
2348  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2349  echo nop > $tracefs/tracing/current_tracer
2350  echo 0 > $tracefs/tracing/tracing_on
2351  echo $$ > $tracefs/tracing/set_ftrace_pid
2352  echo function > $tracefs/tracing/current_tracer
2353  echo 1 > $tracefs/tracing/tracing_on
2354  exec "$@"
2355
2356
2357function graph tracer
2358---------------------------
2359
2360This tracer is similar to the function tracer except that it
2361probes a function on its entry and its exit. This is done by
2362using a dynamically allocated stack of return addresses in each
2363task_struct. On function entry the tracer overwrites the return
2364address of each function traced to set a custom probe. Thus the
2365original return address is stored on the stack of return address
2366in the task_struct.
2367
2368Probing on both ends of a function leads to special features
2369such as:
2370
2371- measure of a function's time execution
2372- having a reliable call stack to draw function calls graph
2373
2374This tracer is useful in several situations:
2375
2376- you want to find the reason of a strange kernel behavior and
2377  need to see what happens in detail on any areas (or specific
2378  ones).
2379
2380- you are experiencing weird latencies but it's difficult to
2381  find its origin.
2382
2383- you want to find quickly which path is taken by a specific
2384  function
2385
2386- you just want to peek inside a working kernel and want to see
2387  what happens there.
2388
2389::
2390
2391  # tracer: function_graph
2392  #
2393  # CPU  DURATION                  FUNCTION CALLS
2394  # |     |   |                     |   |   |   |
2395
2396   0)               |  sys_open() {
2397   0)               |    do_sys_open() {
2398   0)               |      getname() {
2399   0)               |        kmem_cache_alloc() {
2400   0)   1.382 us    |          __might_sleep();
2401   0)   2.478 us    |        }
2402   0)               |        strncpy_from_user() {
2403   0)               |          might_fault() {
2404   0)   1.389 us    |            __might_sleep();
2405   0)   2.553 us    |          }
2406   0)   3.807 us    |        }
2407   0)   7.876 us    |      }
2408   0)               |      alloc_fd() {
2409   0)   0.668 us    |        _spin_lock();
2410   0)   0.570 us    |        expand_files();
2411   0)   0.586 us    |        _spin_unlock();
2412
2413
2414There are several columns that can be dynamically
2415enabled/disabled. You can use every combination of options you
2416want, depending on your needs.
2417
2418- The cpu number on which the function executed is default
2419  enabled.  It is sometimes better to only trace one cpu (see
2420  tracing_cpu_mask file) or you might sometimes see unordered
2421  function calls while cpu tracing switch.
2422
2423	- hide: echo nofuncgraph-cpu > trace_options
2424	- show: echo funcgraph-cpu > trace_options
2425
2426- The duration (function's time of execution) is displayed on
2427  the closing bracket line of a function or on the same line
2428  than the current function in case of a leaf one. It is default
2429  enabled.
2430
2431	- hide: echo nofuncgraph-duration > trace_options
2432	- show: echo funcgraph-duration > trace_options
2433
2434- The overhead field precedes the duration field in case of
2435  reached duration thresholds.
2436
2437	- hide: echo nofuncgraph-overhead > trace_options
2438	- show: echo funcgraph-overhead > trace_options
2439	- depends on: funcgraph-duration
2440
2441  ie::
2442
2443    3) # 1837.709 us |          } /* __switch_to */
2444    3)               |          finish_task_switch() {
2445    3)   0.313 us    |            _raw_spin_unlock_irq();
2446    3)   3.177 us    |          }
2447    3) # 1889.063 us |        } /* __schedule */
2448    3) ! 140.417 us  |      } /* __schedule */
2449    3) # 2034.948 us |    } /* schedule */
2450    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2451
2452    [...]
2453
2454    1)   0.260 us    |              msecs_to_jiffies();
2455    1)   0.313 us    |              __rcu_read_unlock();
2456    1) + 61.770 us   |            }
2457    1) + 64.479 us   |          }
2458    1)   0.313 us    |          rcu_bh_qs();
2459    1)   0.313 us    |          __local_bh_enable();
2460    1) ! 217.240 us  |        }
2461    1)   0.365 us    |        idle_cpu();
2462    1)               |        rcu_irq_exit() {
2463    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2464    1)   3.125 us    |        }
2465    1) ! 227.812 us  |      }
2466    1) ! 457.395 us  |    }
2467    1) @ 119760.2 us |  }
2468
2469    [...]
