1======================== 2ftrace - Function Tracer 3======================== 4 5Copyright 2008 Red Hat Inc. 6 7:Author: Steven Rostedt <srostedt@redhat.com> 8:License: The GNU Free Documentation License, Version 1.2 9 (dual licensed under the GPL v2) 10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, 11 John Kacur, and David Teigland. 12 13- Written for: 2.6.28-rc2 14- Updated for: 3.10 15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt 16- Converted to rst format - Changbin Du <changbin.du@intel.com> 17 18Introduction 19------------ 20 21Ftrace is an internal tracer designed to help out developers and 22designers of systems to find what is going on inside the kernel. 23It can be used for debugging or analyzing latencies and 24performance issues that take place outside of user-space. 25 26Although ftrace is typically considered the function tracer, it 27is really a framework of several assorted tracing utilities. 28There's latency tracing to examine what occurs between interrupts 29disabled and enabled, as well as for preemption and from a time 30a task is woken to the task is actually scheduled in. 31 32One of the most common uses of ftrace is the event tracing. 33Throughout the kernel is hundreds of static event points that 34can be enabled via the tracefs file system to see what is 35going on in certain parts of the kernel. 36 37See events.txt for more information. 38 39 40Implementation Details 41---------------------- 42 43See :doc:`ftrace-design` for details for arch porters and such. 44 45 46The File System 47--------------- 48 49Ftrace uses the tracefs file system to hold the control files as 50well as the files to display output. 51 52When tracefs is configured into the kernel (which selecting any ftrace 53option will do) the directory /sys/kernel/tracing will be created. To mount 54this directory, you can add to your /etc/fstab file:: 55 56 tracefs /sys/kernel/tracing tracefs defaults 0 0 57 58Or you can mount it at run time with:: 59 60 mount -t tracefs nodev /sys/kernel/tracing 61 62For quicker access to that directory you may want to make a soft link to 63it:: 64 65 ln -s /sys/kernel/tracing /tracing 66 67.. attention:: 68 69 Before 4.1, all ftrace tracing control files were within the debugfs 70 file system, which is typically located at /sys/kernel/debug/tracing. 71 For backward compatibility, when mounting the debugfs file system, 72 the tracefs file system will be automatically mounted at: 73 74 /sys/kernel/debug/tracing 75 76 All files located in the tracefs file system will be located in that 77 debugfs file system directory as well. 78 79.. attention:: 80 81 Any selected ftrace option will also create the tracefs file system. 82 The rest of the document will assume that you are in the ftrace directory 83 (cd /sys/kernel/tracing) and will only concentrate on the files within that 84 directory and not distract from the content with the extended 85 "/sys/kernel/tracing" path name. 86 87That's it! (assuming that you have ftrace configured into your kernel) 88 89After mounting tracefs you will have access to the control and output files 90of ftrace. Here is a list of some of the key files: 91 92 93 Note: all time values are in microseconds. 94 95 current_tracer: 96 97 This is used to set or display the current tracer 98 that is configured. 99 100 available_tracers: 101 102 This holds the different types of tracers that 103 have been compiled into the kernel. The 104 tracers listed here can be configured by 105 echoing their name into current_tracer. 106 107 tracing_on: 108 109 This sets or displays whether writing to the trace 110 ring buffer is enabled. Echo 0 into this file to disable 111 the tracer or 1 to enable it. Note, this only disables 112 writing to the ring buffer, the tracing overhead may 113 still be occurring. 114 115 The kernel function tracing_off() can be used within the 116 kernel to disable writing to the ring buffer, which will 117 set this file to "0". User space can re-enable tracing by 118 echoing "1" into the file. 119 120 Note, the function and event trigger "traceoff" will also 121 set this file to zero and stop tracing. Which can also 122 be re-enabled by user space using this file. 123 124 trace: 125 126 This file holds the output of the trace in a human 127 readable format (described below). Note, tracing is temporarily 128 disabled while this file is being read (opened). 129 130 trace_pipe: 131 132 The output is the same as the "trace" file but this 133 file is meant to be streamed with live tracing. 134 Reads from this file will block until new data is 135 retrieved. Unlike the "trace" file, this file is a 136 consumer. This means reading from this file causes 137 sequential reads to display more current data. Once 138 data is read from this file, it is consumed, and 139 will not be read again with a sequential read. The 140 "trace" file is static, and if the tracer is not 141 adding more data, it will display the same 142 information every time it is read. This file will not 143 disable tracing while being read. 144 145 trace_options: 146 147 This file lets the user control the amount of data 148 that is displayed in one of the above output 149 files. Options also exist to modify how a tracer 150 or events work (stack traces, timestamps, etc). 151 152 options: 153 154 This is a directory that has a file for every available 155 trace option (also in trace_options). Options may also be set 156 or cleared by writing a "1" or "0" respectively into the 157 corresponding file with the option name. 158 159 tracing_max_latency: 160 161 Some of the tracers record the max latency. 162 For example, the maximum time that interrupts are disabled. 163 The maximum time is saved in this file. The max trace will also be 164 stored, and displayed by "trace". A new max trace will only be 165 recorded if the latency is greater than the value in this file 166 (in microseconds). 167 168 By echoing in a time into this file, no latency will be recorded 169 unless it is greater than the time in this file. 170 171 tracing_thresh: 172 173 Some latency tracers will record a trace whenever the 174 latency is greater than the number in this file. 175 Only active when the file contains a number greater than 0. 176 (in microseconds) 177 178 buffer_size_kb: 179 180 This sets or displays the number of kilobytes each CPU 181 buffer holds. By default, the trace buffers are the same size 182 for each CPU. The displayed number is the size of the 183 CPU buffer and not total size of all buffers. The 184 trace buffers are allocated in pages (blocks of memory 185 that the kernel uses for allocation, usually 4 KB in size). 186 If the last page allocated has room for more bytes 187 than requested, the rest of the page will be used, 188 making the actual allocation bigger than requested or shown. 189 ( Note, the size may not be a multiple of the page size 190 due to buffer management meta-data. ) 191 192 Buffer sizes for individual CPUs may vary 193 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do 194 this file will show "X". 195 196 buffer_total_size_kb: 197 198 This displays the total combined size of all the trace buffers. 199 200 free_buffer: 201 202 If a process is performing tracing, and the ring buffer should be 203 shrunk "freed" when the process is finished, even if it were to be 204 killed by a signal, this file can be used for that purpose. On close 205 of this file, the ring buffer will be resized to its minimum size. 206 Having a process that is tracing also open this file, when the process 207 exits its file descriptor for this file will be closed, and in doing so, 208 the ring buffer will be "freed". 209 210 It may also stop tracing if disable_on_free option is set. 211 212 tracing_cpumask: 213 214 This is a mask that lets the user only trace on specified CPUs. 215 The format is a hex string representing the CPUs. 216 217 set_ftrace_filter: 218 219 When dynamic ftrace is configured in (see the 220 section below "dynamic ftrace"), the code is dynamically 221 modified (code text rewrite) to disable calling of the 222 function profiler (mcount). This lets tracing be configured 223 in with practically no overhead in performance. This also 224 has a side effect of enabling or disabling specific functions 225 to be traced. Echoing names of functions into this file 226 will limit the trace to only those functions. 227 This influences the tracers "function" and "function_graph" 228 and thus also function profiling (see "function_profile_enabled"). 229 230 The functions listed in "available_filter_functions" are what 231 can be written into this file. 232 233 This interface also allows for commands to be used. See the 234 "Filter commands" section for more details. 235 236 As a speed up, since processing strings can't be quite expensive 237 and requires a check of all functions registered to tracing, instead 238 an index can be written into this file. A number (starting with "1") 239 written will instead select the same corresponding at the line position 240 of the "available_filter_functions" file. 241 242 set_ftrace_notrace: 243 244 This has an effect opposite to that of 245 set_ftrace_filter. Any function that is added here will not 246 be traced. If a function exists in both set_ftrace_filter 247 and set_ftrace_notrace, the function will _not_ be traced. 248 249 set_ftrace_pid: 250 251 Have the function tracer only trace the threads whose PID are 252 listed in this file. 253 254 If the "function-fork" option is set, then when a task whose 255 PID is listed in this file forks, the child's PID will 256 automatically be added to this file, and the child will be 257 traced by the function tracer as well. This option will also 258 cause PIDs of tasks that exit to be removed from the file. 259 260 set_event_pid: 261 262 Have the events only trace a task with a PID listed in this file. 263 Note, sched_switch and sched_wake_up will also trace events 264 listed in this file. 265 266 To have the PIDs of children of tasks with their PID in this file 267 added on fork, enable the "event-fork" option. That option will also 268 cause the PIDs of tasks to be removed from this file when the task 269 exits. 270 271 set_graph_function: 272 273 Functions listed in this file will cause the function graph 274 tracer to only trace these functions and the functions that 275 they call. (See the section "dynamic ftrace" for more details). 276 Note, set_ftrace_filter and set_ftrace_notrace still affects 277 what functions are being traced. 278 279 set_graph_notrace: 280 281 Similar to set_graph_function, but will disable function graph 282 tracing when the function is hit until it exits the function. 283 This makes it possible to ignore tracing functions that are called 284 by a specific function. 285 286 available_filter_functions: 287 288 This lists the functions that ftrace has processed and can trace. 289 These are the function names that you can pass to 290 "set_ftrace_filter", "set_ftrace_notrace", 291 "set_graph_function", or "set_graph_notrace". 292 (See the section "dynamic ftrace" below for more details.) 293 294 dyn_ftrace_total_info: 295 296 This file is for debugging purposes. The number of functions that 297 have been converted to nops and are available to be traced. 298 299 enabled_functions: 300 301 This file is more for debugging ftrace, but can also be useful 302 in seeing if any function has a callback attached to it. 303 Not only does the trace infrastructure use ftrace function 304 trace utility, but other subsystems might too. This file 305 displays all functions that have a callback attached to them 306 as well as the number of callbacks that have been attached. 307 Note, a callback may also call multiple functions which will 308 not be listed in this count. 309 310 If the callback registered to be traced by a function with 311 the "save regs" attribute (thus even more overhead), a 'R' 312 will be displayed on the same line as the function that 313 is returning registers. 314 315 If the callback registered to be traced by a function with 316 the "ip modify" attribute (thus the regs->ip can be changed), 317 an 'I' will be displayed on the same line as the function that 318 can be overridden. 319 320 If the architecture supports it, it will also show what callback 321 is being directly called by the function. If the count is greater 322 than 1 it most likely will be ftrace_ops_list_func(). 323 324 If the callback of the function jumps to a trampoline that is 325 specific to a the callback and not the standard trampoline, 326 its address will be printed as well as the function that the 327 trampoline calls. 328 329 function_profile_enabled: 330 331 When set it will enable all functions with either the function 332 tracer, or if configured, the function graph tracer. It will 333 keep a histogram of the number of functions that were called 334 and if the function graph tracer was configured, it will also keep 335 track of the time spent in those functions. The histogram 336 content can be displayed in the files: 337 338 trace_stat/function<cpu> ( function0, function1, etc). 339 340 trace_stat: 341 342 A directory that holds different tracing stats. 343 344 kprobe_events: 345 346 Enable dynamic trace points. See kprobetrace.txt. 347 348 kprobe_profile: 349 350 Dynamic trace points stats. See kprobetrace.txt. 351 352 max_graph_depth: 353 354 Used with the function graph tracer. This is the max depth 355 it will trace into a function. Setting this to a value of 356 one will show only the first kernel function that is called 357 from user space. 358 359 printk_formats: 360 361 This is for tools that read the raw format files. If an event in 362 the ring buffer references a string, only a pointer to the string 363 is recorded into the buffer and not the string itself. This prevents 364 tools from knowing what that string was. This file displays the string 365 and address for the string allowing tools to map the pointers to what 366 the strings were. 367 368 saved_cmdlines: 369 370 Only the pid of the task is recorded in a trace event unless 371 the event specifically saves the task comm as well. Ftrace 372 makes a cache of pid mappings to comms to try to display 373 comms for events. If a pid for a comm is not listed, then 374 "<...>" is displayed in the output. 375 376 If the option "record-cmd" is set to "0", then comms of tasks 377 will not be saved during recording. By default, it is enabled. 378 379 saved_cmdlines_size: 380 381 By default, 128 comms are saved (see "saved_cmdlines" above). To 382 increase or decrease the amount of comms that are cached, echo 383 in a the number of comms to cache, into this file. 384 385 saved_tgids: 386 387 If the option "record-tgid" is set, on each scheduling context switch 388 the Task Group ID of a task is saved in a table mapping the PID of 389 the thread to its TGID. By default, the "record-tgid" option is 390 disabled. 391 392 snapshot: 393 394 This displays the "snapshot" buffer and also lets the user 395 take a snapshot of the current running trace. 396 See the "Snapshot" section below for more details. 397 398 stack_max_size: 399 400 When the stack tracer is activated, this will display the 401 maximum stack size it has encountered. 402 See the "Stack Trace" section below. 403 404 stack_trace: 405 406 This displays the stack back trace of the largest stack 407 that was encountered when the stack tracer is activated. 408 See the "Stack Trace" section below. 