1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a frame work of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Through out the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured.
99
100  available_tracers:
101
102	This holds the different types of tracers that
103	have been compiled into the kernel. The
104	tracers listed here can be configured by
105	echoing their name into current_tracer.
106
107  tracing_on:
108
109	This sets or displays whether writing to the trace
110	ring buffer is enabled. Echo 0 into this file to disable
111	the tracer or 1 to enable it. Note, this only disables
112	writing to the ring buffer, the tracing overhead may
113	still be occurring.
114
115	The kernel function tracing_off() can be used within the
116	kernel to disable writing to the ring buffer, which will
117	set this file to "0". User space can re-enable tracing by
118	echoing "1" into the file.
119
120	Note, the function and event trigger "traceoff" will also
121	set this file to zero and stop tracing. Which can also
122	be re-enabled by user space using this file.
123
124  trace:
125
126	This file holds the output of the trace in a human
127	readable format (described below). Note, tracing is temporarily
128	disabled while this file is being read (opened).
129
130  trace_pipe:
131
132	The output is the same as the "trace" file but this
133	file is meant to be streamed with live tracing.
134	Reads from this file will block until new data is
135	retrieved.  Unlike the "trace" file, this file is a
136	consumer. This means reading from this file causes
137	sequential reads to display more current data. Once
138	data is read from this file, it is consumed, and
139	will not be read again with a sequential read. The
140	"trace" file is static, and if the tracer is not
141	adding more data, it will display the same
142	information every time it is read. This file will not
143	disable tracing while being read.
144
145  trace_options:
146
147	This file lets the user control the amount of data
148	that is displayed in one of the above output
149	files. Options also exist to modify how a tracer
150	or events work (stack traces, timestamps, etc).
151
152  options:
153
154	This is a directory that has a file for every available
155	trace option (also in trace_options). Options may also be set
156	or cleared by writing a "1" or "0" respectively into the
157	corresponding file with the option name.
158
159  tracing_max_latency:
160
161	Some of the tracers record the max latency.
162	For example, the maximum time that interrupts are disabled.
163	The maximum time is saved in this file. The max trace will also be
164	stored,	and displayed by "trace". A new max trace will only be
165	recorded if the latency is greater than the value in this file
166	(in microseconds).
167
168	By echoing in a time into this file, no latency will be recorded
169	unless it is greater than the time in this file.
170
171  tracing_thresh:
172
173	Some latency tracers will record a trace whenever the
174	latency is greater than the number in this file.
175	Only active when the file contains a number greater than 0.
176	(in microseconds)
177
178  buffer_size_kb:
179
180	This sets or displays the number of kilobytes each CPU
181	buffer holds. By default, the trace buffers are the same size
182	for each CPU. The displayed number is the size of the
183	CPU buffer and not total size of all buffers. The
184	trace buffers are allocated in pages (blocks of memory
185	that the kernel uses for allocation, usually 4 KB in size).
186	If the last page allocated has room for more bytes
187	than requested, the rest of the page will be used,
188	making the actual allocation bigger than requested or shown.
189	( Note, the size may not be a multiple of the page size
190	due to buffer management meta-data. )
191
192	Buffer sizes for individual CPUs may vary
193	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194	this file will show "X".
195
196  buffer_total_size_kb:
197
198	This displays the total combined size of all the trace buffers.
199
200  free_buffer:
201
202	If a process is performing tracing, and the ring buffer	should be
203	shrunk "freed" when the process is finished, even if it were to be
204	killed by a signal, this file can be used for that purpose. On close
205	of this file, the ring buffer will be resized to its minimum size.
206	Having a process that is tracing also open this file, when the process
207	exits its file descriptor for this file will be closed, and in doing so,
208	the ring buffer will be "freed".
209
210	It may also stop tracing if disable_on_free option is set.
211
212  tracing_cpumask:
213
214	This is a mask that lets the user only trace on specified CPUs.
215	The format is a hex string representing the CPUs.
216
217  set_ftrace_filter:
218
219	When dynamic ftrace is configured in (see the
220	section below "dynamic ftrace"), the code is dynamically
221	modified (code text rewrite) to disable calling of the
222	function profiler (mcount). This lets tracing be configured
223	in with practically no overhead in performance.  This also
224	has a side effect of enabling or disabling specific functions
225	to be traced. Echoing names of functions into this file
226	will limit the trace to only those functions.
227
228	The functions listed in "available_filter_functions" are what
229	can be written into this file.
230
231	This interface also allows for commands to be used. See the
232	"Filter commands" section for more details.
233
234  set_ftrace_notrace:
235
236	This has an effect opposite to that of
237	set_ftrace_filter. Any function that is added here will not
238	be traced. If a function exists in both set_ftrace_filter
239	and set_ftrace_notrace,	the function will _not_ be traced.
240
241  set_ftrace_pid:
242
243	Have the function tracer only trace the threads whose PID are
244	listed in this file.
245
246	If the "function-fork" option is set, then when a task whose
247	PID is listed in this file forks, the child's PID will
248	automatically be added to this file, and the child will be
249	traced by the function tracer as well. This option will also
250	cause PIDs of tasks that exit to be removed from the file.
251
252  set_event_pid:
253
254	Have the events only trace a task with a PID listed in this file.
255	Note, sched_switch and sched_wake_up will also trace events
256	listed in this file.
257
258	To have the PIDs of children of tasks with their PID in this file
259	added on fork, enable the "event-fork" option. That option will also
260	cause the PIDs of tasks to be removed from this file when the task
261	exits.
262
263  set_graph_function:
264
265	Functions listed in this file will cause the function graph
266	tracer to only trace these functions and the functions that
267	they call. (See the section "dynamic ftrace" for more details).
268
269  set_graph_notrace:
270
271	Similar to set_graph_function, but will disable function graph
272	tracing when the function is hit until it exits the function.
273	This makes it possible to ignore tracing functions that are called
274	by a specific function.
275
276  available_filter_functions:
277
278	This lists the functions that ftrace has processed and can trace.
279	These are the function names that you can pass to
280	"set_ftrace_filter" or "set_ftrace_notrace".
281	(See the section "dynamic ftrace" below for more details.)
282
283  dyn_ftrace_total_info:
284
285	This file is for debugging purposes. The number of functions that
286	have been converted to nops and are available to be traced.
287
288  enabled_functions:
289
290	This file is more for debugging ftrace, but can also be useful
291	in seeing if any function has a callback attached to it.
292	Not only does the trace infrastructure use ftrace function
293	trace utility, but other subsystems might too. This file
294	displays all functions that have a callback attached to them
295	as well as the number of callbacks that have been attached.
296	Note, a callback may also call multiple functions which will
297	not be listed in this count.
298
299	If the callback registered to be traced by a function with
300	the "save regs" attribute (thus even more overhead), a 'R'
301	will be displayed on the same line as the function that
302	is returning registers.
303
304	If the callback registered to be traced by a function with
305	the "ip modify" attribute (thus the regs->ip can be changed),
306	an 'I' will be displayed on the same line as the function that
307	can be overridden.
308
309	If the architecture supports it, it will also show what callback
310	is being directly called by the function. If the count is greater
311	than 1 it most likely will be ftrace_ops_list_func().