2470
2471    2)               |    handle_IPI() {
2472    1)   6.979 us    |                  }
2473    2)   0.417 us    |      scheduler_ipi();
2474    1)   9.791 us    |                }
2475    1) + 12.917 us   |              }
2476    2)   3.490 us    |    }
2477    1) + 15.729 us   |            }
2478    1) + 18.542 us   |          }
2479    2) $ 3594274 us  |  }
2480
2481Flags::
2482
2483  + means that the function exceeded 10 usecs.
2484  ! means that the function exceeded 100 usecs.
2485  # means that the function exceeded 1000 usecs.
2486  * means that the function exceeded 10 msecs.
2487  @ means that the function exceeded 100 msecs.
2488  $ means that the function exceeded 1 sec.
2489
2490
2491- The task/pid field displays the thread cmdline and pid which
2492  executed the function. It is default disabled.
2493
2494	- hide: echo nofuncgraph-proc > trace_options
2495	- show: echo funcgraph-proc > trace_options
2496
2497  ie::
2498
2499    # tracer: function_graph
2500    #
2501    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2502    # |    |    |           |   |                     |   |   |   |
2503    0)    sh-4802     |               |                  d_free() {
2504    0)    sh-4802     |               |                    call_rcu() {
2505    0)    sh-4802     |               |                      __call_rcu() {
2506    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2507    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2508    0)    sh-4802     |   2.899 us    |                      }
2509    0)    sh-4802     |   4.040 us    |                    }
2510    0)    sh-4802     |   5.151 us    |                  }
2511    0)    sh-4802     | + 49.370 us   |                }
2512
2513
2514- The absolute time field is an absolute timestamp given by the
2515  system clock since it started. A snapshot of this time is
2516  given on each entry/exit of functions
2517
2518	- hide: echo nofuncgraph-abstime > trace_options
2519	- show: echo funcgraph-abstime > trace_options
2520
2521  ie::
2522
2523    #
2524    #      TIME       CPU  DURATION                  FUNCTION CALLS
2525    #       |         |     |   |                     |   |   |   |
2526    360.774522 |   1)   0.541 us    |                                          }
2527    360.774522 |   1)   4.663 us    |                                        }
2528    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2529    360.774524 |   1)   6.796 us    |                                      }
2530    360.774524 |   1)   7.952 us    |                                    }
2531    360.774525 |   1)   9.063 us    |                                  }
2532    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2533    360.774527 |   1)   0.578 us    |                                  __brelse();
2534    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2535    360.774528 |   1)               |                                    unlock_buffer() {
2536    360.774529 |   1)               |                                      wake_up_bit() {
2537    360.774529 |   1)               |                                        bit_waitqueue() {
2538    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2539
2540
2541The function name is always displayed after the closing bracket
2542for a function if the start of that function is not in the
2543trace buffer.
2544
2545Display of the function name after the closing bracket may be
2546enabled for functions whose start is in the trace buffer,
2547allowing easier searching with grep for function durations.
2548It is default disabled.
2549
2550	- hide: echo nofuncgraph-tail > trace_options
2551	- show: echo funcgraph-tail > trace_options
2552
2553  Example with nofuncgraph-tail (default)::
2554
2555    0)               |      putname() {
2556    0)               |        kmem_cache_free() {
2557    0)   0.518 us    |          __phys_addr();
2558    0)   1.757 us    |        }
2559    0)   2.861 us    |      }
2560
2561  Example with funcgraph-tail::
2562
2563    0)               |      putname() {
2564    0)               |        kmem_cache_free() {
2565    0)   0.518 us    |          __phys_addr();
2566    0)   1.757 us    |        } /* kmem_cache_free() */
2567    0)   2.861 us    |      } /* putname() */
2568
2569You can put some comments on specific functions by using
2570trace_printk() For example, if you want to put a comment inside
2571the __might_sleep() function, you just have to include
2572<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2573
2574	trace_printk("I'm a comment!\n")
2575
2576will produce::
2577
2578   1)               |             __might_sleep() {
2579   1)               |                /* I'm a comment! */
2580   1)   1.449 us    |             }
2581
2582
2583You might find other useful features for this tracer in the
2584following "dynamic ftrace" section such as tracing only specific
2585functions or tasks.
2586
2587dynamic ftrace
2588--------------
2589
2590If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2591virtually no overhead when function tracing is disabled. The way
2592this works is the mcount function call (placed at the start of
2593every kernel function, produced by the -pg switch in gcc),
2594starts of pointing to a simple return. (Enabling FTRACE will
2595include the -pg switch in the compiling of the kernel.)