409 410 stack_trace_filter: 411 412 This is similar to "set_ftrace_filter" but it limits what 413 functions the stack tracer will check. 414 415 trace_clock: 416 417 Whenever an event is recorded into the ring buffer, a 418 "timestamp" is added. This stamp comes from a specified 419 clock. By default, ftrace uses the "local" clock. This 420 clock is very fast and strictly per cpu, but on some 421 systems it may not be monotonic with respect to other 422 CPUs. In other words, the local clocks may not be in sync 423 with local clocks on other CPUs. 424 425 Usual clocks for tracing:: 426 427 # cat trace_clock 428 [local] global counter x86-tsc 429 430 The clock with the square brackets around it is the one in effect. 431 432 local: 433 Default clock, but may not be in sync across CPUs 434 435 global: 436 This clock is in sync with all CPUs but may 437 be a bit slower than the local clock. 438 439 counter: 440 This is not a clock at all, but literally an atomic 441 counter. It counts up one by one, but is in sync 442 with all CPUs. This is useful when you need to 443 know exactly the order events occurred with respect to 444 each other on different CPUs. 445 446 uptime: 447 This uses the jiffies counter and the time stamp 448 is relative to the time since boot up. 449 450 perf: 451 This makes ftrace use the same clock that perf uses. 452 Eventually perf will be able to read ftrace buffers 453 and this will help out in interleaving the data. 454 455 x86-tsc: 456 Architectures may define their own clocks. For 457 example, x86 uses its own TSC cycle clock here. 458 459 ppc-tb: 460 This uses the powerpc timebase register value. 461 This is in sync across CPUs and can also be used 462 to correlate events across hypervisor/guest if 463 tb_offset is known. 464 465 mono: 466 This uses the fast monotonic clock (CLOCK_MONOTONIC) 467 which is monotonic and is subject to NTP rate adjustments. 468 469 mono_raw: 470 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW) 471 which is monotonic but is not subject to any rate adjustments 472 and ticks at the same rate as the hardware clocksource. 473 474 boot: 475 This is the boot clock (CLOCK_BOOTTIME) and is based on the 476 fast monotonic clock, but also accounts for time spent in 477 suspend. Since the clock access is designed for use in 478 tracing in the suspend path, some side effects are possible 479 if clock is accessed after the suspend time is accounted before 480 the fast mono clock is updated. In this case, the clock update 481 appears to happen slightly sooner than it normally would have. 482 Also on 32-bit systems, it's possible that the 64-bit boot offset 483 sees a partial update. These effects are rare and post 484 processing should be able to handle them. See comments in the 485 ktime_get_boot_fast_ns() function for more information. 486 487 To set a clock, simply echo the clock name into this file:: 488 489 # echo global > trace_clock 490 491 trace_marker: 492 493 This is a very useful file for synchronizing user space 494 with events happening in the kernel. Writing strings into 495 this file will be written into the ftrace buffer. 496 497 It is useful in applications to open this file at the start 498 of the application and just reference the file descriptor 499 for the file:: 500 501 void trace_write(const char *fmt, ...) 502 { 503 va_list ap; 504 char buf[256]; 505 int n; 506 507 if (trace_fd < 0) 508 return; 509 510 va_start(ap, fmt); 511 n = vsnprintf(buf, 256, fmt, ap); 512 va_end(ap); 513 514 write(trace_fd, buf, n); 515 } 516 517 start:: 518 519 trace_fd = open("trace_marker", WR_ONLY); 520 521 Note: Writing into the trace_marker file can also initiate triggers 522 that are written into /sys/kernel/tracing/events/ftrace/print/trigger 523 See "Event triggers" in Documentation/trace/events.rst and an 524 example in Documentation/trace/histogram.rst (Section 3.) 525 526 trace_marker_raw: 527 528 This is similar to trace_marker above, but is meant for for binary data 529 to be written to it, where a tool can be used to parse the data 530 from trace_pipe_raw. 531 532 uprobe_events: 533 534 Add dynamic tracepoints in programs. 535 See uprobetracer.txt 536 537 uprobe_profile: 538 539 Uprobe statistics. See uprobetrace.txt 540 541 instances: 542 543 This is a way to make multiple trace buffers where different 544 events can be recorded in different buffers. 545 See "Instances" section below. 546 547 events: 548 549 This is the trace event directory. It holds event tracepoints 550 (also known as static tracepoints) that have been compiled 551 into the kernel. It shows what event tracepoints exist 552 and how they are grouped by system. There are "enable" 553 files at various levels that can enable the tracepoints 554 when a "1" is written to them. 555 556 See events.txt for more information. 557 558 set_event: 559 560 By echoing in the event into this file, will enable that event. 561 562 See events.txt for more information. 563 564 available_events: 565 566 A list of events that can be enabled in tracing. 567 568 See events.txt for more information. 569 570 timestamp_mode: 571 572 Certain tracers may change the timestamp mode used when 573 logging trace events into the event buffer. Events with 574 different modes can coexist within a buffer but the mode in 575 effect when an event is logged determines which timestamp mode 576 is used for that event. The default timestamp mode is 577 'delta'. 578 579 Usual timestamp modes for tracing: 580 581 # cat timestamp_mode 582 [delta] absolute 583 584 The timestamp mode with the square brackets around it is the 585 one in effect. 586 587 delta: Default timestamp mode - timestamp is a delta against 588 a per-buffer timestamp. 589 590 absolute: The timestamp is a full timestamp, not a delta 591 against some other value. As such it takes up more 592 space and is less efficient. 593 594 hwlat_detector: 595 596 Directory for the Hardware Latency Detector. 597 See "Hardware Latency Detector" section below. 598 599 per_cpu: 600 601 This is a directory that contains the trace per_cpu information. 602 603 per_cpu/cpu0/buffer_size_kb: 604 605 The ftrace buffer is defined per_cpu. That is, there's a separate 606 buffer for each CPU to allow writes to be done atomically, 607 and free from cache bouncing. These buffers may have different 608 size buffers. This file is similar to the buffer_size_kb 609 file, but it only displays or sets the buffer size for the 610 specific CPU. (here cpu0). 611 612 per_cpu/cpu0/trace: 613 614 This is similar to the "trace" file, but it will only display 615 the data specific for the CPU. If written to, it only clears 616 the specific CPU buffer. 617 618 per_cpu/cpu0/trace_pipe 619 620 This is similar to the "trace_pipe" file, and is a consuming 621 read, but it will only display (and consume) the data specific 622 for the CPU. 623 624 per_cpu/cpu0/trace_pipe_raw 625 626 For tools that can parse the ftrace ring buffer binary format, 627 the trace_pipe_raw file can be used to extract the data 628 from the ring buffer directly. With the use of the splice() 629 system call, the buffer data can be quickly transferred to 630 a file or to the network where a server is collecting the 631 data. 632 633 Like trace_pipe, this is a consuming reader, where multiple 634 reads will always produce different data. 635 636 per_cpu/cpu0/snapshot: 637 638 This is similar to the main "snapshot" file, but will only 639 snapshot the current CPU (if supported). It only displays 640 the content of the snapshot for a given CPU, and if 641 written to, only clears this CPU buffer. 642 643 per_cpu/cpu0/snapshot_raw: 644 645 Similar to the trace_pipe_raw, but will read the binary format 646 from the snapshot buffer for the given CPU. 647 648 per_cpu/cpu0/stats: 649 650 This displays certain stats about the ring buffer: 651 652 entries: 653 The number of events that are still in the buffer. 654 655 overrun: 656 The number of lost events due to overwriting when 657 the buffer was full. 658 659 commit overrun: 660 Should always be zero. 661 This gets set if so many events happened within a nested 662 event (ring buffer is re-entrant), that it fills the 663 buffer and starts dropping events. 664 665 bytes: 666 Bytes actually read (not overwritten). 667 668 oldest event ts: 669 The oldest timestamp in the buffer 670 671 now ts: 672 The current timestamp 673 674 dropped events: 675 Events lost due to overwrite option being off. 676 677 read events: 678 The number of events read. 679 680The Tracers 681----------- 682 683Here is the list of current tracers that may be configured. 684 685 "function" 686 687 Function call tracer to trace all kernel functions. 688 689 "function_graph" 690 691 Similar to the function tracer except that the 692 function tracer probes the functions on their entry 693 whereas the function graph tracer traces on both entry 694 and exit of the functions. It then provides the ability 695 to draw a graph of function calls similar to C code 696 source. 697 698 "blk" 699 700 The block tracer. The tracer used by the blktrace user 701 application. 702 703 "hwlat" 704 705 The Hardware Latency tracer is used to detect if the hardware 706 produces any latency. See "Hardware Latency Detector" section 707 below. 708 709 "irqsoff" 710 711 Traces the areas that disable interrupts and saves 712 the trace with the longest max latency. 713 See tracing_max_latency. When a new max is recorded, 714 it replaces the old trace. It is best to view this 715 trace with the latency-format option enabled, which 716 happens automatically when the tracer is selected. 717 718 "preemptoff" 719 720 Similar to irqsoff but traces and records the amount of 721 time for which preemption is disabled. 722 723 "preemptirqsoff" 724 725 Similar to irqsoff and preemptoff, but traces and 726 records the largest time for which irqs and/or preemption 727 is disabled. 728 729 "wakeup" 730 731 Traces and records the max latency that it takes for 732 the highest priority task to get scheduled after 733 it has been woken up. 734 Traces all tasks as an average developer would expect. 735 736 "wakeup_rt" 737 738 Traces and records the max latency that it takes for just 739 RT tasks (as the current "wakeup" does). This is useful 740 for those interested in wake up timings of RT tasks. 741 742 "wakeup_dl" 743 744 Traces and records the max latency that it takes for 745 a SCHED_DEADLINE task to be woken (as the "wakeup" and 746 "wakeup_rt" does). 747 748 "mmiotrace" 749 750 A special tracer that is used to trace binary module. 751 It will trace all the calls that a module makes to the 752 hardware. Everything it writes and reads from the I/O 753 as well. 754 755 "branch" 756 757 This tracer can be configured when tracing likely/unlikely 758 calls within the kernel. It will trace when a likely and 759 unlikely branch is hit and if it was correct in its prediction 760 of being correct. 761 762 "nop" 763 764 This is the "trace nothing" tracer. To remove all 765 tracers from tracing simply echo "nop" into 766 current_tracer. 767 768 769Examples of using the tracer 770---------------------------- 771 772Here are typical examples of using the tracers when controlling 773them only with the tracefs interface (without using any 774user-land utilities). 775 776Output format: 777-------------- 778 779Here is an example of the output format of the file "trace":: 780 781 # tracer: function 782 # 783 # entries-in-buffer/entries-written: 140080/250280 #P:4 784 # 785 # _-----=> irqs-off 786 # / _----=> need-resched 787 # | / _---=> hardirq/softirq 788 # || / _--=> preempt-depth 789 # ||| / delay 790 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 791 # | | | |||| | | 792 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath 793 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close 794 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd 795 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify 796 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock 797 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd 798 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock 799 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd 800 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close 801 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath 802 .... 803 804A header is printed with the tracer name that is represented by 805the trace. In this case the tracer is "function". Then it shows the 806number of events in the buffer as well as the total number of entries 807that were written. The difference is the number of entries that were 808lost due to the buffer filling up (250280 - 140080 = 110200 events 809lost). 810 811The header explains the content of the events. Task name "bash", the task 812PID "1977", the CPU that it was running on "000", the latency format 813(explained below), the timestamp in <secs>.<usecs> format, the 814function name that was traced "sys_close" and the parent function that 815called this function "system_call_fastpath". The timestamp is the time 816at which the function was entered. 817 818Latency trace format 819-------------------- 820 821When the latency-format option is enabled or when one of the latency 822tracers is set, the trace file gives somewhat more information to see 823why a latency happened. Here is a typical trace:: 824 825 # tracer: irqsoff 826 # 827 # irqsoff latency trace v1.1.5 on 3.8.0-test+ 828 # -------------------------------------------------------------------- 829 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 830 # ----------------- 831 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0) 832 # ----------------- 833 # => started at: __lock_task_sighand 834 # => ended at: _raw_spin_unlock_irqrestore 835 # 836 # 837 # _------=> CPU# 838 # / _-----=> irqs-off 839 # | / _----=> need-resched 840 # || / _---=> hardirq/softirq 841 # ||| / _--=> preempt-depth 842 # |||| / delay 843 # cmd pid ||||| time | caller 844 # \ / ||||| \ | / 845 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand 846 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore 847 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore 848 ps-6143 2d..1 306us : <stack trace> 849 => trace_hardirqs_on_caller 850 => trace_hardirqs_on 851 => _raw_spin_unlock_irqrestore 852 => do_task_stat 853 => proc_tgid_stat 854 => proc_single_show 855 => seq_read 856 => vfs_read 857 => sys_read 858 => system_call_fastpath 859 860 861This shows that the current tracer is "irqsoff" tracing the time 862for which interrupts were disabled. It gives the trace version (which 863never changes) and the version of the kernel upon which this was executed on 864(3.8). Then it displays the max latency in microseconds (259 us). The number 865of trace entries displayed and the total number (both are four: #4/4). 866VP, KP, SP, and HP are always zero and are reserved for later use. 867#P is the number of online CPUs (#P:4). 868 869The task is the process that was running when the latency 870occurred. (ps pid: 6143). 871 872The start and stop (the functions in which the interrupts were 873disabled and enabled respectively) that caused the latencies: 874 875 - __lock_task_sighand is where the interrupts were disabled. 876 - _raw_spin_unlock_irqrestore is where they were enabled again. 877 878The next lines after the header are the trace itself. The header 879explains which is which. 880 881 cmd: The name of the process in the trace. 