312
313	If the callback of the function jumps to a trampoline that is
314	specific to a the callback and not the standard trampoline,
315	its address will be printed as well as the function that the
316	trampoline calls.
317
318  function_profile_enabled:
319
320	When set it will enable all functions with either the function
321	tracer, or if configured, the function graph tracer. It will
322	keep a histogram of the number of functions that were called
323	and if the function graph tracer was configured, it will also keep
324	track of the time spent in those functions. The histogram
325	content can be displayed in the files:
326
327	trace_stats/function<cpu> ( function0, function1, etc).
328
329  trace_stats:
330
331	A directory that holds different tracing stats.
332
333  kprobe_events:
334
335	Enable dynamic trace points. See kprobetrace.txt.
336
337  kprobe_profile:
338
339	Dynamic trace points stats. See kprobetrace.txt.
340
341  max_graph_depth:
342
343	Used with the function graph tracer. This is the max depth
344	it will trace into a function. Setting this to a value of
345	one will show only the first kernel function that is called
346	from user space.
347
348  printk_formats:
349
350	This is for tools that read the raw format files. If an event in
351	the ring buffer references a string, only a pointer to the string
352	is recorded into the buffer and not the string itself. This prevents
353	tools from knowing what that string was. This file displays the string
354	and address for	the string allowing tools to map the pointers to what
355	the strings were.
356
357  saved_cmdlines:
358
359	Only the pid of the task is recorded in a trace event unless
360	the event specifically saves the task comm as well. Ftrace
361	makes a cache of pid mappings to comms to try to display
362	comms for events. If a pid for a comm is not listed, then
363	"<...>" is displayed in the output.
364
365	If the option "record-cmd" is set to "0", then comms of tasks
366	will not be saved during recording. By default, it is enabled.
367
368  saved_cmdlines_size:
369
370	By default, 128 comms are saved (see "saved_cmdlines" above). To
371	increase or decrease the amount of comms that are cached, echo
372	in a the number of comms to cache, into this file.
373
374  saved_tgids:
375
376	If the option "record-tgid" is set, on each scheduling context switch
377	the Task Group ID of a task is saved in a table mapping the PID of
378	the thread to its TGID. By default, the "record-tgid" option is
379	disabled.
380
381  snapshot:
382
383	This displays the "snapshot" buffer and also lets the user
384	take a snapshot of the current running trace.
385	See the "Snapshot" section below for more details.
386
387  stack_max_size:
388
389	When the stack tracer is activated, this will display the
390	maximum stack size it has encountered.
391	See the "Stack Trace" section below.
392
393  stack_trace:
394
395	This displays the stack back trace of the largest stack
396	that was encountered when the stack tracer is activated.
397	See the "Stack Trace" section below.
398
399  stack_trace_filter:
400
401	This is similar to "set_ftrace_filter" but it limits what
402	functions the stack tracer will check.
403
404  trace_clock:
405
406	Whenever an event is recorded into the ring buffer, a
407	"timestamp" is added. This stamp comes from a specified
408	clock. By default, ftrace uses the "local" clock. This
409	clock is very fast and strictly per cpu, but on some
410	systems it may not be monotonic with respect to other
411	CPUs. In other words, the local clocks may not be in sync
412	with local clocks on other CPUs.
413
414	Usual clocks for tracing::
415
416	  # cat trace_clock
417	  [local] global counter x86-tsc
418
419	The clock with the square brackets around it is the one in effect.
420
421	local:
422		Default clock, but may not be in sync across CPUs
423
424	global:
425		This clock is in sync with all CPUs but may
426		be a bit slower than the local clock.
427
428	counter:
429		This is not a clock at all, but literally an atomic
430		counter. It counts up one by one, but is in sync
431		with all CPUs. This is useful when you need to
432		know exactly the order events occurred with respect to
433		each other on different CPUs.
434
435	uptime:
436		This uses the jiffies counter and the time stamp
437		is relative to the time since boot up.
438
439	perf:
440		This makes ftrace use the same clock that perf uses.
441		Eventually perf will be able to read ftrace buffers
442		and this will help out in interleaving the data.
443
444	x86-tsc:
445		Architectures may define their own clocks. For
446		example, x86 uses its own TSC cycle clock here.
447
448	ppc-tb:
449		This uses the powerpc timebase register value.
450		This is in sync across CPUs and can also be used
451		to correlate events across hypervisor/guest if
452		tb_offset is known.
453
454	mono:
455		This uses the fast monotonic clock (CLOCK_MONOTONIC)
456		which is monotonic and is subject to NTP rate adjustments.
457
458	mono_raw:
459		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
460		which is montonic but is not subject to any rate adjustments
461		and ticks at the same rate as the hardware clocksource.
462
463	boot:
464		This is the boot clock (CLOCK_BOOTTIME) and is based on the
465		fast monotonic clock, but also accounts for time spent in
466		suspend. Since the clock access is designed for use in
467		tracing in the suspend path, some side effects are possible
468		if clock is accessed after the suspend time is accounted before
469		the fast mono clock is updated. In this case, the clock update
470		appears to happen slightly sooner than it normally would have.
471		Also on 32-bit systems, it's possible that the 64-bit boot offset
472		sees a partial update. These effects are rare and post
473		processing should be able to handle them. See comments in the
474		ktime_get_boot_fast_ns() function for more information.
475
476	To set a clock, simply echo the clock name into this file::
477
478	  # echo global > trace_clock
479
480  trace_marker:
481
482	This is a very useful file for synchronizing user space
483	with events happening in the kernel. Writing strings into
484	this file will be written into the ftrace buffer.
485
486	It is useful in applications to open this file at the start
487	of the application and just reference the file descriptor
488	for the file::
489
490		void trace_write(const char *fmt, ...)
491		{
492			va_list ap;
493			char buf[256];
494			int n;
495
496			if (trace_fd < 0)
497				return;
498
499			va_start(ap, fmt);
500			n = vsnprintf(buf, 256, fmt, ap);
501			va_end(ap);
502
503			write(trace_fd, buf, n);
504		}
505
506	start::
507
508		trace_fd = open("trace_marker", WR_ONLY);
509
510  trace_marker_raw:
511
512	This is similar to trace_marker above, but is meant for for binary data
513	to be written to it, where a tool can be used to parse the data
514	from trace_pipe_raw.
515
516  uprobe_events:
517
518	Add dynamic tracepoints in programs.
519	See uprobetracer.txt
520
521  uprobe_profile:
522
523	Uprobe statistics. See uprobetrace.txt
524
525  instances:
526
527	This is a way to make multiple trace buffers where different
528	events can be recorded in different buffers.
529	See "Instances" section below.
530
531  events:
532
533	This is the trace event directory. It holds event tracepoints
534	(also known as static tracepoints) that have been compiled
535	into the kernel. It shows what event tracepoints exist
536	and how they are grouped by system. There are "enable"
537	files at various levels that can enable the tracepoints
538	when a "1" is written to them.
539
540	See events.txt for more information.
541
542  set_event:
543
544	By echoing in the event into this file, will enable that event.
545
546	See events.txt for more information.
547
548  available_events:
549
550	A list of events that can be enabled in tracing.
551
552	See events.txt for more information.
553
554  timestamp_mode:
555
556	Certain tracers may change the timestamp mode used when
557	logging trace events into the event buffer.  Events with
558	different modes can coexist within a buffer but the mode in
559	effect when an event is logged determines which timestamp mode
560	is used for that event.  The default timestamp mode is
561	'delta'.