2596
2597At compile time every C file object is run through the
2598recordmcount program (located in the scripts directory). This
2599program will parse the ELF headers in the C object to find all
2600the locations in the .text section that call mcount. Starting
2601with gcc version 4.6, the -mfentry has been added for x86, which
2602calls "__fentry__" instead of "mcount". Which is called before
2603the creation of the stack frame.
2604
2605Note, not all sections are traced. They may be prevented by either
2606a notrace, or blocked another way and all inline functions are not
2607traced. Check the "available_filter_functions" file to see what functions
2608can be traced.
2609
2610A section called "__mcount_loc" is created that holds
2611references to all the mcount/fentry call sites in the .text section.
2612The recordmcount program re-links this section back into the
2613original object. The final linking stage of the kernel will add all these
2614references into a single table.
2615
2616On boot up, before SMP is initialized, the dynamic ftrace code
2617scans this table and updates all the locations into nops. It
2618also records the locations, which are added to the
2619available_filter_functions list.  Modules are processed as they
2620are loaded and before they are executed.  When a module is
2621unloaded, it also removes its functions from the ftrace function
2622list. This is automatic in the module unload code, and the
2623module author does not need to worry about it.
2624
2625When tracing is enabled, the process of modifying the function
2626tracepoints is dependent on architecture. The old method is to use
2627kstop_machine to prevent races with the CPUs executing code being
2628modified (which can cause the CPU to do undesirable things, especially
2629if the modified code crosses cache (or page) boundaries), and the nops are
2630patched back to calls. But this time, they do not call mcount
2631(which is just a function stub). They now call into the ftrace
2632infrastructure.
2633
2634The new method of modifying the function tracepoints is to place
2635a breakpoint at the location to be modified, sync all CPUs, modify
2636the rest of the instruction not covered by the breakpoint. Sync
2637all CPUs again, and then remove the breakpoint with the finished
2638version to the ftrace call site.
2639
2640Some archs do not even need to monkey around with the synchronization,
2641and can just slap the new code on top of the old without any
2642problems with other CPUs executing it at the same time.
2643
2644One special side-effect to the recording of the functions being
2645traced is that we can now selectively choose which functions we
2646wish to trace and which ones we want the mcount calls to remain
2647as nops.
2648
2649Two files are used, one for enabling and one for disabling the
2650tracing of specified functions. They are:
2651
2652  set_ftrace_filter
2653
2654and
2655
2656  set_ftrace_notrace
2657
2658A list of available functions that you can add to these files is
2659listed in:
2660
2661   available_filter_functions
2662
2663::
2664
2665  # cat available_filter_functions
2666  put_prev_task_idle
2667  kmem_cache_create
2668  pick_next_task_rt
2669  get_online_cpus
2670  pick_next_task_fair
2671  mutex_lock
2672  [...]
2673
2674If I am only interested in sys_nanosleep and hrtimer_interrupt::
2675
2676  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2677  # echo function > current_tracer
2678  # echo 1 > tracing_on
2679  # usleep 1
2680  # echo 0 > tracing_on
2681  # cat trace
2682  # tracer: function
2683  #
2684  # entries-in-buffer/entries-written: 5/5   #P:4
2685  #
2686  #                              _-----=> irqs-off
2687  #                             / _----=> need-resched
2688  #                            | / _---=> hardirq/softirq
2689  #                            || / _--=> preempt-depth
2690  #                            ||| /     delay
2691  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2692  #              | |       |   ||||       |         |
2693            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2694            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2695            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2696            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2697            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2698
2699To see which functions are being traced, you can cat the file:
2700::
2701
2702  # cat set_ftrace_filter
2703  hrtimer_interrupt
2704  sys_nanosleep
2705
2706
2707Perhaps this is not enough. The filters also allow glob(7) matching.
2708
2709  ``<match>*``
2710	will match functions that begin with <match>
2711  ``*<match>``
2712	will match functions that end with <match>
2713  ``*<match>*``
2714	will match functions that have <match> in it
2715  ``<match1>*<match2>``
2716	will match functions that begin with <match1> and end with <match2>
2717
2718.. note::
2719      It is better to use quotes to enclose the wild cards,
2720      otherwise the shell may expand the parameters into names
2721      of files in the local directory.