882 883 pid: The PID of that process. 884 885 CPU#: The CPU which the process was running on. 886 887 irqs-off: 'd' interrupts are disabled. '.' otherwise. 888 .. caution:: If the architecture does not support a way to 889 read the irq flags variable, an 'X' will always 890 be printed here. 891 892 need-resched: 893 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set, 894 - 'n' only TIF_NEED_RESCHED is set, 895 - 'p' only PREEMPT_NEED_RESCHED is set, 896 - '.' otherwise. 897 898 hardirq/softirq: 899 - 'Z' - NMI occurred inside a hardirq 900 - 'z' - NMI is running 901 - 'H' - hard irq occurred inside a softirq. 902 - 'h' - hard irq is running 903 - 's' - soft irq is running 904 - '.' - normal context. 905 906 preempt-depth: The level of preempt_disabled 907 908The above is mostly meaningful for kernel developers. 909 910 time: 911 When the latency-format option is enabled, the trace file 912 output includes a timestamp relative to the start of the 913 trace. This differs from the output when latency-format 914 is disabled, which includes an absolute timestamp. 915 916 delay: 917 This is just to help catch your eye a bit better. And 918 needs to be fixed to be only relative to the same CPU. 919 The marks are determined by the difference between this 920 current trace and the next trace. 921 922 - '$' - greater than 1 second 923 - '@' - greater than 100 millisecond 924 - '*' - greater than 10 millisecond 925 - '#' - greater than 1000 microsecond 926 - '!' - greater than 100 microsecond 927 - '+' - greater than 10 microsecond 928 - ' ' - less than or equal to 10 microsecond. 929 930 The rest is the same as the 'trace' file. 931 932 Note, the latency tracers will usually end with a back trace 933 to easily find where the latency occurred. 934 935trace_options 936------------- 937 938The trace_options file (or the options directory) is used to control 939what gets printed in the trace output, or manipulate the tracers. 940To see what is available, simply cat the file:: 941 942 cat trace_options 943 print-parent 944 nosym-offset 945 nosym-addr 946 noverbose 947 noraw 948 nohex 949 nobin 950 noblock 951 trace_printk 952 annotate 953 nouserstacktrace 954 nosym-userobj 955 noprintk-msg-only 956 context-info 957 nolatency-format 958 record-cmd 959 norecord-tgid 960 overwrite 961 nodisable_on_free 962 irq-info 963 markers 964 noevent-fork 965 function-trace 966 nofunction-fork 967 nodisplay-graph 968 nostacktrace 969 nobranch 970 971To disable one of the options, echo in the option prepended with 972"no":: 973 974 echo noprint-parent > trace_options 975 976To enable an option, leave off the "no":: 977 978 echo sym-offset > trace_options 979 980Here are the available options: 981 982 print-parent 983 On function traces, display the calling (parent) 984 function as well as the function being traced. 985 :: 986 987 print-parent: 988 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul 989 990 noprint-parent: 991 bash-4000 [01] 1477.606694: simple_strtoul 992 993 994 sym-offset 995 Display not only the function name, but also the 996 offset in the function. For example, instead of 997 seeing just "ktime_get", you will see 998 "ktime_get+0xb/0x20". 999 :: 1000 1001 sym-offset: 1002 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0 1003 1004 sym-addr 1005 This will also display the function address as well 1006 as the function name. 1007 :: 1008 1009 sym-addr: 1010 bash-4000 [01] 1477.606694: simple_strtoul <c0339346> 1011 1012 verbose 1013 This deals with the trace file when the 1014 latency-format option is enabled. 1015 :: 1016 1017 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \ 1018 (+0.000ms): simple_strtoul (kstrtoul) 1019 1020 raw 1021 This will display raw numbers. This option is best for 1022 use with user applications that can translate the raw 1023 numbers better than having it done in the kernel. 1024 1025 hex 1026 Similar to raw, but the numbers will be in a hexadecimal format. 1027 1028 bin 1029 This will print out the formats in raw binary. 1030 1031 block 1032 When set, reading trace_pipe will not block when polled. 1033 1034 trace_printk 1035 Can disable trace_printk() from writing into the buffer. 1036 1037 annotate 1038 It is sometimes confusing when the CPU buffers are full 1039 and one CPU buffer had a lot of events recently, thus 1040 a shorter time frame, were another CPU may have only had 1041 a few events, which lets it have older events. When 1042 the trace is reported, it shows the oldest events first, 1043 and it may look like only one CPU ran (the one with the 1044 oldest events). When the annotate option is set, it will 1045 display when a new CPU buffer started:: 1046 1047 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on 1048 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on 1049 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore 1050 ##### CPU 2 buffer started #### 1051 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle 1052 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog 1053 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock 1054 1055 userstacktrace 1056 This option changes the trace. It records a 1057 stacktrace of the current user space thread after 1058 each trace event. 1059 1060 sym-userobj 1061 when user stacktrace are enabled, look up which 1062 object the address belongs to, and print a 1063 relative address. This is especially useful when 1064 ASLR is on, otherwise you don't get a chance to 1065 resolve the address to object/file/line after 1066 the app is no longer running 1067 1068 The lookup is performed when you read 1069 trace,trace_pipe. Example:: 1070 1071 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0 1072 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6] 1073 1074 1075 printk-msg-only 1076 When set, trace_printk()s will only show the format 1077 and not their parameters (if trace_bprintk() or 1078 trace_bputs() was used to save the trace_printk()). 1079 1080 context-info 1081 Show only the event data. Hides the comm, PID, 1082 timestamp, CPU, and other useful data. 1083 1084 latency-format 1085 This option changes the trace output. When it is enabled, 1086 the trace displays additional information about the 1087 latency, as described in "Latency trace format". 1088 1089 record-cmd 1090 When any event or tracer is enabled, a hook is enabled 1091 in the sched_switch trace point to fill comm cache 1092 with mapped pids and comms. But this may cause some 1093 overhead, and if you only care about pids, and not the 1094 name of the task, disabling this option can lower the 1095 impact of tracing. See "saved_cmdlines". 1096 1097 record-tgid 1098 When any event or tracer is enabled, a hook is enabled 1099 in the sched_switch trace point to fill the cache of 1100 mapped Thread Group IDs (TGID) mapping to pids. See 1101 "saved_tgids". 1102 1103 overwrite 1104 This controls what happens when the trace buffer is 1105 full. If "1" (default), the oldest events are 1106 discarded and overwritten. If "0", then the newest 1107 events are discarded. 1108 (see per_cpu/cpu0/stats for overrun and dropped) 1109 1110 disable_on_free 1111 When the free_buffer is closed, tracing will 1112 stop (tracing_on set to 0). 1113 1114 irq-info 1115 Shows the interrupt, preempt count, need resched data. 1116 When disabled, the trace looks like:: 1117 1118 # tracer: function 1119 # 1120 # entries-in-buffer/entries-written: 144405/9452052 #P:4 1121 # 1122 # TASK-PID CPU# TIMESTAMP FUNCTION 1123 # | | | | | 1124 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up 1125 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89 1126 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task 1127 1128 1129 markers 1130 When set, the trace_marker is writable (only by root). 1131 When disabled, the trace_marker will error with EINVAL 1132 on write. 1133 1134 event-fork 1135 When set, tasks with PIDs listed in set_event_pid will have 1136 the PIDs of their children added to set_event_pid when those 1137 tasks fork. Also, when tasks with PIDs in set_event_pid exit, 1138 their PIDs will be removed from the file. 1139 1140 function-trace 1141 The latency tracers will enable function tracing 1142 if this option is enabled (default it is). When 1143 it is disabled, the latency tracers do not trace 1144 functions. This keeps the overhead of the tracer down 1145 when performing latency tests. 1146 1147 function-fork 1148 When set, tasks with PIDs listed in set_ftrace_pid will 1149 have the PIDs of their children added to set_ftrace_pid 1150 when those tasks fork. Also, when tasks with PIDs in 1151 set_ftrace_pid exit, their PIDs will be removed from the 1152 file. 1153 1154 display-graph 1155 When set, the latency tracers (irqsoff, wakeup, etc) will 1156 use function graph tracing instead of function tracing. 1157 1158 stacktrace 1159 When set, a stack trace is recorded after any trace event 1160 is recorded. 1161 1162 branch 1163 Enable branch tracing with the tracer. This enables branch 1164 tracer along with the currently set tracer. Enabling this 1165 with the "nop" tracer is the same as just enabling the 1166 "branch" tracer. 1167 1168.. tip:: Some tracers have their own options. They only appear in this 1169 file when the tracer is active. They always appear in the 1170 options directory. 1171 1172 1173Here are the per tracer options: 1174 1175Options for function tracer: 1176 1177 func_stack_trace 1178 When set, a stack trace is recorded after every 1179 function that is recorded. NOTE! Limit the functions 1180 that are recorded before enabling this, with 1181 "set_ftrace_filter" otherwise the system performance 1182 will be critically degraded. Remember to disable 1183 this option before clearing the function filter. 1184 1185Options for function_graph tracer: 1186 1187 Since the function_graph tracer has a slightly different output 1188 it has its own options to control what is displayed. 1189 1190 funcgraph-overrun 1191 When set, the "overrun" of the graph stack is 1192 displayed after each function traced. The 1193 overrun, is when the stack depth of the calls 1194 is greater than what is reserved for each task. 1195 Each task has a fixed array of functions to 1196 trace in the call graph. If the depth of the 1197 calls exceeds that, the function is not traced. 1198 The overrun is the number of functions missed 1199 due to exceeding this array. 1200 1201 funcgraph-cpu 1202 When set, the CPU number of the CPU where the trace 1203 occurred is displayed. 1204 1205 funcgraph-overhead 1206 When set, if the function takes longer than 1207 A certain amount, then a delay marker is 1208 displayed. See "delay" above, under the 1209 header description. 1210 1211 funcgraph-proc 1212 Unlike other tracers, the process' command line 1213 is not displayed by default, but instead only 1214 when a task is traced in and out during a context 1215 switch. Enabling this options has the command 1216 of each process displayed at every line. 1217 1218 funcgraph-duration 1219 At the end of each function (the return) 1220 the duration of the amount of time in the 1221 function is displayed in microseconds. 1222 1223 funcgraph-abstime 1224 When set, the timestamp is displayed at each line. 1225 1226 funcgraph-irqs 1227 When disabled, functions that happen inside an 1228 interrupt will not be traced. 1229 1230 funcgraph-tail 1231 When set, the return event will include the function 1232 that it represents. By default this is off, and 1233 only a closing curly bracket "}" is displayed for 1234 the return of a function. 1235 1236 sleep-time 1237 When running function graph tracer, to include 1238 the time a task schedules out in its function. 1239 When enabled, it will account time the task has been 1240 scheduled out as part of the function call. 1241 1242 graph-time 1243 When running function profiler with function graph tracer, 1244 to include the time to call nested functions. When this is 1245 not set, the time reported for the function will only 1246 include the time the function itself executed for, not the 1247 time for functions that it called. 1248 1249Options for blk tracer: 1250 1251 blk_classic 1252 Shows a more minimalistic output. 1253 1254 1255irqsoff 1256------- 1257 1258When interrupts are disabled, the CPU can not react to any other 1259external event (besides NMIs and SMIs). This prevents the timer 1260interrupt from triggering or the mouse interrupt from letting 1261the kernel know of a new mouse event. The result is a latency 1262with the reaction time. 1263 1264The irqsoff tracer tracks the time for which interrupts are 1265disabled. When a new maximum latency is hit, the tracer saves 1266the trace leading up to that latency point so that every time a 1267new maximum is reached, the old saved trace is discarded and the 1268new trace is saved. 1269 1270To reset the maximum, echo 0 into tracing_max_latency. Here is 1271an example:: 1272 1273 # echo 0 > options/function-trace 1274 # echo irqsoff > current_tracer 1275 # echo 1 > tracing_on 1276 # echo 0 > tracing_max_latency 1277 # ls -ltr 1278 [...] 1279 # echo 0 > tracing_on 1280 # cat trace 1281 # tracer: irqsoff 1282 # 1283 # irqsoff latency trace v1.1.5 on 3.8.0-test+ 1284 # -------------------------------------------------------------------- 1285 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1286 # ----------------- 1287 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0) 1288 # ----------------- 1289 # => started at: run_timer_softirq 1290 # => ended at: run_timer_softirq 1291 # 1292 # 1293 # _------=> CPU# 1294 # / _-----=> irqs-off 1295 # | / _----=> need-resched 1296 # || / _---=> hardirq/softirq 1297 # ||| / _--=> preempt-depth 1298 # |||| / delay 1299 # cmd pid ||||| time | caller 1300 # \ / ||||| \ | / 1301 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq 1302 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq 1303 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq 1304 <idle>-0 0dNs3 25us : <stack trace> 1305 => _raw_spin_unlock_irq 1306 => run_timer_softirq 1307 => __do_softirq 1308 => call_softirq 1309 => do_softirq 1310 => irq_exit 1311 => smp_apic_timer_interrupt 1312 => apic_timer_interrupt 1313 => rcu_idle_exit 1314 => cpu_idle 1315 => rest_init 1316 => start_kernel 1317 => x86_64_start_reservations 1318 => x86_64_start_kernel 1319 1320Here we see that that we had a latency of 16 microseconds (which is 1321very good). The _raw_spin_lock_irq in run_timer_softirq disabled 1322interrupts. The difference between the 16 and the displayed 1323timestamp 25us occurred because the clock was incremented 1324between the time of recording the max latency and the time of 1325recording the function that had that latency. 1326 1327Note the above example had function-trace not set. If we set 1328function-trace, we get a much larger output:: 1329 1330 with echo 1 > options/function-trace 1331 1332 # tracer: irqsoff 1333 # 1334 # irqsoff latency trace v1.1.5 on 3.8.0-test+ 1335 # -------------------------------------------------------------------- 1336 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1337 # ----------------- 1338 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0) 1339 # ----------------- 1340 # => started at: ata_scsi_queuecmd 1341 # => ended at: ata_scsi_queuecmd 1342 # 1343 # 1344 # _------=> CPU# 1345 # / _-----=> irqs-off 1346 # | / _----=> need-resched 1347 # || / _---=> hardirq/softirq 1348 # ||| / _--=> preempt-depth 1349 # |||| / delay 1350 # cmd pid ||||| time | caller 1351 # \ / ||||| \ | / 1352 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd 1353 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave 1354 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd 1355 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev 1356 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev 1357 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd 1358 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd 1359 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd 1360 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat 1361 [...] 