562
563	Usual timestamp modes for tracing:
564
565	  # cat timestamp_mode
566	  [delta] absolute
567
568	  The timestamp mode with the square brackets around it is the
569	  one in effect.
570
571	  delta: Default timestamp mode - timestamp is a delta against
572	         a per-buffer timestamp.
573
574	  absolute: The timestamp is a full timestamp, not a delta
575                 against some other value.  As such it takes up more
576                 space and is less efficient.
577
578  hwlat_detector:
579
580	Directory for the Hardware Latency Detector.
581	See "Hardware Latency Detector" section below.
582
583  per_cpu:
584
585	This is a directory that contains the trace per_cpu information.
586
587  per_cpu/cpu0/buffer_size_kb:
588
589	The ftrace buffer is defined per_cpu. That is, there's a separate
590	buffer for each CPU to allow writes to be done atomically,
591	and free from cache bouncing. These buffers may have different
592	size buffers. This file is similar to the buffer_size_kb
593	file, but it only displays or sets the buffer size for the
594	specific CPU. (here cpu0).
595
596  per_cpu/cpu0/trace:
597
598	This is similar to the "trace" file, but it will only display
599	the data specific for the CPU. If written to, it only clears
600	the specific CPU buffer.
601
602  per_cpu/cpu0/trace_pipe
603
604	This is similar to the "trace_pipe" file, and is a consuming
605	read, but it will only display (and consume) the data specific
606	for the CPU.
607
608  per_cpu/cpu0/trace_pipe_raw
609
610	For tools that can parse the ftrace ring buffer binary format,
611	the trace_pipe_raw file can be used to extract the data
612	from the ring buffer directly. With the use of the splice()
613	system call, the buffer data can be quickly transferred to
614	a file or to the network where a server is collecting the
615	data.
616
617	Like trace_pipe, this is a consuming reader, where multiple
618	reads will always produce different data.
619
620  per_cpu/cpu0/snapshot:
621
622	This is similar to the main "snapshot" file, but will only
623	snapshot the current CPU (if supported). It only displays
624	the content of the snapshot for a given CPU, and if
625	written to, only clears this CPU buffer.
626
627  per_cpu/cpu0/snapshot_raw:
628
629	Similar to the trace_pipe_raw, but will read the binary format
630	from the snapshot buffer for the given CPU.
631
632  per_cpu/cpu0/stats:
633
634	This displays certain stats about the ring buffer:
635
636	entries:
637		The number of events that are still in the buffer.
638
639	overrun:
640		The number of lost events due to overwriting when
641		the buffer was full.
642
643	commit overrun:
644		Should always be zero.
645		This gets set if so many events happened within a nested
646		event (ring buffer is re-entrant), that it fills the
647		buffer and starts dropping events.
648
649	bytes:
650		Bytes actually read (not overwritten).
651
652	oldest event ts:
653		The oldest timestamp in the buffer
654
655	now ts:
656		The current timestamp
657
658	dropped events:
659		Events lost due to overwrite option being off.
660
661	read events:
662		The number of events read.
663
664The Tracers
665-----------
666
667Here is the list of current tracers that may be configured.
668
669  "function"
670
671	Function call tracer to trace all kernel functions.
672
673  "function_graph"
674
675	Similar to the function tracer except that the
676	function tracer probes the functions on their entry
677	whereas the function graph tracer traces on both entry
678	and exit of the functions. It then provides the ability
679	to draw a graph of function calls similar to C code
680	source.
681
682  "blk"
683
684	The block tracer. The tracer used by the blktrace user
685	application.
686
687  "hwlat"
688
689	The Hardware Latency tracer is used to detect if the hardware
690	produces any latency. See "Hardware Latency Detector" section
691	below.
692
693  "irqsoff"
694
695	Traces the areas that disable interrupts and saves
696	the trace with the longest max latency.
697	See tracing_max_latency. When a new max is recorded,
698	it replaces the old trace. It is best to view this
699	trace with the latency-format option enabled, which
700	happens automatically when the tracer is selected.
701
702  "preemptoff"
703
704	Similar to irqsoff but traces and records the amount of
705	time for which preemption is disabled.
706
707  "preemptirqsoff"
708
709	Similar to irqsoff and preemptoff, but traces and
710	records the largest time for which irqs and/or preemption
711	is disabled.
712
713  "wakeup"
714
715	Traces and records the max latency that it takes for
716	the highest priority task to get scheduled after
717	it has been woken up.
718        Traces all tasks as an average developer would expect.
719
720  "wakeup_rt"
721
722        Traces and records the max latency that it takes for just
723        RT tasks (as the current "wakeup" does). This is useful
724        for those interested in wake up timings of RT tasks.
725
726  "wakeup_dl"
727
728	Traces and records the max latency that it takes for
729	a SCHED_DEADLINE task to be woken (as the "wakeup" and
730	"wakeup_rt" does).
731
732  "mmiotrace"
733
734	A special tracer that is used to trace binary module.
735	It will trace all the calls that a module makes to the
736	hardware. Everything it writes and reads from the I/O
737	as well.
738
739  "branch"
740
741	This tracer can be configured when tracing likely/unlikely
742	calls within the kernel. It will trace when a likely and
743	unlikely branch is hit and if it was correct in its prediction
744	of being correct.
745
746  "nop"
747
748	This is the "trace nothing" tracer. To remove all
749	tracers from tracing simply echo "nop" into
750	current_tracer.
751
752
753Examples of using the tracer
754----------------------------
755
756Here are typical examples of using the tracers when controlling
757them only with the tracefs interface (without using any
758user-land utilities).
759
760Output format:
761--------------
762
763Here is an example of the output format of the file "trace"::
764
765  # tracer: function
766  #
767  # entries-in-buffer/entries-written: 140080/250280   #P:4
768  #
769  #                              _-----=> irqs-off
770  #                             / _----=> need-resched
771  #                            | / _---=> hardirq/softirq
772  #                            || / _--=> preempt-depth
773  #                            ||| /     delay
774  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
775  #              | |       |   ||||       |         |
776              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
777              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
778              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
779              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
780              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
781              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
782              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
783              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
784              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
785              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
786              ....
787
788A header is printed with the tracer name that is represented by
789the trace. In this case the tracer is "function". Then it shows the
790number of events in the buffer as well as the total number of entries
791that were written. The difference is the number of entries that were
792lost due to the buffer filling up (250280 - 140080 = 110200 events
793lost).
794
795The header explains the content of the events. Task name "bash", the task
796PID "1977", the CPU that it was running on "000", the latency format
797(explained below), the timestamp in <secs>.<usecs> format, the
798function name that was traced "sys_close" and the parent function that
799called this function "system_call_fastpath". The timestamp is the time
800at which the function was entered.