2722
2723::
2724
2725  # echo 'hrtimer_*' > set_ftrace_filter
2726
2727Produces::
2728
2729  # tracer: function
2730  #
2731  # entries-in-buffer/entries-written: 897/897   #P:4
2732  #
2733  #                              _-----=> irqs-off
2734  #                             / _----=> need-resched
2735  #                            | / _---=> hardirq/softirq
2736  #                            || / _--=> preempt-depth
2737  #                            ||| /     delay
2738  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2739  #              | |       |   ||||       |         |
2740            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2741            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2742            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2743            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2744            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2745            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2746            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2747            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2748
2749Notice that we lost the sys_nanosleep.
2750::
2751
2752  # cat set_ftrace_filter
2753  hrtimer_run_queues
2754  hrtimer_run_pending
2755  hrtimer_init
2756  hrtimer_cancel
2757  hrtimer_try_to_cancel
2758  hrtimer_forward
2759  hrtimer_start
2760  hrtimer_reprogram
2761  hrtimer_force_reprogram
2762  hrtimer_get_next_event
2763  hrtimer_interrupt
2764  hrtimer_nanosleep
2765  hrtimer_wakeup
2766  hrtimer_get_remaining
2767  hrtimer_get_res
2768  hrtimer_init_sleeper
2769
2770
2771This is because the '>' and '>>' act just like they do in bash.
2772To rewrite the filters, use '>'
2773To append to the filters, use '>>'
2774
2775To clear out a filter so that all functions will be recorded
2776again::
2777
2778 # echo > set_ftrace_filter
2779 # cat set_ftrace_filter
2780 #
2781
2782Again, now we want to append.
2783
2784::
2785
2786  # echo sys_nanosleep > set_ftrace_filter
2787  # cat set_ftrace_filter
2788  sys_nanosleep
2789  # echo 'hrtimer_*' >> set_ftrace_filter
2790  # cat set_ftrace_filter
2791  hrtimer_run_queues
2792  hrtimer_run_pending
2793  hrtimer_init
2794  hrtimer_cancel
2795  hrtimer_try_to_cancel
2796  hrtimer_forward
2797  hrtimer_start
2798  hrtimer_reprogram
2799  hrtimer_force_reprogram
2800  hrtimer_get_next_event
2801  hrtimer_interrupt
2802  sys_nanosleep
2803  hrtimer_nanosleep
2804  hrtimer_wakeup
2805  hrtimer_get_remaining
2806  hrtimer_get_res
2807  hrtimer_init_sleeper
2808
2809
2810The set_ftrace_notrace prevents those functions from being
2811traced.
2812::
2813
2814  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2815
2816Produces::
2817
2818  # tracer: function
2819  #
2820  # entries-in-buffer/entries-written: 39608/39608   #P:4
2821  #
2822  #                              _-----=> irqs-off
2823  #                             / _----=> need-resched
2824  #                            | / _---=> hardirq/softirq
2825  #                            || / _--=> preempt-depth
2826  #                            ||| /     delay
2827  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2828  #              | |       |   ||||       |         |
2829              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2830              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2831              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2832              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2833              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2834              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2835              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2836              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2837              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2838              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2839              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2840              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2841
2842We can see that there's no more lock or preempt tracing.
2843
2844Selecting function filters via index
2845------------------------------------
2846
2847Because processing of strings is expensive (the address of the function
2848needs to be looked up before comparing to the string being passed in),
2849an index can be used as well to enable functions. This is useful in the
2850case of setting thousands of specific functions at a time. By passing
2851in a list of numbers, no string processing will occur. Instead, the function
2852at the specific location in the internal array (which corresponds to the
2853functions in the "available_filter_functions" file), is selected.
2854
2855::
2856
2857  # echo 1 > set_ftrace_filter
2858
2859Will select the first function listed in "available_filter_functions"
2860
2861::
2862
2863  # head -1 available_filter_functions
2864  trace_initcall_finish_cb
2865
2866  # cat set_ftrace_filter
2867  trace_initcall_finish_cb
2868
2869  # head -50 available_filter_functions | tail -1
2870  x86_pmu_commit_txn
2871
2872  # echo 1 50 > set_ftrace_filter
2873  # cat set_ftrace_filter
2874  trace_initcall_finish_cb
2875  x86_pmu_commit_txn
2876
2877Dynamic ftrace with the function graph tracer
2878---------------------------------------------
2879
2880Although what has been explained above concerns both the
2881function tracer and the function-graph-tracer, there are some
2882special features only available in the function-graph tracer.