1362 bash-2042 3d..1 67us : delay_tsc <-__delay 1363 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc 1364 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc 1365 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc 1366 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc 1367 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue 1368 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd 1369 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd 1370 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd 1371 bash-2042 3d..1 120us : <stack trace> 1372 => _raw_spin_unlock_irqrestore 1373 => ata_scsi_queuecmd 1374 => scsi_dispatch_cmd 1375 => scsi_request_fn 1376 => __blk_run_queue_uncond 1377 => __blk_run_queue 1378 => blk_queue_bio 1379 => generic_make_request 1380 => submit_bio 1381 => submit_bh 1382 => __ext3_get_inode_loc 1383 => ext3_iget 1384 => ext3_lookup 1385 => lookup_real 1386 => __lookup_hash 1387 => walk_component 1388 => lookup_last 1389 => path_lookupat 1390 => filename_lookup 1391 => user_path_at_empty 1392 => user_path_at 1393 => vfs_fstatat 1394 => vfs_stat 1395 => sys_newstat 1396 => system_call_fastpath 1397 1398 1399Here we traced a 71 microsecond latency. But we also see all the 1400functions that were called during that time. Note that by 1401enabling function tracing, we incur an added overhead. This 1402overhead may extend the latency times. But nevertheless, this 1403trace has provided some very helpful debugging information. 1404 1405If we prefer function graph output instead of function, we can set 1406display-graph option:: 1407 with echo 1 > options/display-graph 1408 1409 # tracer: irqsoff 1410 # 1411 # irqsoff latency trace v1.1.5 on 4.20.0-rc6+ 1412 # -------------------------------------------------------------------- 1413 # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4) 1414 # ----------------- 1415 # | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0) 1416 # ----------------- 1417 # => started at: free_debug_processing 1418 # => ended at: return_to_handler 1419 # 1420 # 1421 # _-----=> irqs-off 1422 # / _----=> need-resched 1423 # | / _---=> hardirq/softirq 1424 # || / _--=> preempt-depth 1425 # ||| / 1426 # REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS 1427 # | | | | |||| | | | | | | 1428 0 us | 0) bash-1507 | d... | 0.000 us | _raw_spin_lock_irqsave(); 1429 0 us | 0) bash-1507 | d..1 | 0.378 us | do_raw_spin_trylock(); 1430 1 us | 0) bash-1507 | d..2 | | set_track() { 1431 2 us | 0) bash-1507 | d..2 | | save_stack_trace() { 1432 2 us | 0) bash-1507 | d..2 | | __save_stack_trace() { 1433 3 us | 0) bash-1507 | d..2 | | __unwind_start() { 1434 3 us | 0) bash-1507 | d..2 | | get_stack_info() { 1435 3 us | 0) bash-1507 | d..2 | 0.351 us | in_task_stack(); 1436 4 us | 0) bash-1507 | d..2 | 1.107 us | } 1437 [...] 1438 3750 us | 0) bash-1507 | d..1 | 0.516 us | do_raw_spin_unlock(); 1439 3750 us | 0) bash-1507 | d..1 | 0.000 us | _raw_spin_unlock_irqrestore(); 1440 3764 us | 0) bash-1507 | d..1 | 0.000 us | tracer_hardirqs_on(); 1441 bash-1507 0d..1 3792us : <stack trace> 1442 => free_debug_processing 1443 => __slab_free 1444 => kmem_cache_free 1445 => vm_area_free 1446 => remove_vma 1447 => exit_mmap 1448 => mmput 1449 => flush_old_exec 1450 => load_elf_binary 1451 => search_binary_handler 1452 => __do_execve_file.isra.32 1453 => __x64_sys_execve 1454 => do_syscall_64 1455 => entry_SYSCALL_64_after_hwframe 1456 1457preemptoff 1458---------- 1459 1460When preemption is disabled, we may be able to receive 1461interrupts but the task cannot be preempted and a higher 1462priority task must wait for preemption to be enabled again 1463before it can preempt a lower priority task. 1464 1465The preemptoff tracer traces the places that disable preemption. 1466Like the irqsoff tracer, it records the maximum latency for 1467which preemption was disabled. The control of preemptoff tracer 1468is much like the irqsoff tracer. 1469:: 1470 1471 # echo 0 > options/function-trace 1472 # echo preemptoff > current_tracer 1473 # echo 1 > tracing_on 1474 # echo 0 > tracing_max_latency 1475 # ls -ltr 1476 [...] 1477 # echo 0 > tracing_on 1478 # cat trace 1479 # tracer: preemptoff 1480 # 1481 # preemptoff latency trace v1.1.5 on 3.8.0-test+ 1482 # -------------------------------------------------------------------- 1483 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1484 # ----------------- 1485 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0) 1486 # ----------------- 1487 # => started at: do_IRQ 1488 # => ended at: do_IRQ 1489 # 1490 # 1491 # _------=> CPU# 1492 # / _-----=> irqs-off 1493 # | / _----=> need-resched 1494 # || / _---=> hardirq/softirq 1495 # ||| / _--=> preempt-depth 1496 # |||| / delay 1497 # cmd pid ||||| time | caller 1498 # \ / ||||| \ | / 1499 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ 1500 sshd-1991 1d..1 46us : irq_exit <-do_IRQ 1501 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ 1502 sshd-1991 1d..1 52us : <stack trace> 1503 => sub_preempt_count 1504 => irq_exit 1505 => do_IRQ 1506 => ret_from_intr 1507 1508 1509This has some more changes. Preemption was disabled when an 1510interrupt came in (notice the 'h'), and was enabled on exit. 1511But we also see that interrupts have been disabled when entering 1512the preempt off section and leaving it (the 'd'). We do not know if 1513interrupts were enabled in the mean time or shortly after this 1514was over. 1515:: 1516 1517 # tracer: preemptoff 1518 # 1519 # preemptoff latency trace v1.1.5 on 3.8.0-test+ 1520 # -------------------------------------------------------------------- 1521 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1522 # ----------------- 1523 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0) 1524 # ----------------- 1525 # => started at: wake_up_new_task 1526 # => ended at: task_rq_unlock 1527 # 1528 # 1529 # _------=> CPU# 1530 # / _-----=> irqs-off 1531 # | / _----=> need-resched 1532 # || / _---=> hardirq/softirq 1533 # ||| / _--=> preempt-depth 1534 # |||| / delay 1535 # cmd pid ||||| time | caller 1536 # \ / ||||| \ | / 1537 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task 1538 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq 1539 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair 1540 bash-1994 1d..1 1us : source_load <-select_task_rq_fair 1541 bash-1994 1d..1 1us : source_load <-select_task_rq_fair 1542 [...] 1543 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt 1544 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter 1545 bash-1994 1d..1 13us : add_preempt_count <-irq_enter 1546 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt 1547 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt 1548 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt 1549 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock 1550 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt 1551 [...] 1552 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event 1553 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt 1554 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit 1555 bash-1994 1d..2 36us : do_softirq <-irq_exit 1556 bash-1994 1d..2 36us : __do_softirq <-call_softirq 1557 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq 1558 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq 1559 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq 1560 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock 1561 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq 1562 [...] 1563 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks 1564 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq 1565 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable 1566 bash-1994 1dN.2 82us : idle_cpu <-irq_exit 1567 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit 1568 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit 1569 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock 1570 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock 1571 bash-1994 1.N.1 104us : <stack trace> 1572 => sub_preempt_count 1573 => _raw_spin_unlock_irqrestore 1574 => task_rq_unlock 1575 => wake_up_new_task 1576 => do_fork 1577 => sys_clone 1578 => stub_clone 1579 1580 1581The above is an example of the preemptoff trace with 1582function-trace set. Here we see that interrupts were not disabled 1583the entire time. The irq_enter code lets us know that we entered 1584an interrupt 'h'. Before that, the functions being traced still 1585show that it is not in an interrupt, but we can see from the 1586functions themselves that this is not the case. 1587 1588preemptirqsoff 1589-------------- 1590 1591Knowing the locations that have interrupts disabled or 1592preemption disabled for the longest times is helpful. But 1593sometimes we would like to know when either preemption and/or 1594interrupts are disabled. 1595 1596Consider the following code:: 1597 1598 local_irq_disable(); 1599 call_function_with_irqs_off(); 1600 preempt_disable(); 1601 call_function_with_irqs_and_preemption_off(); 1602 local_irq_enable(); 1603 call_function_with_preemption_off(); 1604 preempt_enable(); 1605 1606The irqsoff tracer will record the total length of 1607call_function_with_irqs_off() and 1608call_function_with_irqs_and_preemption_off(). 1609 1610The preemptoff tracer will record the total length of 1611call_function_with_irqs_and_preemption_off() and 1612call_function_with_preemption_off(). 1613 1614But neither will trace the time that interrupts and/or 1615preemption is disabled. This total time is the time that we can 1616not schedule. To record this time, use the preemptirqsoff 1617tracer. 1618 1619Again, using this trace is much like the irqsoff and preemptoff 1620tracers. 1621:: 1622 1623 # echo 0 > options/function-trace 1624 # echo preemptirqsoff > current_tracer 1625 # echo 1 > tracing_on 1626 # echo 0 > tracing_max_latency 1627 # ls -ltr 1628 [...] 1629 # echo 0 > tracing_on 1630 # cat trace 1631 # tracer: preemptirqsoff 1632 # 1633 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+ 1634 # -------------------------------------------------------------------- 1635 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1636 # ----------------- 1637 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0) 1638 # ----------------- 1639 # => started at: ata_scsi_queuecmd 1640 # => ended at: ata_scsi_queuecmd 1641 # 1642 # 1643 # _------=> CPU# 1644 # / _-----=> irqs-off 1645 # | / _----=> need-resched 1646 # || / _---=> hardirq/softirq 1647 # ||| / _--=> preempt-depth 1648 # |||| / delay 1649 # cmd pid ||||| time | caller 1650 # \ / ||||| \ | / 1651 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd 1652 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd 1653 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd 1654 ls-2230 3...1 111us : <stack trace> 1655 => sub_preempt_count 1656 => _raw_spin_unlock_irqrestore 1657 => ata_scsi_queuecmd 1658 => scsi_dispatch_cmd 1659 => scsi_request_fn 1660 => __blk_run_queue_uncond 1661 => __blk_run_queue 1662 => blk_queue_bio 1663 => generic_make_request 1664 => submit_bio 1665 => submit_bh 1666 => ext3_bread 1667 => ext3_dir_bread 1668 => htree_dirblock_to_tree 1669 => ext3_htree_fill_tree 1670 => ext3_readdir 1671 => vfs_readdir 1672 => sys_getdents 1673 => system_call_fastpath 1674 1675 1676The trace_hardirqs_off_thunk is called from assembly on x86 when 1677interrupts are disabled in the assembly code. Without the 1678function tracing, we do not know if interrupts were enabled 1679within the preemption points. We do see that it started with 1680preemption enabled. 1681 1682Here is a trace with function-trace set:: 1683 1684 # tracer: preemptirqsoff 1685 # 1686 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+ 1687 # -------------------------------------------------------------------- 1688 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1689 # ----------------- 1690 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0) 1691 # ----------------- 1692 # => started at: schedule 1693 # => ended at: mutex_unlock 1694 # 1695 # 1696 # _------=> CPU# 1697 # / _-----=> irqs-off 1698 # | / _----=> need-resched 1699 # || / _---=> hardirq/softirq 1700 # ||| / _--=> preempt-depth 1701 # |||| / delay 1702 # cmd pid ||||| time | caller 1703 # \ / ||||| \ | / 1704 kworker/-59 3...1 0us : __schedule <-schedule 1705 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch 1706 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq 1707 kworker/-59 3d..2 1us : deactivate_task <-__schedule 1708 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task 1709 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task 1710 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task 1711 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair 1712 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr 1713 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr 1714 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge 1715 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge 1716 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair 1717 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair 1718 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair 1719 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair 1720 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair 1721 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair 1722 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule 1723 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping 1724 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule 1725 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task 1726 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair 1727 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair 1728 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity 1729 ls-2269 3d..2 7us : finish_task_switch <-__schedule 1730 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch 1731 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr 1732 ls-2269 3d..2 8us : irq_enter <-do_IRQ 1733 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter 1734 ls-2269 3d..2 9us : add_preempt_count <-irq_enter 1735 ls-2269 3d.h2 9us : exit_idle <-do_IRQ 1736 [...] 1737 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock 1738 ls-2269 3d.h2 20us : irq_exit <-do_IRQ 1739 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit 1740 ls-2269 3d..3 21us : do_softirq <-irq_exit 1741 ls-2269 3d..3 21us : __do_softirq <-call_softirq 1742 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq 1743 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip 1744 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip 1745 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr 1746 ls-2269 3d.s5 31us : irq_enter <-do_IRQ 1747 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter 1748 [...] 