801
802Latency trace format
803--------------------
804
805When the latency-format option is enabled or when one of the latency
806tracers is set, the trace file gives somewhat more information to see
807why a latency happened. Here is a typical trace::
808
809  # tracer: irqsoff
810  #
811  # irqsoff latency trace v1.1.5 on 3.8.0-test+
812  # --------------------------------------------------------------------
813  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
814  #    -----------------
815  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
816  #    -----------------
817  #  => started at: __lock_task_sighand
818  #  => ended at:   _raw_spin_unlock_irqrestore
819  #
820  #
821  #                  _------=> CPU#
822  #                 / _-----=> irqs-off
823  #                | / _----=> need-resched
824  #                || / _---=> hardirq/softirq
825  #                ||| / _--=> preempt-depth
826  #                |||| /     delay
827  #  cmd     pid   ||||| time  |   caller
828  #     \   /      |||||  \    |   /
829        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
830        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
831        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
832        ps-6143    2d..1  306us : <stack trace>
833   => trace_hardirqs_on_caller
834   => trace_hardirqs_on
835   => _raw_spin_unlock_irqrestore
836   => do_task_stat
837   => proc_tgid_stat
838   => proc_single_show
839   => seq_read
840   => vfs_read
841   => sys_read
842   => system_call_fastpath
843
844
845This shows that the current tracer is "irqsoff" tracing the time
846for which interrupts were disabled. It gives the trace version (which
847never changes) and the version of the kernel upon which this was executed on
848(3.8). Then it displays the max latency in microseconds (259 us). The number
849of trace entries displayed and the total number (both are four: #4/4).
850VP, KP, SP, and HP are always zero and are reserved for later use.
851#P is the number of online CPUs (#P:4).
852
853The task is the process that was running when the latency
854occurred. (ps pid: 6143).
855
856The start and stop (the functions in which the interrupts were
857disabled and enabled respectively) that caused the latencies:
858
859  - __lock_task_sighand is where the interrupts were disabled.
860  - _raw_spin_unlock_irqrestore is where they were enabled again.
861
862The next lines after the header are the trace itself. The header
863explains which is which.
864
865  cmd: The name of the process in the trace.
866
867  pid: The PID of that process.
868
869  CPU#: The CPU which the process was running on.
870
871  irqs-off: 'd' interrupts are disabled. '.' otherwise.
872	.. caution:: If the architecture does not support a way to
873		read the irq flags variable, an 'X' will always
874		be printed here.
875
876  need-resched:
877	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
878	- 'n' only TIF_NEED_RESCHED is set,
879	- 'p' only PREEMPT_NEED_RESCHED is set,
880	- '.' otherwise.
881
882  hardirq/softirq:
883	- 'Z' - NMI occurred inside a hardirq
884	- 'z' - NMI is running
885	- 'H' - hard irq occurred inside a softirq.
886	- 'h' - hard irq is running
887	- 's' - soft irq is running
888	- '.' - normal context.
889
890  preempt-depth: The level of preempt_disabled
891
892The above is mostly meaningful for kernel developers.
893
894  time:
895	When the latency-format option is enabled, the trace file
896	output includes a timestamp relative to the start of the
897	trace. This differs from the output when latency-format
898	is disabled, which includes an absolute timestamp.
899
900  delay:
901	This is just to help catch your eye a bit better. And
902	needs to be fixed to be only relative to the same CPU.
903	The marks are determined by the difference between this
904	current trace and the next trace.
905
906	  - '$' - greater than 1 second
907	  - '@' - greater than 100 milisecond
908	  - '*' - greater than 10 milisecond
909	  - '#' - greater than 1000 microsecond
910	  - '!' - greater than 100 microsecond
911	  - '+' - greater than 10 microsecond
912	  - ' ' - less than or equal to 10 microsecond.
913
914  The rest is the same as the 'trace' file.
915
916  Note, the latency tracers will usually end with a back trace
917  to easily find where the latency occurred.
918
919trace_options
920-------------
921
922The trace_options file (or the options directory) is used to control
923what gets printed in the trace output, or manipulate the tracers.
924To see what is available, simply cat the file::
925
926  cat trace_options
927	print-parent
928	nosym-offset
929	nosym-addr
930	noverbose
931	noraw
932	nohex
933	nobin
934	noblock
935	trace_printk
936	annotate
937	nouserstacktrace
938	nosym-userobj
939	noprintk-msg-only
940	context-info
941	nolatency-format
942	record-cmd
943	norecord-tgid
944	overwrite
945	nodisable_on_free
946	irq-info
947	markers
948	noevent-fork
949	function-trace
950	nofunction-fork
951	nodisplay-graph
952	nostacktrace
953	nobranch
954
955To disable one of the options, echo in the option prepended with
956"no"::
957
958  echo noprint-parent > trace_options
959
960To enable an option, leave off the "no"::
961
962  echo sym-offset > trace_options
963
964Here are the available options:
965
966  print-parent
967	On function traces, display the calling (parent)
968	function as well as the function being traced.
969	::
970
971	  print-parent:
972	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
973
974	  noprint-parent:
975	   bash-4000  [01]  1477.606694: simple_strtoul
976
977
978  sym-offset
979	Display not only the function name, but also the
980	offset in the function. For example, instead of
981	seeing just "ktime_get", you will see
982	"ktime_get+0xb/0x20".
983	::
984
985	  sym-offset:
986	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
987
988  sym-addr
989	This will also display the function address as well
990	as the function name.
991	::
992
993	  sym-addr:
994	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
995
996  verbose
997	This deals with the trace file when the
998        latency-format option is enabled.
999	::
1000
1001	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1002	    (+0.000ms): simple_strtoul (kstrtoul)
1003
1004  raw
1005	This will display raw numbers. This option is best for
1006	use with user applications that can translate the raw
1007	numbers better than having it done in the kernel.
1008
1009  hex
1010	Similar to raw, but the numbers will be in a hexadecimal format.
1011
1012  bin
1013	This will print out the formats in raw binary.
1014
1015  block
1016	When set, reading trace_pipe will not block when polled.
1017
1018  trace_printk
1019	Can disable trace_printk() from writing into the buffer.
1020
1021  annotate
1022	It is sometimes confusing when the CPU buffers are full
1023	and one CPU buffer had a lot of events recently, thus
1024	a shorter time frame, were another CPU may have only had
1025	a few events, which lets it have older events. When
1026	the trace is reported, it shows the oldest events first,
1027	and it may look like only one CPU ran (the one with the
1028	oldest events). When the annotate option is set, it will
1029	display when a new CPU buffer started::
1030
1031			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1032			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1033			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1034		##### CPU 2 buffer started ####
1035			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1036			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1037			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1038
1039  userstacktrace
1040	This option changes the trace. It records a
1041	stacktrace of the current user space thread after
1042	each trace event.
1043
1044  sym-userobj
1045	when user stacktrace are enabled, look up which
1046	object the address belongs to, and print a
1047	relative address. This is especially useful when
1048	ASLR is on, otherwise you don't get a chance to
1049	resolve the address to object/file/line after
1050	the app is no longer running
1051
1052	The lookup is performed when you read
1053	trace,trace_pipe. Example::
1054
1055		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1056		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1057
1058
1059  printk-msg-only
1060	When set, trace_printk()s will only show the format
1061	and not their parameters (if trace_bprintk() or
1062	trace_bputs() was used to save the trace_printk()).
1063
1064  context-info
1065	Show only the event data. Hides the comm, PID,
1066	timestamp, CPU, and other useful data.
1067
1068  latency-format
1069	This option changes the trace output. When it is enabled,
1070	the trace displays additional information about the
1071	latency, as described in "Latency trace format".