2883
2884If you want to trace only one function and all of its children,
2885you just have to echo its name into set_graph_function::
2886
2887 echo __do_fault > set_graph_function
2888
2889will produce the following "expanded" trace of the __do_fault()
2890function::
2891
2892   0)               |  __do_fault() {
2893   0)               |    filemap_fault() {
2894   0)               |      find_lock_page() {
2895   0)   0.804 us    |        find_get_page();
2896   0)               |        __might_sleep() {
2897   0)   1.329 us    |        }
2898   0)   3.904 us    |      }
2899   0)   4.979 us    |    }
2900   0)   0.653 us    |    _spin_lock();
2901   0)   0.578 us    |    page_add_file_rmap();
2902   0)   0.525 us    |    native_set_pte_at();
2903   0)   0.585 us    |    _spin_unlock();
2904   0)               |    unlock_page() {
2905   0)   0.541 us    |      page_waitqueue();
2906   0)   0.639 us    |      __wake_up_bit();
2907   0)   2.786 us    |    }
2908   0) + 14.237 us   |  }
2909   0)               |  __do_fault() {
2910   0)               |    filemap_fault() {
2911   0)               |      find_lock_page() {
2912   0)   0.698 us    |        find_get_page();
2913   0)               |        __might_sleep() {
2914   0)   1.412 us    |        }
2915   0)   3.950 us    |      }
2916   0)   5.098 us    |    }
2917   0)   0.631 us    |    _spin_lock();
2918   0)   0.571 us    |    page_add_file_rmap();
2919   0)   0.526 us    |    native_set_pte_at();
2920   0)   0.586 us    |    _spin_unlock();
2921   0)               |    unlock_page() {
2922   0)   0.533 us    |      page_waitqueue();
2923   0)   0.638 us    |      __wake_up_bit();
2924   0)   2.793 us    |    }
2925   0) + 14.012 us   |  }
2926
2927You can also expand several functions at once::
2928
2929 echo sys_open > set_graph_function
2930 echo sys_close >> set_graph_function
2931
2932Now if you want to go back to trace all functions you can clear
2933this special filter via::
2934
2935 echo > set_graph_function
2936
2937
2938ftrace_enabled
2939--------------
2940
2941Note, the proc sysctl ftrace_enable is a big on/off switch for the
2942function tracer. By default it is enabled (when function tracing is
2943enabled in the kernel). If it is disabled, all function tracing is
2944disabled. This includes not only the function tracers for ftrace, but
2945also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2946
2947Please disable this with care.
2948
2949This can be disable (and enabled) with::
2950
2951  sysctl kernel.ftrace_enabled=0
2952  sysctl kernel.ftrace_enabled=1
2953
2954 or
2955
2956  echo 0 > /proc/sys/kernel/ftrace_enabled
2957  echo 1 > /proc/sys/kernel/ftrace_enabled
2958
2959
2960Filter commands
2961---------------
2962
2963A few commands are supported by the set_ftrace_filter interface.
2964Trace commands have the following format::
2965
2966  <function>:<command>:<parameter>
2967
2968The following commands are supported:
2969
2970- mod:
2971  This command enables function filtering per module. The
2972  parameter defines the module. For example, if only the write*
2973  functions in the ext3 module are desired, run:
2974
2975   echo 'write*:mod:ext3' > set_ftrace_filter
2976
2977  This command interacts with the filter in the same way as
2978  filtering based on function names. Thus, adding more functions
2979  in a different module is accomplished by appending (>>) to the
2980  filter file. Remove specific module functions by prepending
2981  '!'::
2982
2983   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2984
2985  Mod command supports module globbing. Disable tracing for all
2986  functions except a specific module::
2987
2988   echo '!*:mod:!ext3' >> set_ftrace_filter
2989
2990  Disable tracing for all modules, but still trace kernel::
2991
2992   echo '!*:mod:*' >> set_ftrace_filter
2993
2994  Enable filter only for kernel::
2995
2996   echo '*write*:mod:!*' >> set_ftrace_filter
2997
2998  Enable filter for module globbing::
2999
3000   echo '*write*:mod:*snd*' >> set_ftrace_filter
3001
3002- traceon/traceoff:
3003  These commands turn tracing on and off when the specified
3004  functions are hit. The parameter determines how many times the
3005  tracing system is turned on and off. If unspecified, there is
3006  no limit. For example, to disable tracing when a schedule bug
3007  is hit the first 5 times, run::
3008
3009   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3010
3011  To always disable tracing when __schedule_bug is hit::
3012
3013   echo '__schedule_bug:traceoff' > set_ftrace_filter
3014
3015  These commands are cumulative whether or not they are appended
3016  to set_ftrace_filter. To remove a command, prepend it by '!'