1749 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter 1750 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter 1751 ls-2269 3d.H5 32us : exit_idle <-do_IRQ 1752 ls-2269 3d.H5 32us : handle_irq <-do_IRQ 1753 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq 1754 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq 1755 [...] 1756 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll 1757 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action 1758 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq 1759 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable 1760 ls-2269 3d..3 159us : idle_cpu <-irq_exit 1761 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit 1762 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit 1763 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock 1764 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock 1765 ls-2269 3d... 186us : <stack trace> 1766 => __mutex_unlock_slowpath 1767 => mutex_unlock 1768 => process_output 1769 => n_tty_write 1770 => tty_write 1771 => vfs_write 1772 => sys_write 1773 => system_call_fastpath 1774 1775This is an interesting trace. It started with kworker running and 1776scheduling out and ls taking over. But as soon as ls released the 1777rq lock and enabled interrupts (but not preemption) an interrupt 1778triggered. When the interrupt finished, it started running softirqs. 1779But while the softirq was running, another interrupt triggered. 1780When an interrupt is running inside a softirq, the annotation is 'H'. 1781 1782 1783wakeup 1784------ 1785 1786One common case that people are interested in tracing is the 1787time it takes for a task that is woken to actually wake up. 1788Now for non Real-Time tasks, this can be arbitrary. But tracing 1789it none the less can be interesting. 1790 1791Without function tracing:: 1792 1793 # echo 0 > options/function-trace 1794 # echo wakeup > current_tracer 1795 # echo 1 > tracing_on 1796 # echo 0 > tracing_max_latency 1797 # chrt -f 5 sleep 1 1798 # echo 0 > tracing_on 1799 # cat trace 1800 # tracer: wakeup 1801 # 1802 # wakeup latency trace v1.1.5 on 3.8.0-test+ 1803 # -------------------------------------------------------------------- 1804 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1805 # ----------------- 1806 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0) 1807 # ----------------- 1808 # 1809 # _------=> CPU# 1810 # / _-----=> irqs-off 1811 # | / _----=> need-resched 1812 # || / _---=> hardirq/softirq 1813 # ||| / _--=> preempt-depth 1814 # |||| / delay 1815 # cmd pid ||||| time | caller 1816 # \ / ||||| \ | / 1817 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H 1818 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up 1819 <idle>-0 3d..3 15us : __schedule <-schedule 1820 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H 1821 1822The tracer only traces the highest priority task in the system 1823to avoid tracing the normal circumstances. Here we see that 1824the kworker with a nice priority of -20 (not very nice), took 1825just 15 microseconds from the time it woke up, to the time it 1826ran. 1827 1828Non Real-Time tasks are not that interesting. A more interesting 1829trace is to concentrate only on Real-Time tasks. 1830 1831wakeup_rt 1832--------- 1833 1834In a Real-Time environment it is very important to know the 1835wakeup time it takes for the highest priority task that is woken 1836up to the time that it executes. This is also known as "schedule 1837latency". I stress the point that this is about RT tasks. It is 1838also important to know the scheduling latency of non-RT tasks, 1839but the average schedule latency is better for non-RT tasks. 1840Tools like LatencyTop are more appropriate for such 1841measurements. 1842 1843Real-Time environments are interested in the worst case latency. 1844That is the longest latency it takes for something to happen, 1845and not the average. We can have a very fast scheduler that may 1846only have a large latency once in a while, but that would not 1847work well with Real-Time tasks. The wakeup_rt tracer was designed 1848to record the worst case wakeups of RT tasks. Non-RT tasks are 1849not recorded because the tracer only records one worst case and 1850tracing non-RT tasks that are unpredictable will overwrite the 1851worst case latency of RT tasks (just run the normal wakeup 1852tracer for a while to see that effect). 1853 1854Since this tracer only deals with RT tasks, we will run this 1855slightly differently than we did with the previous tracers. 1856Instead of performing an 'ls', we will run 'sleep 1' under 1857'chrt' which changes the priority of the task. 1858:: 1859 1860 # echo 0 > options/function-trace 1861 # echo wakeup_rt > current_tracer 1862 # echo 1 > tracing_on 1863 # echo 0 > tracing_max_latency 1864 # chrt -f 5 sleep 1 1865 # echo 0 > tracing_on 1866 # cat trace 1867 # tracer: wakeup 1868 # 1869 # tracer: wakeup_rt 1870 # 1871 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+ 1872 # -------------------------------------------------------------------- 1873 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1874 # ----------------- 1875 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5) 1876 # ----------------- 1877 # 1878 # _------=> CPU# 1879 # / _-----=> irqs-off 1880 # | / _----=> need-resched 1881 # || / _---=> hardirq/softirq 1882 # ||| / _--=> preempt-depth 1883 # |||| / delay 1884 # cmd pid ||||| time | caller 1885 # \ / ||||| \ | / 1886 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep 1887 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up 1888 <idle>-0 3d..3 5us : __schedule <-schedule 1889 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep 1890 1891 1892Running this on an idle system, we see that it only took 5 microseconds 1893to perform the task switch. Note, since the trace point in the schedule 1894is before the actual "switch", we stop the tracing when the recorded task 1895is about to schedule in. This may change if we add a new marker at the 1896end of the scheduler. 1897 1898Notice that the recorded task is 'sleep' with the PID of 2389 1899and it has an rt_prio of 5. This priority is user-space priority 1900and not the internal kernel priority. The policy is 1 for 1901SCHED_FIFO and 2 for SCHED_RR. 1902 1903Note, that the trace data shows the internal priority (99 - rtprio). 1904:: 1905 1906 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep 1907 1908The 0:120:R means idle was running with a nice priority of 0 (120 - 120) 1909and in the running state 'R'. The sleep task was scheduled in with 19102389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94) 1911and it too is in the running state. 1912 1913Doing the same with chrt -r 5 and function-trace set. 1914:: 1915 1916 echo 1 > options/function-trace 1917 1918 # tracer: wakeup_rt 1919 # 1920 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+ 1921 # -------------------------------------------------------------------- 1922 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 1923 # ----------------- 1924 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5) 1925 # ----------------- 1926 # 1927 # _------=> CPU# 1928 # / _-----=> irqs-off 1929 # | / _----=> need-resched 1930 # || / _---=> hardirq/softirq 1931 # ||| / _--=> preempt-depth 1932 # |||| / delay 1933 # cmd pid ||||| time | caller 1934 # \ / ||||| \ | / 1935 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep 1936 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up 1937 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup 1938 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr 1939 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup 1940 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up 1941 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock 1942 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up 1943 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up 1944 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore 1945 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer 1946 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock 1947 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt 1948 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock 1949 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt 1950 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event 1951 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event 1952 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event 1953 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt 1954 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit 1955 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit 1956 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit 1957 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit 1958 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit 1959 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle 1960 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit 1961 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle 1962 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit 1963 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit 1964 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit 1965 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit 1966 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz 1967 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock 1968 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz 1969 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update 1970 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz 1971 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock 1972 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit 1973 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit 1974 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit 1975 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel 1976 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel 1977 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18 1978 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave 1979 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16 1980 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer 1981 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram 1982 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event 1983 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event 1984 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event 1985 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel 1986 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore 1987 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit 1988 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward 1989 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward 1990 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11 1991 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns 1992 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns 1993 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18 1994 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave 1995 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns 1996 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns 1997 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns 1998 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event 1999 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event 2000 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event 2001 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns 2002 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore 2003 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit 2004 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks 2005 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle 2006 <idle>-0 3.N.. 25us : schedule <-cpu_idle 2007 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule 2008 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule 2009 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule 2010 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch 2011 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch 2012 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule 2013 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq 2014 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule 2015 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task 2016 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task 2017 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt 2018 <idle>-0 3d..3 29us : __schedule <-preempt_schedule 2019 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep 2020 2021This isn't that big of a trace, even with function tracing enabled, 2022so I included the entire trace. 2023 2024The interrupt went off while when the system was idle. Somewhere 2025before task_woken_rt() was called, the NEED_RESCHED flag was set, 2026this is indicated by the first occurrence of the 'N' flag. 2027 2028Latency tracing and events 2029-------------------------- 2030As function tracing can induce a much larger latency, but without 2031seeing what happens within the latency it is hard to know what 2032caused it. There is a middle ground, and that is with enabling 2033events. 2034:: 2035 2036 # echo 0 > options/function-trace 2037 # echo wakeup_rt > current_tracer 2038 # echo 1 > events/enable 2039 # echo 1 > tracing_on 2040 # echo 0 > tracing_max_latency 2041 # chrt -f 5 sleep 1 2042 # echo 0 > tracing_on 2043 # cat trace 2044 # tracer: wakeup_rt 2045 # 2046 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+ 2047 # -------------------------------------------------------------------- 2048 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) 2049 # ----------------- 2050 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5) 2051 # ----------------- 2052 # 2053 # _------=> CPU# 2054 # / _-----=> irqs-off 2055 # | / _----=> need-resched 2056 # || / _---=> hardirq/softirq 2057 # ||| / _--=> preempt-depth 2058 # |||| / delay 2059 # cmd pid ||||| time | caller 2060 # \ / ||||| \ | / 2061 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep 2062 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up 2063 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002 2064 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8 2065 <idle>-0 2.N.2 2us : power_end: cpu_id=2 2066 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2 2067 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0 2068 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000 2069 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch 2070 <idle>-0 2.N.2 5us : rcu_utilization: End context switch 2071 <idle>-0 2d..3 6us : __schedule <-schedule 2072 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep 2073 2074 2075Hardware Latency Detector 2076------------------------- 2077 2078The hardware latency detector is executed by enabling the "hwlat" tracer. 2079 2080NOTE, this tracer will affect the performance of the system as it will 2081periodically make a CPU constantly busy with interrupts disabled. 2082:: 2083 2084 # echo hwlat > current_tracer 2085 # sleep 100 2086 # cat trace 2087 # tracer: hwlat 2088 # 2089 # _-----=> irqs-off 2090 # / _----=> need-resched 2091 # | / _---=> hardirq/softirq 2092 # || / _--=> preempt-depth 2093 # ||| / delay 2094 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 2095 # | | | |||| | | 2096 <...>-3638 [001] d... 19452.055471: #1 inner/outer(us): 12/14 ts:1499801089.066141940 2097 <...>-3638 [003] d... 19454.071354: #2 inner/outer(us): 11/9 ts:1499801091.082164365 2098 <...