1072
1073  record-cmd
1074	When any event or tracer is enabled, a hook is enabled
1075	in the sched_switch trace point to fill comm cache
1076	with mapped pids and comms. But this may cause some
1077	overhead, and if you only care about pids, and not the
1078	name of the task, disabling this option can lower the
1079	impact of tracing. See "saved_cmdlines".
1080
1081  record-tgid
1082	When any event or tracer is enabled, a hook is enabled
1083	in the sched_switch trace point to fill the cache of
1084	mapped Thread Group IDs (TGID) mapping to pids. See
1085	"saved_tgids".
1086
1087  overwrite
1088	This controls what happens when the trace buffer is
1089	full. If "1" (default), the oldest events are
1090	discarded and overwritten. If "0", then the newest
1091	events are discarded.
1092	(see per_cpu/cpu0/stats for overrun and dropped)
1093
1094  disable_on_free
1095	When the free_buffer is closed, tracing will
1096	stop (tracing_on set to 0).
1097
1098  irq-info
1099	Shows the interrupt, preempt count, need resched data.
1100	When disabled, the trace looks like::
1101
1102		# tracer: function
1103		#
1104		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1105		#
1106		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1107		#              | |       |          |         |
1108			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1109			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1110			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1111
1112
1113  markers
1114	When set, the trace_marker is writable (only by root).
1115	When disabled, the trace_marker will error with EINVAL
1116	on write.
1117
1118  event-fork
1119	When set, tasks with PIDs listed in set_event_pid will have
1120	the PIDs of their children added to set_event_pid when those
1121	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1122	their PIDs will be removed from the file.
1123
1124  function-trace
1125	The latency tracers will enable function tracing
1126	if this option is enabled (default it is). When
1127	it is disabled, the latency tracers do not trace
1128	functions. This keeps the overhead of the tracer down
1129	when performing latency tests.
1130
1131  function-fork
1132	When set, tasks with PIDs listed in set_ftrace_pid will
1133	have the PIDs of their children added to set_ftrace_pid
1134	when those tasks fork. Also, when tasks with PIDs in
1135	set_ftrace_pid exit, their PIDs will be removed from the
1136	file.
1137
1138  display-graph
1139	When set, the latency tracers (irqsoff, wakeup, etc) will
1140	use function graph tracing instead of function tracing.
1141
1142  stacktrace
1143	When set, a stack trace is recorded after any trace event
1144	is recorded.
1145
1146  branch
1147	Enable branch tracing with the tracer. This enables branch
1148	tracer along with the currently set tracer. Enabling this
1149	with the "nop" tracer is the same as just enabling the
1150	"branch" tracer.
1151
1152.. tip:: Some tracers have their own options. They only appear in this
1153       file when the tracer is active. They always appear in the
1154       options directory.
1155
1156
1157Here are the per tracer options:
1158
1159Options for function tracer:
1160
1161  func_stack_trace
1162	When set, a stack trace is recorded after every
1163	function that is recorded. NOTE! Limit the functions
1164	that are recorded before enabling this, with
1165	"set_ftrace_filter" otherwise the system performance
1166	will be critically degraded. Remember to disable
1167	this option before clearing the function filter.
1168
1169Options for function_graph tracer:
1170
1171 Since the function_graph tracer has a slightly different output
1172 it has its own options to control what is displayed.
1173
1174  funcgraph-overrun
1175	When set, the "overrun" of the graph stack is
1176	displayed after each function traced. The
1177	overrun, is when the stack depth of the calls
1178	is greater than what is reserved for each task.
1179	Each task has a fixed array of functions to
1180	trace in the call graph. If the depth of the
1181	calls exceeds that, the function is not traced.
1182	The overrun is the number of functions missed
1183	due to exceeding this array.
1184
1185  funcgraph-cpu
1186	When set, the CPU number of the CPU where the trace
1187	occurred is displayed.
1188
1189  funcgraph-overhead
1190	When set, if the function takes longer than
1191	A certain amount, then a delay marker is
1192	displayed. See "delay" above, under the
1193	header description.
1194
1195  funcgraph-proc
1196	Unlike other tracers, the process' command line
1197	is not displayed by default, but instead only
1198	when a task is traced in and out during a context
1199	switch. Enabling this options has the command
1200	of each process displayed at every line.
1201
1202  funcgraph-duration
1203	At the end of each function (the return)
1204	the duration of the amount of time in the
1205	function is displayed in microseconds.
1206
1207  funcgraph-abstime
1208	When set, the timestamp is displayed at each line.
1209
1210  funcgraph-irqs
1211	When disabled, functions that happen inside an
1212	interrupt will not be traced.
1213
1214  funcgraph-tail
1215	When set, the return event will include the function
1216	that it represents. By default this is off, and
1217	only a closing curly bracket "}" is displayed for
1218	the return of a function.
1219
1220  sleep-time
1221	When running function graph tracer, to include
1222	the time a task schedules out in its function.
1223	When enabled, it will account time the task has been
1224	scheduled out as part of the function call.
1225
1226  graph-time
1227	When running function profiler with function graph tracer,
1228	to include the time to call nested functions. When this is
1229	not set, the time reported for the function will only
1230	include the time the function itself executed for, not the
1231	time for functions that it called.
1232
1233Options for blk tracer:
1234
1235  blk_classic
1236	Shows a more minimalistic output.
1237
1238
1239irqsoff
1240-------
1241
1242When interrupts are disabled, the CPU can not react to any other
1243external event (besides NMIs and SMIs). This prevents the timer
1244interrupt from triggering or the mouse interrupt from letting
1245the kernel know of a new mouse event. The result is a latency
1246with the reaction time.
1247
1248The irqsoff tracer tracks the time for which interrupts are
1249disabled. When a new maximum latency is hit, the tracer saves
1250the trace leading up to that latency point so that every time a
1251new maximum is reached, the old saved trace is discarded and the
1252new trace is saved.
1253
1254To reset the maximum, echo 0 into tracing_max_latency. Here is
1255an example::
1256
1257  # echo 0 > options/function-trace
1258  # echo irqsoff > current_tracer
1259  # echo 1 > tracing_on
1260  # echo 0 > tracing_max_latency
1261  # ls -ltr
1262  [...]
1263  # echo 0 > tracing_on
1264  # cat trace
1265  # tracer: irqsoff
1266  #
1267  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1268  # --------------------------------------------------------------------
1269  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1270  #    -----------------
1271  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1272  #    -----------------
1273  #  => started at: run_timer_softirq
1274  #  => ended at:   run_timer_softirq
1275  #
1276  #
1277  #                  _------=> CPU#
1278  #                 / _-----=> irqs-off
1279  #                | / _----=> need-resched
1280  #                || / _---=> hardirq/softirq
1281  #                ||| / _--=> preempt-depth
1282  #                |||| /     delay
1283  #  cmd     pid   ||||| time  |   caller
1284  #     \   /      |||||  \    |   /
1285    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1286    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1287    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1288    <idle>-0       0dNs3   25us : <stack trace>
1289   => _raw_spin_unlock_irq
1290   => run_timer_softirq
1291   => __do_softirq
1292   => call_softirq
1293   => do_softirq
1294   => irq_exit
1295   => smp_apic_timer_interrupt
1296   => apic_timer_interrupt
1297   => rcu_idle_exit
1298   => cpu_idle
1299   => rest_init
1300   => start_kernel
1301   => x86_64_start_reservations
1302   => x86_64_start_kernel
1303
1304Here we see that that we had a latency of 16 microseconds (which is
1305very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1306interrupts. The difference between the 16 and the displayed
1307timestamp 25us occurred because the clock was incremented
1308between the time of recording the max latency and the time of
1309recording the function that had that latency.