3017  and drop the parameter::
3018
3019   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3020
3021  The above removes the traceoff command for __schedule_bug
3022  that have a counter. To remove commands without counters::
3023
3024   echo '!__schedule_bug:traceoff' > set_ftrace_filter
3025
3026- snapshot:
3027  Will cause a snapshot to be triggered when the function is hit.
3028  ::
3029
3030   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3031
3032  To only snapshot once:
3033  ::
3034
3035   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3036
3037  To remove the above commands::
3038
3039   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3040   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3041
3042- enable_event/disable_event:
3043  These commands can enable or disable a trace event. Note, because
3044  function tracing callbacks are very sensitive, when these commands
3045  are registered, the trace point is activated, but disabled in
3046  a "soft" mode. That is, the tracepoint will be called, but
3047  just will not be traced. The event tracepoint stays in this mode
3048  as long as there's a command that triggers it.
3049  ::
3050
3051   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3052   	 set_ftrace_filter
3053
3054  The format is::
3055
3056    <function>:enable_event:<system>:<event>[:count]
3057    <function>:disable_event:<system>:<event>[:count]
3058
3059  To remove the events commands::
3060
3061   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3062   	 set_ftrace_filter
3063   echo '!schedule:disable_event:sched:sched_switch' > \
3064   	 set_ftrace_filter
3065
3066- dump:
3067  When the function is hit, it will dump the contents of the ftrace
3068  ring buffer to the console. This is useful if you need to debug
3069  something, and want to dump the trace when a certain function
3070  is hit. Perhaps it's a function that is called before a triple
3071  fault happens and does not allow you to get a regular dump.
3072
3073- cpudump:
3074  When the function is hit, it will dump the contents of the ftrace
3075  ring buffer for the current CPU to the console. Unlike the "dump"
3076  command, it only prints out the contents of the ring buffer for the
3077  CPU that executed the function that triggered the dump.
3078
3079- stacktrace:
3080  When the function is hit, a stack trace is recorded.
3081
3082trace_pipe
3083----------
3084
3085The trace_pipe outputs the same content as the trace file, but
3086the effect on the tracing is different. Every read from
3087trace_pipe is consumed. This means that subsequent reads will be
3088different. The trace is live.
3089::
3090
3091  # echo function > current_tracer
3092  # cat trace_pipe > /tmp/trace.out &
3093  [1] 4153
3094  # echo 1 > tracing_on
3095  # usleep 1
3096  # echo 0 > tracing_on
3097  # cat trace
3098  # tracer: function
3099  #
3100  # entries-in-buffer/entries-written: 0/0   #P:4
3101  #
3102  #                              _-----=> irqs-off
3103  #                             / _----=> need-resched
3104  #                            | / _---=> hardirq/softirq
3105  #                            || / _--=> preempt-depth
3106  #                            ||| /     delay
3107  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3108  #              | |       |   ||||       |         |
3109
3110  #
3111  # cat /tmp/trace.out
3112             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3113             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3114             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3115             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3116             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3117             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3118             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3119             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3120             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3121
3122
3123Note, reading the trace_pipe file will block until more input is
3124added.
3125
3126trace entries
3127-------------
3128
3129Having too much or not enough data can be troublesome in
3130diagnosing an issue in the kernel. The file buffer_size_kb is
3131used to modify the size of the internal trace buffers. The
3132number listed is the number of entries that can be recorded per
3133CPU. To know the full size, multiply the number of possible CPUs
3134with the number of entries.
3135::
3136
3137  # cat buffer_size_kb
3138  1408 (units kilobytes)
3139
3140Or simply read buffer_total_size_kb
3141::
3142
3143  # cat buffer_total_size_kb
3144  5632
3145
3146To modify the buffer, simple echo in a number (in 1024 byte segments).
3147::
3148
3149  # echo 10000 > buffer_size_kb
3150  # cat buffer_size_kb
3151  10000 (units kilobytes)
3152
3153It will try to allocate as much as possible. If you allocate too
3154much, it can cause Out-Of-Memory to trigger.