>-3638 [002] dn.. 19461.126852: #3 inner/outer(us): 12/9 ts:1499801098.138150062 2099 <...>-3638 [001] d... 19488.340960: #4 inner/outer(us): 8/12 ts:1499801125.354139633 2100 <...>-3638 [003] d... 19494.388553: #5 inner/outer(us): 8/12 ts:1499801131.402150961 2101 <...>-3638 [003] d... 19501.283419: #6 inner/outer(us): 0/12 ts:1499801138.297435289 nmi-total:4 nmi-count:1 2102 2103 2104The above output is somewhat the same in the header. All events will have 2105interrupts disabled 'd'. Under the FUNCTION title there is: 2106 2107 #1 2108 This is the count of events recorded that were greater than the 2109 tracing_threshold (See below). 2110 2111 inner/outer(us): 12/14 2112 2113 This shows two numbers as "inner latency" and "outer latency". The test 2114 runs in a loop checking a timestamp twice. The latency detected within 2115 the two timestamps is the "inner latency" and the latency detected 2116 after the previous timestamp and the next timestamp in the loop is 2117 the "outer latency". 2118 2119 ts:1499801089.066141940 2120 2121 The absolute timestamp that the event happened. 2122 2123 nmi-total:4 nmi-count:1 2124 2125 On architectures that support it, if an NMI comes in during the 2126 test, the time spent in NMI is reported in "nmi-total" (in 2127 microseconds). 2128 2129 All architectures that have NMIs will show the "nmi-count" if an 2130 NMI comes in during the test. 2131 2132hwlat files: 2133 2134 tracing_threshold 2135 This gets automatically set to "10" to represent 10 2136 microseconds. This is the threshold of latency that 2137 needs to be detected before the trace will be recorded. 2138 2139 Note, when hwlat tracer is finished (another tracer is 2140 written into "current_tracer"), the original value for 2141 tracing_threshold is placed back into this file. 2142 2143 hwlat_detector/width 2144 The length of time the test runs with interrupts disabled. 2145 2146 hwlat_detector/window 2147 The length of time of the window which the test 2148 runs. That is, the test will run for "width" 2149 microseconds per "window" microseconds 2150 2151 tracing_cpumask 2152 When the test is started. A kernel thread is created that 2153 runs the test. This thread will alternate between CPUs 2154 listed in the tracing_cpumask between each period 2155 (one "window"). To limit the test to specific CPUs 2156 set the mask in this file to only the CPUs that the test 2157 should run on. 2158 2159function 2160-------- 2161 2162This tracer is the function tracer. Enabling the function tracer 2163can be done from the debug file system. Make sure the 2164ftrace_enabled is set; otherwise this tracer is a nop. 2165See the "ftrace_enabled" section below. 2166:: 2167 2168 # sysctl kernel.ftrace_enabled=1 2169 # echo function > current_tracer 2170 # echo 1 > tracing_on 2171 # usleep 1 2172 # echo 0 > tracing_on 2173 # cat trace 2174 # tracer: function 2175 # 2176 # entries-in-buffer/entries-written: 24799/24799 #P:4 2177 # 2178 # _-----=> irqs-off 2179 # / _----=> need-resched 2180 # | / _---=> hardirq/softirq 2181 # || / _--=> preempt-depth 2182 # ||| / delay 2183 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 2184 # | | | |||| | | 2185 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write 2186 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock 2187 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify 2188 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify 2189 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify 2190 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock 2191 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock 2192 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify 2193 [...] 2194 2195 2196Note: function tracer uses ring buffers to store the above 2197entries. The newest data may overwrite the oldest data. 2198Sometimes using echo to stop the trace is not sufficient because 2199the tracing could have overwritten the data that you wanted to 2200record. For this reason, it is sometimes better to disable 2201tracing directly from a program. This allows you to stop the 2202tracing at the point that you hit the part that you are 2203interested in. To disable the tracing directly from a C program, 2204something like following code snippet can be used:: 2205 2206 int trace_fd; 2207 [...] 2208 int main(int argc, char *argv[]) { 2209 [...] 2210 trace_fd = open(tracing_file("tracing_on"), O_WRONLY); 2211 [...] 2212 if (condition_hit()) { 2213 write(trace_fd, "0", 1); 2214 } 2215 [...] 2216 } 2217 2218 2219Single thread tracing 2220--------------------- 2221 2222By writing into set_ftrace_pid you can trace a 2223single thread. For example:: 2224 2225 # cat set_ftrace_pid 2226 no pid 2227 # echo 3111 > set_ftrace_pid 2228 # cat set_ftrace_pid 2229 3111 2230 # echo function > current_tracer 2231 # cat trace | head 2232 # tracer: function 2233 # 2234 # TASK-PID CPU# TIMESTAMP FUNCTION 2235 # | | | | | 2236 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return 2237 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range 2238 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel 2239 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel 2240 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll 2241 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll 2242 # echo > set_ftrace_pid 2243 # cat trace |head 2244 # tracer: function 2245 # 2246 # TASK-PID CPU# TIMESTAMP FUNCTION 2247 # | | | | | 2248 ##### CPU 3 buffer started #### 2249 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait 2250 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry 2251 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry 2252 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit 2253 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit 2254 2255If you want to trace a function when executing, you could use 2256something like this simple program. 2257:: 2258 2259 #include <stdio.h> 2260 #include <stdlib.h> 2261 #include <sys/types.h> 2262 #include <sys/stat.h> 2263 #include <fcntl.h> 2264 #include <unistd.h> 2265 #include <string.h> 2266 2267 #define _STR(x) #x 2268 #define STR(x) _STR(x) 2269 #define MAX_PATH 256 2270 2271 const char *find_tracefs(void) 2272 { 2273 static char tracefs[MAX_PATH+1]; 2274 static int tracefs_found; 2275 char type[100]; 2276 FILE *fp; 2277 2278 if (tracefs_found) 2279 return tracefs; 2280 2281 if ((fp = fopen("/proc/mounts","r")) == NULL) { 2282 perror("/proc/mounts"); 2283 return NULL; 2284 } 2285 2286 while (fscanf(fp, "%*s %" 2287 STR(MAX_PATH) 2288 "s %99s %*s %*d %*d\n", 2289 tracefs, type) == 2) { 2290 if (strcmp(type, "tracefs") == 0) 2291 break; 2292 } 2293 fclose(fp); 2294 2295 if (strcmp(type, "tracefs") != 0) { 2296 fprintf(stderr, "tracefs not mounted"); 2297 return NULL; 2298 } 2299 2300 strcat(tracefs, "/tracing/"); 2301 tracefs_found = 1; 2302 2303 return tracefs; 2304 } 2305 2306 const char *tracing_file(const char *file_name) 2307 { 2308 static char trace_file[MAX_PATH+1]; 2309 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name); 2310 return trace_file; 2311 } 2312 2313 int main (int argc, char **argv) 2314 { 2315 if (argc < 1) 2316 exit(-1); 2317 2318 if (fork() > 0) { 2319 int fd, ffd; 2320 char line[64]; 2321 int s; 2322 2323 ffd = open(tracing_file("current_tracer"), O_WRONLY); 2324 if (ffd < 0) 2325 exit(-1); 2326 write(ffd, "nop", 3); 2327 2328 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY); 2329 s = sprintf(line, "%d\n", getpid()); 2330 write(fd, line, s); 2331 2332 write(ffd, "function", 8); 2333 2334 close(fd); 2335 close(ffd); 2336 2337 execvp(argv[1], argv+1); 2338 } 2339 2340 return 0; 2341 } 2342 2343Or this simple script! 2344:: 2345 2346 #!/bin/bash 2347 2348 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts` 2349 echo nop > $tracefs/tracing/current_tracer 2350 echo 0 > $tracefs/tracing/tracing_on 2351 echo $$ > $tracefs/tracing/set_ftrace_pid 2352 echo function > $tracefs/tracing/current_tracer 2353 echo 1 > $tracefs/tracing/tracing_on 2354 exec "$@" 2355 2356 2357function graph tracer 2358--------------------------- 2359 2360This tracer is similar to the function tracer except that it 2361probes a function on its entry and its exit. This is done by 2362using a dynamically allocated stack of return addresses in each 2363task_struct. On function entry the tracer overwrites the return 2364address of each function traced to set a custom probe. Thus the 2365original return address is stored on the stack of return address 2366in the task_struct. 2367 2368Probing on both ends of a function leads to special features 2369such as: 2370 2371- measure of a function's time execution 2372- having a reliable call stack to draw function calls graph 2373 2374This tracer is useful in several situations: 2375 2376- you want to find the reason of a strange kernel behavior and 2377 need to see what happens in detail on any areas (or specific 2378 ones). 2379 2380- you are experiencing weird latencies but it's difficult to 2381 find its origin. 2382 2383- you want to find quickly which path is taken by a specific 2384 function 2385 2386- you just want to peek inside a working kernel and want to see 2387 what happens there. 2388 2389:: 2390 2391 # tracer: function_graph 2392 # 2393 # CPU DURATION FUNCTION CALLS 2394 # | | | | | | | 2395 2396 0) | sys_open() { 2397 0) | do_sys_open() { 2398 0) | getname() { 2399 0) | kmem_cache_alloc() { 2400 0) 1.382 us | __might_sleep(); 2401 0) 2.478 us | } 2402 0) | strncpy_from_user() { 2403 0) | might_fault() { 2404 0) 1.389 us | __might_sleep(); 2405 0) 2.553 us | } 2406 0) 3.807 us | } 2407 0) 7.876 us | } 2408 0) | alloc_fd() { 2409 0) 0.668 us | _spin_lock(); 2410 0) 0.570 us | expand_files(); 2411 0) 0.586 us | _spin_unlock(); 2412 2413 2414There are several columns that can be dynamically 2415enabled/disabled. You can use every combination of options you 2416want, depending on your needs. 2417 2418- The cpu number on which the function executed is default 2419 enabled. It is sometimes better to only trace one cpu (see 2420 tracing_cpu_mask file) or you might sometimes see unordered 2421 function calls while cpu tracing switch. 2422 2423 - hide: echo nofuncgraph-cpu > trace_options 2424 - show: echo funcgraph-cpu > trace_options 2425 2426- The duration (function's time of execution) is displayed on 2427 the closing bracket line of a function or on the same line 2428 than the current function in case of a leaf one. It is default 2429 enabled. 2430 2431 - hide: echo nofuncgraph-duration > trace_options 2432 - show: echo funcgraph-duration > trace_options 2433 2434- The overhead field precedes the duration field in case of 2435 reached duration thresholds. 2436 2437 - hide: echo nofuncgraph-overhead > trace_options 2438 - show: echo funcgraph-overhead > trace_options 2439 - depends on: funcgraph-duration 2440 2441 ie:: 2442 2443 3) # 1837.709 us | } /* __switch_to */ 2444 3) | finish_task_switch() { 2445 3) 0.313 us | _raw_spin_unlock_irq(); 2446 3) 3.177 us | } 2447 3) # 1889.063 us | } /* __schedule */ 2448 3) ! 140.417 us | } /* __schedule */ 2449 3) # 2034.948 us | } /* schedule */ 2450 3) * 33998.59 us | } /* schedule_preempt_disabled */ 2451 2452 [...] 2453 2454 1) 0.260 us | msecs_to_jiffies(); 2455 1) 0.313 us | __rcu_read_unlock(); 2456 1) + 61.770 us | } 2457 1) + 64.479 us | } 2458 1) 0.313 us | rcu_bh_qs(); 2459 1) 0.313 us | __local_bh_enable(); 2460 1) ! 217.240 us | } 2461 1) 0.365 us | idle_cpu(); 2462 1) | rcu_irq_exit() { 2463 1) 0.417 us | rcu_eqs_enter_common.isra.47(); 2464 1) 3.125 us | } 2465 1) ! 227.812 us | } 2466 1) ! 457.395 us | } 2467 1) @ 119760.2 us | } 2468 2469 [...] 2470 2471 2) | handle_IPI() { 2472 1) 6.979 us | } 2473 2) 0.417 us | scheduler_ipi(); 2474 1) 9.791 us | } 2475 1) + 12.917 us | } 2476 2) 3.490 us | } 2477 1) + 15.729 us | } 2478 1) + 18.542 us | } 2479 2) $ 3594274 us | } 2480 2481Flags:: 2482 2483 + means that the function exceeded 10 usecs. 2484 ! means that the function exceeded 100 usecs. 2485 # means that the function exceeded 1000 usecs. 2486 * means that the function exceeded 10 msecs. 2487 @ means that the function exceeded 100 msecs. 2488 $ means that the function exceeded 1 sec. 2489 2490 2491- The task/pid field displays the thread cmdline and pid which 2492 executed the function. It is default disabled. 2493 2494 - hide: echo nofuncgraph-proc > trace_options 2495 - show: echo funcgraph-proc > trace_options 2496 2497 ie:: 2498 2499 # tracer: function_graph 2500 # 2501 # CPU TASK/PID DURATION FUNCTION CALLS 2502 # | | | | | | | | | 2503 0) sh-4802 | | d_free() { 2504 0) sh-4802 | | call_rcu() { 2505 0) sh-4802 | | __call_rcu() { 2506 0) sh-4802 | 0.616 us | rcu_process_gp_end(); 2507 0) sh-4802 | 0.586 us | check_for_new_grace_period(); 2508 0) sh-4802 | 2.899 us | } 2509 0) sh-4802 | 4.040 us | } 2510 0) sh-4802 | 5.151 us | } 2511 0) sh-4802 | + 49.370 us | } 2512 2513 2514- The absolute time field is an absolute timestamp given by the 2515 system clock since it started. A snapshot of this time is 2516 given on each entry/exit of functions 2517 2518 - hide: echo nofuncgraph-abstime > trace_options 2519 - show: echo funcgraph-abstime > trace_options 2520 2521 ie:: 2522 2523 # 2524 # TIME CPU DURATION FUNCTION CALLS 2525 # | | | | | | | | 2526 360.774522 | 1) 0.541 us | } 2527 360.774522 | 1) 4.663 us | } 2528 360.774523 | 1) 0.541 us | __wake_up_bit(); 2529 360.774524 | 1) 6.796 us | } 2530 360.774524 | 1) 7.952 us | } 2531 360.774525 | 1) 9.063 us | } 2532 360.774525 | 1) 0.615 us | journal_mark_dirty(); 2533 360.774527 | 1) 0.578 us | __brelse(); 2534 360.774528 | 1) | reiserfs_prepare_for_journal() { 2535 360.774528 | 1) | unlock_buffer() { 2536 360.774529 | 1) | wake_up_bit() { 2537 360.774529 | 1) | bit_waitqueue() { 2538 360.774530 | 1) 0.594 us | __phys_addr(); 2539 2540 2541The function name is always displayed after the closing bracket 2542for a function if the start of that function is not in the 2543trace buffer. 2544 2545Display of the function name after the closing bracket may be 2546enabled for functions whose start is in the trace buffer, 2547allowing easier searching with grep for function durations. 2548It is default disabled. 2549 2550 - hide: echo nofuncgraph-tail > trace_options 2551 - show: echo funcgraph-tail > trace_options 2552 2553 Example with nofuncgraph-tail (default):: 2554 2555 0) | putname() { 2556 0) | kmem_cache_free() { 2557 0) 0.518 us | __phys_addr(); 2558 0) 1.757 us | } 2559 0) 2.861 us | } 2560 2561 Example with funcgraph-tail:: 2562 2563 0) | putname() { 2564 0) | kmem_cache_free() { 2565 0) 0.518 us | __phys_addr(); 2566 0) 1.757 us | } /* kmem_cache_free() */ 2567 0) 2.861 us | } /* putname() */ 2568 2569You can put some comments on specific functions by using 2570trace_printk() For example, if you want to put a comment inside 2571the __might_sleep() function, you just have to include 2572<linux/ftrace.h> and call trace_printk() inside __might_sleep():: 2573 2574 trace_printk("I'm a comment!\n") 2575 2576will produce:: 2577 2578 1) | __might_sleep() { 2579 1) | /* I'm a comment! */ 2580 1) 1.449 us | } 2581 2582 2583You might find other useful features for this tracer in the 2584following "dynamic ftrace" section such as tracing only specific 2585functions or tasks. 