1310
1311Note the above example had function-trace not set. If we set
1312function-trace, we get a much larger output::
1313
1314 with echo 1 > options/function-trace
1315
1316  # tracer: irqsoff
1317  #
1318  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1319  # --------------------------------------------------------------------
1320  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1321  #    -----------------
1322  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1323  #    -----------------
1324  #  => started at: ata_scsi_queuecmd
1325  #  => ended at:   ata_scsi_queuecmd
1326  #
1327  #
1328  #                  _------=> CPU#
1329  #                 / _-----=> irqs-off
1330  #                | / _----=> need-resched
1331  #                || / _---=> hardirq/softirq
1332  #                ||| / _--=> preempt-depth
1333  #                |||| /     delay
1334  #  cmd     pid   ||||| time  |   caller
1335  #     \   /      |||||  \    |   /
1336      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1337      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1338      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1339      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1340      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1341      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1342      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1343      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1344      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1345  [...]
1346      bash-2042    3d..1   67us : delay_tsc <-__delay
1347      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1348      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1349      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1350      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1351      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1352      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1353      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1354      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1355      bash-2042    3d..1  120us : <stack trace>
1356   => _raw_spin_unlock_irqrestore
1357   => ata_scsi_queuecmd
1358   => scsi_dispatch_cmd
1359   => scsi_request_fn
1360   => __blk_run_queue_uncond
1361   => __blk_run_queue
1362   => blk_queue_bio
1363   => generic_make_request
1364   => submit_bio
1365   => submit_bh
1366   => __ext3_get_inode_loc
1367   => ext3_iget
1368   => ext3_lookup
1369   => lookup_real
1370   => __lookup_hash
1371   => walk_component
1372   => lookup_last
1373   => path_lookupat
1374   => filename_lookup
1375   => user_path_at_empty
1376   => user_path_at
1377   => vfs_fstatat
1378   => vfs_stat
1379   => sys_newstat
1380   => system_call_fastpath
1381
1382
1383Here we traced a 71 microsecond latency. But we also see all the
1384functions that were called during that time. Note that by
1385enabling function tracing, we incur an added overhead. This
1386overhead may extend the latency times. But nevertheless, this
1387trace has provided some very helpful debugging information.
1388
1389
1390preemptoff
1391----------
1392
1393When preemption is disabled, we may be able to receive
1394interrupts but the task cannot be preempted and a higher
1395priority task must wait for preemption to be enabled again
1396before it can preempt a lower priority task.
1397
1398The preemptoff tracer traces the places that disable preemption.
1399Like the irqsoff tracer, it records the maximum latency for
1400which preemption was disabled. The control of preemptoff tracer
1401is much like the irqsoff tracer.
1402::
1403
1404  # echo 0 > options/function-trace
1405  # echo preemptoff > current_tracer
1406  # echo 1 > tracing_on
1407  # echo 0 > tracing_max_latency
1408  # ls -ltr
1409  [...]
1410  # echo 0 > tracing_on
1411  # cat trace
1412  # tracer: preemptoff
1413  #
1414  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1415  # --------------------------------------------------------------------
1416  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1417  #    -----------------
1418  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1419  #    -----------------
1420  #  => started at: do_IRQ
1421  #  => ended at:   do_IRQ
1422  #
1423  #
1424  #                  _------=> CPU#
1425  #                 / _-----=> irqs-off
1426  #                | / _----=> need-resched
1427  #                || / _---=> hardirq/softirq
1428  #                ||| / _--=> preempt-depth
1429  #                |||| /     delay
1430  #  cmd     pid   ||||| time  |   caller
1431  #     \   /      |||||  \    |   /
1432      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1433      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1434      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1435      sshd-1991    1d..1   52us : <stack trace>
1436   => sub_preempt_count
1437   => irq_exit
1438   => do_IRQ
1439   => ret_from_intr
1440
1441
1442This has some more changes. Preemption was disabled when an
1443interrupt came in (notice the 'h'), and was enabled on exit.
1444But we also see that interrupts have been disabled when entering
1445the preempt off section and leaving it (the 'd'). We do not know if
1446interrupts were enabled in the mean time or shortly after this
1447was over.
1448::
1449
1450  # tracer: preemptoff
1451  #
1452  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1453  # --------------------------------------------------------------------
1454  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1455  #    -----------------
1456  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1457  #    -----------------
1458  #  => started at: wake_up_new_task
1459  #  => ended at:   task_rq_unlock
1460  #
1461  #
1462  #                  _------=> CPU#
1463  #                 / _-----=> irqs-off
1464  #                | / _----=> need-resched
1465  #                || / _---=> hardirq/softirq
1466  #                ||| / _--=> preempt-depth
1467  #                |||| /     delay
1468  #  cmd     pid   ||||| time  |   caller
1469  #     \   /      |||||  \    |   /
1470      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1471      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1472      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1473      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1474      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1475  [...]
1476      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1477      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1478      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1479      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1480      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1481      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1482      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1483      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1484  [...]
1485      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1486      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1487      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1488      bash-1994    1d..2   36us : do_softirq <-irq_exit
1489      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1490      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1491      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1492      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1493      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1494      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1495  [...]
1496      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1497      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1498      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1499      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1500      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1501      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1502      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1503      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1504      bash-1994    1.N.1  104us : <stack trace>
1505   => sub_preempt_count
1506   => _raw_spin_unlock_irqrestore
1507   => task_rq_unlock
1508   => wake_up_new_task
1509   => do_fork
1510   => sys_clone
1511   => stub_clone
1512
1513
1514The above is an example of the preemptoff trace with
1515function-trace set. Here we see that interrupts were not disabled
1516the entire time. The irq_enter code lets us know that we entered
1517an interrupt 'h'. Before that, the functions being traced still
1518show that it is not in an interrupt, but we can see from the
1519functions themselves that this is not the case.
1520
1521preemptirqsoff
1522--------------
1523
1524Knowing the locations that have interrupts disabled or
1525preemption disabled for the longest times is helpful. But
1526sometimes we would like to know when either preemption and/or
1527interrupts are disabled.
1528
1529Consider the following code::
1530
1531    local_irq_disable();
1532    call_function_with_irqs_off();
1533    preempt_disable();
1534    call_function_with_irqs_and_preemption_off();
1535    local_irq_enable();
1536    call_function_with_preemption_off();
1537    preempt_enable();
1538
1539The irqsoff tracer will record the total length of
1540call_function_with_irqs_off() and
1541call_function_with_irqs_and_preemption_off().
1542
1543The preemptoff tracer will record the total length of
1544call_function_with_irqs_and_preemption_off() and
1545call_function_with_preemption_off().
1546
1547But neither will trace the time that interrupts and/or
1548preemption is disabled. This total time is the time that we can
1549not schedule. To record this time, use the preemptirqsoff
1550tracer.