3155::
3156
3157  # echo 1000000000000 > buffer_size_kb
3158  -bash: echo: write error: Cannot allocate memory
3159  # cat buffer_size_kb
3160  85
3161
3162The per_cpu buffers can be changed individually as well:
3163::
3164
3165  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3166  # echo 100 > per_cpu/cpu1/buffer_size_kb
3167
3168When the per_cpu buffers are not the same, the buffer_size_kb
3169at the top level will just show an X
3170::
3171
3172  # cat buffer_size_kb
3173  X
3174
3175This is where the buffer_total_size_kb is useful:
3176::
3177
3178  # cat buffer_total_size_kb
3179  12916
3180
3181Writing to the top level buffer_size_kb will reset all the buffers
3182to be the same again.
3183
3184Snapshot
3185--------
3186CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3187available to all non latency tracers. (Latency tracers which
3188record max latency, such as "irqsoff" or "wakeup", can't use
3189this feature, since those are already using the snapshot
3190mechanism internally.)
3191
3192Snapshot preserves a current trace buffer at a particular point
3193in time without stopping tracing. Ftrace swaps the current
3194buffer with a spare buffer, and tracing continues in the new
3195current (=previous spare) buffer.
3196
3197The following tracefs files in "tracing" are related to this
3198feature:
3199
3200  snapshot:
3201
3202	This is used to take a snapshot and to read the output
3203	of the snapshot. Echo 1 into this file to allocate a
3204	spare buffer and to take a snapshot (swap), then read
3205	the snapshot from this file in the same format as
3206	"trace" (described above in the section "The File
3207	System"). Both reads snapshot and tracing are executable
3208	in parallel. When the spare buffer is allocated, echoing
3209	0 frees it, and echoing else (positive) values clear the
3210	snapshot contents.
3211	More details are shown in the table below.
3212
3213	+--------------+------------+------------+------------+
3214	|status\\input |     0      |     1      |    else    |
3215	+==============+============+============+============+
3216	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3217	+--------------+------------+------------+------------+
3218	|allocated     |    free    |    swap    |   clear    |
3219	+--------------+------------+------------+------------+
3220
3221Here is an example of using the snapshot feature.
3222::
3223
3224  # echo 1 > events/sched/enable
3225  # echo 1 > snapshot
3226  # cat snapshot
3227  # tracer: nop
3228  #
3229  # entries-in-buffer/entries-written: 71/71   #P:8
3230  #
3231  #                              _-----=> irqs-off
3232  #                             / _----=> need-resched
3233  #                            | / _---=> hardirq/softirq
3234  #                            || / _--=> preempt-depth
3235  #                            ||| /     delay
3236  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3237  #              | |       |   ||||       |         |
3238            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3239             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3240  [...]
3241          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3242
3243  # cat trace
3244  # tracer: nop
3245  #
3246  # entries-in-buffer/entries-written: 77/77   #P:8
3247  #
3248  #                              _-----=> irqs-off
3249  #                             / _----=> need-resched
3250  #                            | / _---=> hardirq/softirq
3251  #                            || / _--=> preempt-depth
3252  #                            ||| /     delay
3253  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3254  #              | |       |   ||||       |         |
3255            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3256   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3257  [...]
3258
3259
3260If you try to use this snapshot feature when current tracer is
3261one of the latency tracers, you will get the following results.
3262::
3263
3264  # echo wakeup > current_tracer
3265  # echo 1 > snapshot
3266  bash: echo: write error: Device or resource busy
3267  # cat snapshot
3268  cat: snapshot: Device or resource busy
3269
3270
3271Instances
3272---------
3273In the tracefs tracing directory is a directory called "instances".
3274This directory can have new directories created inside of it using
3275mkdir, and removing directories with rmdir. The directory created
3276with mkdir in this directory will already contain files and other
3277directories after it is created.
3278::
3279
3280  # mkdir instances/foo
3281  # ls instances/foo
3282  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3283  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3284  trace_pipe  tracing_on
3285
3286As you can see, the new directory looks similar to the tracing directory
3287itself. In fact, it is very similar, except that the buffer and
3288events are agnostic from the main director, or from any other
3289instances that are created.
3290
3291The files in the new directory work just like the files with the
3292same name in the tracing directory except the buffer that is used
3293is a separate and new buffer. The files affect that buffer but do not
3294affect the main buffer with the exception of trace_options. Currently,
3295the trace_options affect all instances and the top level buffer
3296the same, but this may change in future releases. That is, options
3297may become specific to the instance they reside in.
3298
3299Notice that none of the function tracer files are there, nor is
3300current_tracer and available_tracers. This is because the buffers
3301can currently only have events enabled for them.