2586 2587dynamic ftrace 2588-------------- 2589 2590If CONFIG_DYNAMIC_FTRACE is set, the system will run with 2591virtually no overhead when function tracing is disabled. The way 2592this works is the mcount function call (placed at the start of 2593every kernel function, produced by the -pg switch in gcc), 2594starts of pointing to a simple return. (Enabling FTRACE will 2595include the -pg switch in the compiling of the kernel.) 2596 2597At compile time every C file object is run through the 2598recordmcount program (located in the scripts directory). This 2599program will parse the ELF headers in the C object to find all 2600the locations in the .text section that call mcount. Starting 2601with gcc version 4.6, the -mfentry has been added for x86, which 2602calls "__fentry__" instead of "mcount". Which is called before 2603the creation of the stack frame. 2604 2605Note, not all sections are traced. They may be prevented by either 2606a notrace, or blocked another way and all inline functions are not 2607traced. Check the "available_filter_functions" file to see what functions 2608can be traced. 2609 2610A section called "__mcount_loc" is created that holds 2611references to all the mcount/fentry call sites in the .text section. 2612The recordmcount program re-links this section back into the 2613original object. The final linking stage of the kernel will add all these 2614references into a single table. 2615 2616On boot up, before SMP is initialized, the dynamic ftrace code 2617scans this table and updates all the locations into nops. It 2618also records the locations, which are added to the 2619available_filter_functions list. Modules are processed as they 2620are loaded and before they are executed. When a module is 2621unloaded, it also removes its functions from the ftrace function 2622list. This is automatic in the module unload code, and the 2623module author does not need to worry about it. 2624 2625When tracing is enabled, the process of modifying the function 2626tracepoints is dependent on architecture. The old method is to use 2627kstop_machine to prevent races with the CPUs executing code being 2628modified (which can cause the CPU to do undesirable things, especially 2629if the modified code crosses cache (or page) boundaries), and the nops are 2630patched back to calls. But this time, they do not call mcount 2631(which is just a function stub). They now call into the ftrace 2632infrastructure. 2633 2634The new method of modifying the function tracepoints is to place 2635a breakpoint at the location to be modified, sync all CPUs, modify 2636the rest of the instruction not covered by the breakpoint. Sync 2637all CPUs again, and then remove the breakpoint with the finished 2638version to the ftrace call site. 2639 2640Some archs do not even need to monkey around with the synchronization, 2641and can just slap the new code on top of the old without any 2642problems with other CPUs executing it at the same time. 2643 2644One special side-effect to the recording of the functions being 2645traced is that we can now selectively choose which functions we 2646wish to trace and which ones we want the mcount calls to remain 2647as nops. 2648 2649Two files are used, one for enabling and one for disabling the 2650tracing of specified functions. They are: 2651 2652 set_ftrace_filter 2653 2654and 2655 2656 set_ftrace_notrace 2657 2658A list of available functions that you can add to these files is 2659listed in: 2660 2661 available_filter_functions 2662 2663:: 2664 2665 # cat available_filter_functions 2666 put_prev_task_idle 2667 kmem_cache_create 2668 pick_next_task_rt 2669 get_online_cpus 2670 pick_next_task_fair 2671 mutex_lock 2672 [...] 2673 2674If I am only interested in sys_nanosleep and hrtimer_interrupt:: 2675 2676 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter 2677 # echo function > current_tracer 2678 # echo 1 > tracing_on 2679 # usleep 1 2680 # echo 0 > tracing_on 2681 # cat trace 2682 # tracer: function 2683 # 2684 # entries-in-buffer/entries-written: 5/5 #P:4 2685 # 2686 # _-----=> irqs-off 2687 # / _----=> need-resched 2688 # | / _---=> hardirq/softirq 2689 # || / _--=> preempt-depth 2690 # ||| / delay 2691 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 2692 # | | | |||| | | 2693 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath 2694 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt 2695 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt 2696 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt 2697 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt 2698 2699To see which functions are being traced, you can cat the file: 2700:: 2701 2702 # cat set_ftrace_filter 2703 hrtimer_interrupt 2704 sys_nanosleep 2705 2706 2707Perhaps this is not enough. The filters also allow glob(7) matching. 2708 2709 ``<match>*`` 2710 will match functions that begin with <match> 2711 ``*<match>`` 2712 will match functions that end with <match> 2713 ``*<match>*`` 2714 will match functions that have <match> in it 2715 ``<match1>*<match2>`` 2716 will match functions that begin with <match1> and end with <match2> 2717 2718.. note:: 2719 It is better to use quotes to enclose the wild cards, 2720 otherwise the shell may expand the parameters into names 2721 of files in the local directory. 2722 2723:: 2724 2725 # echo 'hrtimer_*' > set_ftrace_filter 2726 2727Produces:: 2728 2729 # tracer: function 2730 # 2731 # entries-in-buffer/entries-written: 897/897 #P:4 2732 # 2733 # _-----=> irqs-off 2734 # / _----=> need-resched 2735 # | / _---=> hardirq/softirq 2736 # || / _--=> preempt-depth 2737 # ||| / delay 2738 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 2739 # | | | |||| | | 2740 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit 2741 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel 2742 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer 2743 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit 2744 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11 2745 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt 2746 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter 2747 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem 2748 2749Notice that we lost the sys_nanosleep. 2750:: 2751 2752 # cat set_ftrace_filter 2753 hrtimer_run_queues 2754 hrtimer_run_pending 2755 hrtimer_init 2756 hrtimer_cancel 2757 hrtimer_try_to_cancel 2758 hrtimer_forward 2759 hrtimer_start 2760 hrtimer_reprogram 2761 hrtimer_force_reprogram 2762 hrtimer_get_next_event 2763 hrtimer_interrupt 2764 hrtimer_nanosleep 2765 hrtimer_wakeup 2766 hrtimer_get_remaining 2767 hrtimer_get_res 2768 hrtimer_init_sleeper 2769 2770 2771This is because the '>' and '>>' act just like they do in bash. 2772To rewrite the filters, use '>' 2773To append to the filters, use '>>' 2774 2775To clear out a filter so that all functions will be recorded 2776again:: 2777 2778 # echo > set_ftrace_filter 2779 # cat set_ftrace_filter 2780 # 2781 2782Again, now we want to append. 2783 2784:: 2785 2786 # echo sys_nanosleep > set_ftrace_filter 2787 # cat set_ftrace_filter 2788 sys_nanosleep 2789 # echo 'hrtimer_*' >> set_ftrace_filter 2790 # cat set_ftrace_filter 2791 hrtimer_run_queues 2792 hrtimer_run_pending 2793 hrtimer_init 2794 hrtimer_cancel 2795 hrtimer_try_to_cancel 2796 hrtimer_forward 2797 hrtimer_start 2798 hrtimer_reprogram 2799 hrtimer_force_reprogram 2800 hrtimer_get_next_event 2801 hrtimer_interrupt 2802 sys_nanosleep 2803 hrtimer_nanosleep 2804 hrtimer_wakeup 2805 hrtimer_get_remaining 2806 hrtimer_get_res 2807 hrtimer_init_sleeper 2808 2809 2810The set_ftrace_notrace prevents those functions from being 2811traced. 2812:: 2813 2814 # echo '*preempt*' '*lock*' > set_ftrace_notrace 2815 2816Produces:: 2817 2818 # tracer: function 2819 # 2820 # entries-in-buffer/entries-written: 39608/39608 #P:4 2821 # 2822 # _-----=> irqs-off 2823 # / _----=> need-resched 2824 # | / _---=> hardirq/softirq 2825 # || / _--=> preempt-depth 2826 # ||| / delay 2827 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 2828 # | | | |||| | | 2829 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open 2830 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last 2831 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last 2832 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check 2833 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement 2834 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action 2835 bash-1994 [000] .... 4342.324899: do_truncate <-do_last 2836 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate 2837 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate 2838 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change 2839 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time 2840 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time 2841 2842We can see that there's no more lock or preempt tracing. 2843 2844Selecting function filters via index 2845------------------------------------ 2846 2847Because processing of strings is expensive (the address of the function 2848needs to be looked up before comparing to the string being passed in), 2849an index can be used as well to enable functions. This is useful in the 2850case of setting thousands of specific functions at a time. By passing 2851in a list of numbers, no string processing will occur. Instead, the function 2852at the specific location in the internal array (which corresponds to the 2853functions in the "available_filter_functions" file), is selected. 2854 2855:: 2856 2857 # echo 1 > set_ftrace_filter 2858 2859Will select the first function listed in "available_filter_functions" 2860 2861:: 2862 2863 # head -1 available_filter_functions 2864 trace_initcall_finish_cb 2865 2866 # cat set_ftrace_filter 2867 trace_initcall_finish_cb 2868 2869 # head -50 available_filter_functions | tail -1 2870 x86_pmu_commit_txn 2871 2872 # echo 1 50 > set_ftrace_filter 2873 # cat set_ftrace_filter 2874 trace_initcall_finish_cb 2875 x86_pmu_commit_txn 2876 2877Dynamic ftrace with the function graph tracer 2878--------------------------------------------- 2879 2880Although what has been explained above concerns both the 2881function tracer and the function-graph-tracer, there are some 2882special features only available in the function-graph tracer. 2883 2884If you want to trace only one function and all of its children, 2885you just have to echo its name into set_graph_function:: 2886 2887 echo __do_fault > set_graph_function 2888 2889will produce the following "expanded" trace of the __do_fault() 2890function:: 2891 2892 0) | __do_fault() { 2893 0) | filemap_fault() { 2894 0) | find_lock_page() { 2895 0) 0.804 us | find_get_page(); 2896 0) | __might_sleep() { 2897 0) 1.329 us | } 2898 0) 3.904 us | } 2899 0) 4.979 us | } 2900 0) 0.653 us | _spin_lock(); 2901 0) 0.578 us | page_add_file_rmap(); 2902 0) 0.525 us | native_set_pte_at(); 2903 0) 0.585 us | _spin_unlock(); 2904 0) | unlock_page() { 2905 0) 0.541 us | page_waitqueue(); 2906 0) 0.639 us | __wake_up_bit(); 2907 0) 2.786 us | } 2908 0) + 14.237 us | } 2909 0) | __do_fault() { 2910 0) | filemap_fault() { 2911 0) | find_lock_page() { 2912 0) 0.698 us | find_get_page(); 2913 0) | __might_sleep() { 2914 0) 1.412 us | } 2915 0) 3.950 us | } 2916 0) 5.098 us | } 2917 0) 0.631 us | _spin_lock(); 2918 0) 0.571 us | page_add_file_rmap(); 2919 0) 0.526 us | native_set_pte_at(); 2920 0) 0.586 us | _spin_unlock(); 2921 0) | unlock_page() { 2922 0) 0.533 us | page_waitqueue(); 2923 0) 0.638 us | __wake_up_bit(); 2924 0) 2.793 us | } 2925 0) + 14.012 us | } 2926 2927You can also expand several functions at once:: 2928 2929 echo sys_open > set_graph_function 2930 echo sys_close >> set_graph_function 2931 2932Now if you want to go back to trace all functions you can clear 2933this special filter via:: 2934 2935 echo > set_graph_function 2936 2937 2938ftrace_enabled 2939-------------- 2940 2941Note, the proc sysctl ftrace_enable is a big on/off switch for the 2942function tracer. By default it is enabled (when function tracing is 2943enabled in the kernel). If it is disabled, all function tracing is 2944disabled. This includes not only the function tracers for ftrace, but 2945also for any other uses (perf, kprobes, stack tracing, profiling, etc). 2946 2947Please disable this with care. 2948 2949This can be disable (and enabled) with:: 2950 2951 sysctl kernel.ftrace_enabled=0 2952 sysctl kernel.ftrace_enabled=1 2953 2954 or 2955 2956 echo 0 > /proc/sys/kernel/ftrace_enabled 2957 echo 1 > /proc/sys/kernel/ftrace_enabled 2958 2959 2960Filter commands 2961--------------- 2962 2963A few commands are supported by the set_ftrace_filter interface. 2964Trace commands have the following format:: 2965 2966 <function>:<command>:<parameter> 2967 2968The following commands are supported: 2969 2970- mod: 2971 This command enables function filtering per module. The 2972 parameter defines the module. For example, if only the write* 2973 functions in the ext3 module are desired, run: 2974 2975 echo 'write*:mod:ext3' > set_ftrace_filter 2976 2977 This command interacts with the filter in the same way as 2978 filtering based on function names. Thus, adding more functions 2979 in a different module is accomplished by appending (>>) to the 2980 filter file. Remove specific module functions by prepending 2981 '!':: 2982 2983 echo '!writeback*:mod:ext3' >> set_ftrace_filter 2984 2985 Mod command supports module globbing. Disable tracing for all 2986 functions except a specific module:: 2987 2988 echo '!*:mod:!ext3' >> set_ftrace_filter 2989 2990 Disable tracing for all modules, but still trace kernel:: 2991 2992 echo '!*:mod:*' >> set_ftrace_filter 2993 2994 Enable filter only for kernel:: 2995 2996 echo '*write*:mod:!*' >> set_ftrace_filter 2997 2998 Enable filter for module globbing:: 2999 3000 echo '*write*:mod:*snd*' >> set_ftrace_filter 3001 3002- traceon/traceoff: 3003 These commands turn tracing on and off when the specified 3004 functions are hit. The parameter determines how many times the 3005 tracing system is turned on and off. If unspecified, there is 3006 no limit. For example, to disable tracing when a schedule bug 3007 is hit the first 5 times, run:: 3008 3009 echo '__schedule_bug:traceoff:5' > set_ftrace_filter 3010 3011 To always disable tracing when __schedule_bug is hit:: 3012 3013 echo '__schedule_bug:traceoff' > set_ftrace_filter 3014 3015 These commands are cumulative whether or not they are appended 3016 to set_ftrace_filter. To remove a command, prepend it by '!' 3017 and drop the parameter:: 3018 3019 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter 3020 3021 The above removes the traceoff command for __schedule_bug 3022 that have a counter. To remove commands without counters:: 3023 3024 echo '!