1551
1552Again, using this trace is much like the irqsoff and preemptoff
1553tracers.
1554::
1555
1556  # echo 0 > options/function-trace
1557  # echo preemptirqsoff > current_tracer
1558  # echo 1 > tracing_on
1559  # echo 0 > tracing_max_latency
1560  # ls -ltr
1561  [...]
1562  # echo 0 > tracing_on
1563  # cat trace
1564  # tracer: preemptirqsoff
1565  #
1566  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1567  # --------------------------------------------------------------------
1568  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1569  #    -----------------
1570  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1571  #    -----------------
1572  #  => started at: ata_scsi_queuecmd
1573  #  => ended at:   ata_scsi_queuecmd
1574  #
1575  #
1576  #                  _------=> CPU#
1577  #                 / _-----=> irqs-off
1578  #                | / _----=> need-resched
1579  #                || / _---=> hardirq/softirq
1580  #                ||| / _--=> preempt-depth
1581  #                |||| /     delay
1582  #  cmd     pid   ||||| time  |   caller
1583  #     \   /      |||||  \    |   /
1584        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1585        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1586        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1587        ls-2230    3...1  111us : <stack trace>
1588   => sub_preempt_count
1589   => _raw_spin_unlock_irqrestore
1590   => ata_scsi_queuecmd
1591   => scsi_dispatch_cmd
1592   => scsi_request_fn
1593   => __blk_run_queue_uncond
1594   => __blk_run_queue
1595   => blk_queue_bio
1596   => generic_make_request
1597   => submit_bio
1598   => submit_bh
1599   => ext3_bread
1600   => ext3_dir_bread
1601   => htree_dirblock_to_tree
1602   => ext3_htree_fill_tree
1603   => ext3_readdir
1604   => vfs_readdir
1605   => sys_getdents
1606   => system_call_fastpath
1607
1608
1609The trace_hardirqs_off_thunk is called from assembly on x86 when
1610interrupts are disabled in the assembly code. Without the
1611function tracing, we do not know if interrupts were enabled
1612within the preemption points. We do see that it started with
1613preemption enabled.
1614
1615Here is a trace with function-trace set::
1616
1617  # tracer: preemptirqsoff
1618  #
1619  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1620  # --------------------------------------------------------------------
1621  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1622  #    -----------------
1623  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1624  #    -----------------
1625  #  => started at: schedule
1626  #  => ended at:   mutex_unlock
1627  #
1628  #
1629  #                  _------=> CPU#
1630  #                 / _-----=> irqs-off
1631  #                | / _----=> need-resched
1632  #                || / _---=> hardirq/softirq
1633  #                ||| / _--=> preempt-depth
1634  #                |||| /     delay
1635  #  cmd     pid   ||||| time  |   caller
1636  #     \   /      |||||  \    |   /
1637  kworker/-59      3...1    0us : __schedule <-schedule
1638  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1639  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1640  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1641  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1642  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1643  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1644  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1645  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1646  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1647  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1648  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1649  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1650  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1651  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1652  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1653  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1654  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1655  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1656  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1657  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1658  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1659  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1660  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1661  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1662        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1663        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1664        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1665        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1666        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1667        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1668        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1669  [...]
1670        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1671        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1672        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1673        ls-2269    3d..3   21us : do_softirq <-irq_exit
1674        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1675        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1676        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1677        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1678        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1679        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1680        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1681  [...]
1682        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1683        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1684        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1685        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1686        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1687        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1688  [...]
1689        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1690        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1691        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1692        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1693        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1694        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1695        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1696        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1697        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1698        ls-2269    3d...  186us : <stack trace>
1699   => __mutex_unlock_slowpath
1700   => mutex_unlock
1701   => process_output
1702   => n_tty_write
1703   => tty_write
1704   => vfs_write
1705   => sys_write
1706   => system_call_fastpath
1707
1708This is an interesting trace. It started with kworker running and
1709scheduling out and ls taking over. But as soon as ls released the
1710rq lock and enabled interrupts (but not preemption) an interrupt
1711triggered. When the interrupt finished, it started running softirqs.
1712But while the softirq was running, another interrupt triggered.
1713When an interrupt is running inside a softirq, the annotation is 'H'.
1714
1715
1716wakeup
1717------
1718
1719One common case that people are interested in tracing is the
1720time it takes for a task that is woken to actually wake up.
1721Now for non Real-Time tasks, this can be arbitrary. But tracing
1722it none the less can be interesting.
1723
1724Without function tracing::
1725
1726  # echo 0 > options/function-trace
1727  # echo wakeup > current_tracer
1728  # echo 1 > tracing_on
1729  # echo 0 > tracing_max_latency
1730  # chrt -f 5 sleep 1
1731  # echo 0 > tracing_on
1732  # cat trace
1733  # tracer: wakeup
1734  #
1735  # wakeup latency trace v1.1.5 on 3.8.0-test+
1736  # --------------------------------------------------------------------
1737  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1738  #    -----------------
1739  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1740  #    -----------------
1741  #
1742  #                  _------=> CPU#
1743  #                 / _-----=> irqs-off
1744  #                | / _----=> need-resched
1745  #                || / _---=> hardirq/softirq
1746  #                ||| / _--=> preempt-depth
1747  #                |||| /     delay
1748  #  cmd     pid   ||||| time  |   caller
1749  #     \   /      |||||  \    |   /
1750    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1751    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1752    <idle>-0       3d..3   15us : __schedule <-schedule
1753    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1754
1755The tracer only traces the highest priority task in the system
1756to avoid tracing the normal circumstances. Here we see that
1757the kworker with a nice priority of -20 (not very nice), took
1758just 15 microseconds from the time it woke up, to the time it
1759ran.
1760
1761Non Real-Time tasks are not that interesting. A more interesting
1762trace is to concentrate only on Real-Time tasks.
1763
1764wakeup_rt
1765---------
1766
1767In a Real-Time environment it is very important to know the
1768wakeup time it takes for the highest priority task that is woken
1769up to the time that it executes. This is also known as "schedule
1770latency". I stress the point that this is about RT tasks. It is
1771also important to know the scheduling latency of non-RT tasks,
1772but the average schedule latency is better for non-RT tasks.
1773Tools like LatencyTop are more appropriate for such
1774measurements.
1775
1776Real-Time environments are interested in the worst case latency.
1777That is the longest latency it takes for something to happen,
1778and not the average. We can have a very fast scheduler that may
1779only have a large latency once in a while, but that would not
1780work well with Real-Time tasks.  The wakeup_rt tracer was designed
1781to record the worst case wakeups of RT tasks. Non-RT tasks are
1782not recorded because the tracer only records one worst case and
1783tracing non-RT tasks that are unpredictable will overwrite the
1784worst case latency of RT tasks (just run the normal wakeup
1785tracer for a while to see that effect).
1786
1787Since this tracer only deals with RT tasks, we will run this
1788slightly differently than we did with the previous tracers.
1789Instead of performing an 'ls', we will run 'sleep 1' under
1790'chrt' which changes the priority of the task.