3302::
3303
3304  # mkdir instances/foo
3305  # mkdir instances/bar
3306  # mkdir instances/zoot
3307  # echo 100000 > buffer_size_kb
3308  # echo 1000 > instances/foo/buffer_size_kb
3309  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3310  # echo function > current_trace
3311  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3312  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3313  # echo 1 > instances/foo/events/sched/sched_switch/enable
3314  # echo 1 > instances/bar/events/irq/enable
3315  # echo 1 > instances/zoot/events/syscalls/enable
3316  # cat trace_pipe
3317  CPU:2 [LOST 11745 EVENTS]
3318              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3319              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3320              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3321              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3322              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3323              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3324              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3325              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3326              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3327              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3328              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3329  [...]
3330
3331  # cat instances/foo/trace_pipe
3332              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3333              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3334            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3335            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3336       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3337              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3338              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3339              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3340       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3341       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3342  [...]
3343
3344  # cat instances/bar/trace_pipe
3345       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3346            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3347              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3348              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3349              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3350              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3351              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3352              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3353              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3354              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3355              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3356              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3357  [...]
3358
3359  # cat instances/zoot/trace
3360  # tracer: nop
3361  #
3362  # entries-in-buffer/entries-written: 18996/18996   #P:4
3363  #
3364  #                              _-----=> irqs-off
3365  #                             / _----=> need-resched
3366  #                            | / _---=> hardirq/softirq
3367  #                            || / _--=> preempt-depth
3368  #                            ||| /     delay
3369  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3370  #              | |       |   ||||       |         |
3371              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3372              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3373              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3374              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3375              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3376              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3377              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3378              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3379              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3380              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3381              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3382
3383You can see that the trace of the top most trace buffer shows only
3384the function tracing. The foo instance displays wakeups and task
3385switches.
3386
3387To remove the instances, simply delete their directories:
3388::
3389
3390  # rmdir instances/foo
3391  # rmdir instances/bar
3392  # rmdir instances/zoot
3393
3394Note, if a process has a trace file open in one of the instance
3395directories, the rmdir will fail with EBUSY.
3396
3397
3398Stack trace
3399-----------
3400Since the kernel has a fixed sized stack, it is important not to
3401waste it in functions. A kernel developer must be conscience of
3402what they allocate on the stack. If they add too much, the system
3403can be in danger of a stack overflow, and corruption will occur,
3404usually leading to a system panic.
3405
3406There are some tools that check this, usually with interrupts
3407periodically checking usage. But if you can perform a check
3408at every function call that will become very useful. As ftrace provides
3409a function tracer, it makes it convenient to check the stack size
3410at every function call. This is enabled via the stack tracer.
3411
3412CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3413To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3414::
3415
3416 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3417
3418You can also enable it from the kernel command line to trace
3419the stack size of the kernel during boot up, by adding "stacktrace"
3420to the kernel command line parameter.
3421
3422After running it for a few minutes, the output looks like:
3423::
3424
3425  # cat stack_max_size
3426  2928
3427
3428  # cat stack_trace
3429          Depth    Size   Location    (18 entries)
3430          -----    ----   --------
3431    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3432    1)     2704     160   find_busiest_group+0x31/0x1f1
3433    2)     2544     256   load_balance+0xd9/0x662
3434    3)     2288      80   idle_balance+0xbb/0x130
3435    4)     2208     128   __schedule+0x26e/0x5b9
3436    5)     2080      16   schedule+0x64/0x66
3437    6)     2064     128   schedule_timeout+0x34/0xe0
3438    7)     1936     112   wait_for_common+0x97/0xf1
3439    8)     1824      16   wait_for_completion+0x1d/0x1f
3440    9)     1808     128   flush_work+0xfe/0x119
3441   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3442   11)     1664      48   input_available_p+0x1d/0x5c
3443   12)     1616      48   n_tty_poll+0x6d/0x134
3444   13)     1568      64   tty_poll+0x64/0x7f
3445   14)     1504     880   do_select+0x31e/0x511
3446   15)      624     400   core_sys_select+0x177/0x216
3447   16)      224      96   sys_select+0x91/0xb9
3448   17)      128     128   system_call_fastpath+0x16/0x1b
3449
3450Note, if -mfentry is being used by gcc, functions get traced before
3451they set up the stack frame. This means that leaf level functions
3452are not tested by the stack tracer when -mfentry is used.
3453
3454Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3455
3456More
3457----
3458More details can be found in the source code, in the `kernel/trace/*.c` files.
3459