__schedule_bug:traceoff' > set_ftrace_filter 3025 3026- snapshot: 3027 Will cause a snapshot to be triggered when the function is hit. 3028 :: 3029 3030 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter 3031 3032 To only snapshot once: 3033 :: 3034 3035 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter 3036 3037 To remove the above commands:: 3038 3039 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter 3040 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter 3041 3042- enable_event/disable_event: 3043 These commands can enable or disable a trace event. Note, because 3044 function tracing callbacks are very sensitive, when these commands 3045 are registered, the trace point is activated, but disabled in 3046 a "soft" mode. That is, the tracepoint will be called, but 3047 just will not be traced. The event tracepoint stays in this mode 3048 as long as there's a command that triggers it. 3049 :: 3050 3051 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \ 3052 set_ftrace_filter 3053 3054 The format is:: 3055 3056 <function>:enable_event:<system>:<event>[:count] 3057 <function>:disable_event:<system>:<event>[:count] 3058 3059 To remove the events commands:: 3060 3061 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \ 3062 set_ftrace_filter 3063 echo '!schedule:disable_event:sched:sched_switch' > \ 3064 set_ftrace_filter 3065 3066- dump: 3067 When the function is hit, it will dump the contents of the ftrace 3068 ring buffer to the console. This is useful if you need to debug 3069 something, and want to dump the trace when a certain function 3070 is hit. Perhaps it's a function that is called before a triple 3071 fault happens and does not allow you to get a regular dump. 3072 3073- cpudump: 3074 When the function is hit, it will dump the contents of the ftrace 3075 ring buffer for the current CPU to the console. Unlike the "dump" 3076 command, it only prints out the contents of the ring buffer for the 3077 CPU that executed the function that triggered the dump. 3078 3079- stacktrace: 3080 When the function is hit, a stack trace is recorded. 3081 3082trace_pipe 3083---------- 3084 3085The trace_pipe outputs the same content as the trace file, but 3086the effect on the tracing is different. Every read from 3087trace_pipe is consumed. This means that subsequent reads will be 3088different. The trace is live. 3089:: 3090 3091 # echo function > current_tracer 3092 # cat trace_pipe > /tmp/trace.out & 3093 [1] 4153 3094 # echo 1 > tracing_on 3095 # usleep 1 3096 # echo 0 > tracing_on 3097 # cat trace 3098 # tracer: function 3099 # 3100 # entries-in-buffer/entries-written: 0/0 #P:4 3101 # 3102 # _-----=> irqs-off 3103 # / _----=> need-resched 3104 # | / _---=> hardirq/softirq 3105 # || / _--=> preempt-depth 3106 # ||| / delay 3107 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 3108 # | | | |||| | | 3109 3110 # 3111 # cat /tmp/trace.out 3112 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write 3113 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock 3114 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify 3115 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify 3116 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify 3117 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock 3118 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock 3119 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify 3120 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath 3121 3122 3123Note, reading the trace_pipe file will block until more input is 3124added. 3125 3126trace entries 3127------------- 3128 3129Having too much or not enough data can be troublesome in 3130diagnosing an issue in the kernel. The file buffer_size_kb is 3131used to modify the size of the internal trace buffers. The 3132number listed is the number of entries that can be recorded per 3133CPU. To know the full size, multiply the number of possible CPUs 3134with the number of entries. 3135:: 3136 3137 # cat buffer_size_kb 3138 1408 (units kilobytes) 3139 3140Or simply read buffer_total_size_kb 3141:: 3142 3143 # cat buffer_total_size_kb 3144 5632 3145 3146To modify the buffer, simple echo in a number (in 1024 byte segments). 3147:: 3148 3149 # echo 10000 > buffer_size_kb 3150 # cat buffer_size_kb 3151 10000 (units kilobytes) 3152 3153It will try to allocate as much as possible. If you allocate too 3154much, it can cause Out-Of-Memory to trigger. 3155:: 3156 3157 # echo 1000000000000 > buffer_size_kb 3158 -bash: echo: write error: Cannot allocate memory 3159 # cat buffer_size_kb 3160 85 3161 3162The per_cpu buffers can be changed individually as well: 3163:: 3164 3165 # echo 10000 > per_cpu/cpu0/buffer_size_kb 3166 # echo 100 > per_cpu/cpu1/buffer_size_kb 3167 3168When the per_cpu buffers are not the same, the buffer_size_kb 3169at the top level will just show an X 3170:: 3171 3172 # cat buffer_size_kb 3173 X 3174 3175This is where the buffer_total_size_kb is useful: 3176:: 3177 3178 # cat buffer_total_size_kb 3179 12916 3180 3181Writing to the top level buffer_size_kb will reset all the buffers 3182to be the same again. 3183 3184Snapshot 3185-------- 3186CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature 3187available to all non latency tracers. (Latency tracers which 3188record max latency, such as "irqsoff" or "wakeup", can't use 3189this feature, since those are already using the snapshot 3190mechanism internally.) 3191 3192Snapshot preserves a current trace buffer at a particular point 3193in time without stopping tracing. Ftrace swaps the current 3194buffer with a spare buffer, and tracing continues in the new 3195current (=previous spare) buffer. 3196 3197The following tracefs files in "tracing" are related to this 3198feature: 3199 3200 snapshot: 3201 3202 This is used to take a snapshot and to read the output 3203 of the snapshot. Echo 1 into this file to allocate a 3204 spare buffer and to take a snapshot (swap), then read 3205 the snapshot from this file in the same format as 3206 "trace" (described above in the section "The File 3207 System"). Both reads snapshot and tracing are executable 3208 in parallel. When the spare buffer is allocated, echoing 3209 0 frees it, and echoing else (positive) values clear the 3210 snapshot contents. 3211 More details are shown in the table below. 3212 3213 +--------------+------------+------------+------------+ 3214 |status\\input | 0 | 1 | else | 3215 +==============+============+============+============+ 3216 |not allocated |(do nothing)| alloc+swap |(do nothing)| 3217 +--------------+------------+------------+------------+ 3218 |allocated | free | swap | clear | 3219 +--------------+------------+------------+------------+ 3220 3221Here is an example of using the snapshot feature. 3222:: 3223 3224 # echo 1 > events/sched/enable 3225 # echo 1 > snapshot 3226 # cat snapshot 3227 # tracer: nop 3228 # 3229 # entries-in-buffer/entries-written: 71/71 #P:8 3230 # 3231 # _-----=> irqs-off 3232 # / _----=> need-resched 3233 # | / _---=> hardirq/softirq 3234 # || / _--=> preempt-depth 3235 # ||| / delay 3236 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 3237 # | | | |||| | | 3238 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120 3239 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120 3240 [...] 3241 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120 3242 3243 # cat trace 3244 # tracer: nop 3245 # 3246 # entries-in-buffer/entries-written: 77/77 #P:8 3247 # 3248 # _-----=> irqs-off 3249 # / _----=> need-resched 3250 # | / _---=> hardirq/softirq 3251 # || / _--=> preempt-depth 3252 # ||| / delay 3253 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 3254 # | | | |||| | | 3255 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120 3256 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120 3257 [...] 3258 3259 3260If you try to use this snapshot feature when current tracer is 3261one of the latency tracers, you will get the following results. 3262:: 3263 3264 # echo wakeup > current_tracer 3265 # echo 1 > snapshot 3266 bash: echo: write error: Device or resource busy 3267 # cat snapshot 3268 cat: snapshot: Device or resource busy 3269 3270 3271Instances 3272--------- 3273In the tracefs tracing directory is a directory called "instances". 3274This directory can have new directories created inside of it using 3275mkdir, and removing directories with rmdir. The directory created 3276with mkdir in this directory will already contain files and other 3277directories after it is created. 3278:: 3279 3280 # mkdir instances/foo 3281 # ls instances/foo 3282 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu 3283 set_event snapshot trace trace_clock trace_marker trace_options 3284 trace_pipe tracing_on 3285 3286As you can see, the new directory looks similar to the tracing directory 3287itself. In fact, it is very similar, except that the buffer and 3288events are agnostic from the main director, or from any other 3289instances that are created. 3290 3291The files in the new directory work just like the files with the 3292same name in the tracing directory except the buffer that is used 3293is a separate and new buffer. The files affect that buffer but do not 3294affect the main buffer with the exception of trace_options. Currently, 3295the trace_options affect all instances and the top level buffer 3296the same, but this may change in future releases. That is, options 3297may become specific to the instance they reside in. 3298 3299Notice that none of the function tracer files are there, nor is 3300current_tracer and available_tracers. This is because the buffers 3301can currently only have events enabled for them. 3302:: 3303 3304 # mkdir instances/foo 3305 # mkdir instances/bar 3306 # mkdir instances/zoot 3307 # echo 100000 > buffer_size_kb 3308 # echo 1000 > instances/foo/buffer_size_kb 3309 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb 3310 # echo function > current_trace 3311 # echo 1 > instances/foo/events/sched/sched_wakeup/enable 3312 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable 3313 # echo 1 > instances/foo/events/sched/sched_switch/enable 3314 # echo 1 > instances/bar/events/irq/enable 3315 # echo 1 > instances/zoot/events/syscalls/enable 3316 # cat trace_pipe 3317 CPU:2 [LOST 11745 EVENTS] 3318 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist 3319 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave 3320 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist 3321 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist 3322 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock 3323 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype 3324 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist 3325 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist 3326 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics 3327 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics 3328 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process 3329 [...] 3330 3331 # cat instances/foo/trace_pipe 3332 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000 3333 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000 3334 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003 3335 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120 3336 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120 3337 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000 3338 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000 3339 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120 3340 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001 3341 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120 3342 [...] 3343 3344 # cat instances/bar/trace_pipe 3345 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX] 3346 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX] 3347 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER] 3348 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU] 3349 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER] 3350 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER] 3351 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU] 3352 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU] 3353 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4 3354 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled 3355 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0 3356 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled 3357 [...] 3358 3359 # cat instances/zoot/trace 3360 # tracer: nop 3361 # 3362 # entries-in-buffer/entries-written: 18996/18996 #P:4 3363 # 3364 # _-----=> irqs-off 3365 # / _----=> need-resched 3366 # | / _---=> hardirq/softirq 3367 # || / _--=> preempt-depth 3368 # ||| / delay 3369 # TASK-PID CPU# |||| TIMESTAMP FUNCTION 3370 # | | | |||| | | 3371 bash-1998 [000] d... 140.733501: sys_write -> 0x2 3372 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1) 3373 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1 3374 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0) 3375 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1 3376 bash-1998 [000] d... 140.733510: sys_close(fd: a) 3377 bash-1998 [000] d... 140.733510: sys_close -> 0x0 3378 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8) 3379 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0 3380 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8) 3381 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0 3382 3383You can see that the trace of the top most trace buffer shows only 3384the function tracing. The foo instance displays wakeups and task 3385switches. 3386 3387To remove the instances, simply delete their directories: 3388:: 3389 3390 # rmdir instances/foo 3391 # rmdir instances/bar 3392 # rmdir instances/zoot 3393 3394Note, if a process has a trace file open in one of the instance 3395directories, the rmdir will fail with EBUSY. 3396 3397 3398Stack trace 3399----------- 3400Since the kernel has a fixed sized stack, it is important not to 3401waste it in functions. A kernel developer must be conscience of 3402what they allocate on the stack. If they add too much, the system 3403can be in danger of a stack overflow, and corruption will occur, 3404usually leading to a system panic. 3405 3406There are some tools that check this, usually with interrupts 3407periodically checking usage. But if you can perform a check 3408at every function call that will become very useful. As ftrace provides 3409a function tracer, it makes it convenient to check the stack size 3410at every function call. This is enabled via the stack tracer. 3411 3412CONFIG_STACK_TRACER enables the ftrace stack tracing functionality. 3413To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled. 3414:: 3415 3416 # echo 1 > /proc/sys/kernel/stack_tracer_enabled 3417 3418You can also enable it from the kernel command line to trace 3419the stack size of the kernel during boot up, by adding "stacktrace" 3420to the kernel command line parameter. 3421 3422After running it for a few minutes, the output looks like: 3423:: 3424 3425 # cat stack_max_size 3426 2928 3427 3428 # cat stack_trace 3429 Depth Size Location (18 entries) 3430 ----- ---- -------- 3431 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac 3432 1) 2704 160 find_busiest_group+0x31/0x1f1 3433 2) 2544 256 load_balance+0xd9/0x662 3434 3) 2288 80 idle_balance+0xbb/0x130 3435 4) 2208 128 __schedule+0x26e/0x5b9 3436 5) 2080 16 schedule+0x64/0x66 3437 6) 2064 128 schedule_timeout+0x34/0xe0 3438 7) 1936 112 wait_for_common+0x97/0xf1 3439 8) 1824 16 wait_for_completion+0x1d/0x1f 3440 9) 1808 128 flush_work+0xfe/0x119 3441 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20 3442 11) 1664 48 input_available_p+0x1d/0x5c 3443 12) 1616 48 n_tty_poll+0x6d/0x134 3444 13) 1568 64 tty_poll+0x64/0x7f 3445 14) 1504 880 do_select+0x31e/0x511 3446 15) 624 400 core_sys_select+0x177/0x216 3447 16) 224 96 sys_select+0x91/0xb9 3448 17) 128 128 system_call_fastpath+0x16/0x1b 3449 3450Note, if -mfentry is being used by gcc, functions get traced before 3451they set up the stack frame. This means that leaf level functions 3452are not tested by the stack tracer when -mfentry is used. 3453 3454Currently, -mfentry is used by gcc 4.6.0 and above on x86 only. 3455 3456More 3457---- 3458More details can be found in the source code, in the `kernel/trace/*.c` files. 3459