1791::
1792
1793  # echo 0 > options/function-trace
1794  # echo wakeup_rt > current_tracer
1795  # echo 1 > tracing_on
1796  # echo 0 > tracing_max_latency
1797  # chrt -f 5 sleep 1
1798  # echo 0 > tracing_on
1799  # cat trace
1800  # tracer: wakeup
1801  #
1802  # tracer: wakeup_rt
1803  #
1804  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1805  # --------------------------------------------------------------------
1806  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1807  #    -----------------
1808  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1809  #    -----------------
1810  #
1811  #                  _------=> CPU#
1812  #                 / _-----=> irqs-off
1813  #                | / _----=> need-resched
1814  #                || / _---=> hardirq/softirq
1815  #                ||| / _--=> preempt-depth
1816  #                |||| /     delay
1817  #  cmd     pid   ||||| time  |   caller
1818  #     \   /      |||||  \    |   /
1819    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1820    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1821    <idle>-0       3d..3    5us : __schedule <-schedule
1822    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1823
1824
1825Running this on an idle system, we see that it only took 5 microseconds
1826to perform the task switch.  Note, since the trace point in the schedule
1827is before the actual "switch", we stop the tracing when the recorded task
1828is about to schedule in. This may change if we add a new marker at the
1829end of the scheduler.
1830
1831Notice that the recorded task is 'sleep' with the PID of 2389
1832and it has an rt_prio of 5. This priority is user-space priority
1833and not the internal kernel priority. The policy is 1 for
1834SCHED_FIFO and 2 for SCHED_RR.
1835
1836Note, that the trace data shows the internal priority (99 - rtprio).
1837::
1838
1839  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1840
1841The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1842and in the running state 'R'. The sleep task was scheduled in with
18432389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1844and it too is in the running state.
1845
1846Doing the same with chrt -r 5 and function-trace set.
1847::
1848
1849  echo 1 > options/function-trace
1850
1851  # tracer: wakeup_rt
1852  #
1853  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1854  # --------------------------------------------------------------------
1855  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1856  #    -----------------
1857  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1858  #    -----------------
1859  #
1860  #                  _------=> CPU#
1861  #                 / _-----=> irqs-off
1862  #                | / _----=> need-resched
1863  #                || / _---=> hardirq/softirq
1864  #                ||| / _--=> preempt-depth
1865  #                |||| /     delay
1866  #  cmd     pid   ||||| time  |   caller
1867  #     \   /      |||||  \    |   /
1868    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1869    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1870    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1871    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1872    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1873    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1874    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1875    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1876    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1877    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1878    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1879    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1880    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1881    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1882    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1883    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1884    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1885    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1886    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1887    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1888    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1889    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1890    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1891    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1892    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1893    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1894    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1895    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1896    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1897    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1898    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1899    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
1900    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1901    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
1902    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
1903    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
1904    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1905    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1906    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1907    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1908    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1909    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1910    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1911    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1912    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1913    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1914    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1915    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1916    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1917    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1918    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1919    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1920    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1921    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1922    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1923    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1924    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1925    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1926    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1927    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1928    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1929    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1930    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1931    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1932    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1933    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1934    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1935    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1936    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1937    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1938    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1939    <idle>-0       3.N..   25us : schedule <-cpu_idle
1940    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1941    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1942    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1943    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1944    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1945    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1946    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1947    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1948    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1949    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1950    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1951    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1952    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1953
1954This isn't that big of a trace, even with function tracing enabled,
1955so I included the entire trace.
1956
1957The interrupt went off while when the system was idle. Somewhere
1958before task_woken_rt() was called, the NEED_RESCHED flag was set,
1959this is indicated by the first occurrence of the 'N' flag.
1960
1961Latency tracing and events
1962--------------------------
1963As function tracing can induce a much larger latency, but without
1964seeing what happens within the latency it is hard to know what
1965caused it. There is a middle ground, and that is with enabling
1966events.
1967::
1968
1969  # echo 0 > options/function-trace
1970  # echo wakeup_rt > current_tracer
1971  # echo 1 > events/enable
1972  # echo 1 > tracing_on
1973  # echo 0 > tracing_max_latency
1974  # chrt -f 5 sleep 1
1975  # echo 0 > tracing_on
1976  # cat trace
1977  # tracer: wakeup_rt
1978  #
1979  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1980  # --------------------------------------------------------------------
1981  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1982  #    -----------------
1983  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1984  #    -----------------
1985  #
1986  #                  _------=> CPU#
1987  #                 / _-----=> irqs-off
1988  #                | / _----=> need-resched
1989  #                || / _---=> hardirq/softirq
1990  #                ||| / _--=> preempt-depth
1991  #                |||| /     delay
1992  #  cmd     pid   ||||| time  |   caller
1993  #     \   /      |||||  \    |   /
1994    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
1995    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1996    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1997    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1998    <idle>-0       2.N.2    2us : power_end: cpu_id=2
1999    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
2000    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2001    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2002    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
2003    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
2004    <idle>-0       2d..3    6us : __schedule <-schedule
2005    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
2006
2007
2008Hardware Latency Detector
2009-------------------------
2010
2011The hardware latency detector is executed by enabling the "hwlat" tracer.
2012
2013NOTE, this tracer will affect the performance of the system as it will
2014periodically make a CPU constantly busy with interrupts disabled.
2015::
2016
2017  # echo hwlat > current_tracer
2018  # sleep 100
2019  # cat trace
2020  # tracer: hwlat
2021  #
2022  #                              _-----=> irqs-off
2023  #                             / _----=> need-resched
2024  #                            | / _---=> hardirq/softirq
2025  #                            || / _--=> preempt-depth
2026  #                            ||| /     delay
2027  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2028  #              | |       |   ||||       |         |
2029             <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
2030             <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
2031             <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
2032             <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
2033             <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
2034             <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1
2035
2036
2037The above output is somewhat the same in the header. All events will have
2038interrupts disabled 'd'. Under the FUNCTION title there is:
2039
2040 #1
2041	This is the count of events recorded that were greater than the
2042	tracing_threshold (See below).
2043
2044 inner/outer(us):   12/14
2045
2046      This shows two numbers as "inner latency" and "outer latency". The test
2047      runs in a loop checking a timestamp twice. The latency detected within
2048      the two timestamps is the "inner latency" and the latency detected
2049      after the previous timestamp and the next timestamp in the loop is
2050      the "outer latency".
2051
2052 ts:1499801089.066141940
2053
2054      The absolute timestamp that the event happened.
2055
2056 nmi-total:4 nmi-count:1
2057
2058      On architectures that support it, if an NMI comes in during the
2059      test, the time spent in NMI is reported in "nmi-total" (in
2060      microseconds).
2061
2062      All architectures that have NMIs will show the "nmi-count" if an
2063      NMI comes in during the test.
2064
2065hwlat files:
2066
2067  tracing_threshold
2068	This gets automatically set to "10" to represent 10
2069	microseconds. This is the threshold of latency that
2070	needs to be detected before the trace will be recorded.
2071
2072	Note, when hwlat tracer is finished (another tracer is
2073	written into "current_tracer"), the original value for
2074	tracing_threshold is placed back into this file.
2075
2076  hwlat_detector/width
2077	The length of time the test runs with interrupts disabled.
2078
2079  hwlat_detector/window
2080	The length of time of the window which the test
2081	runs. That is, the test will run for "width"
2082	microseconds per "window" microseconds
2083
2084  tracing_cpumask
2085	When the test is started. A kernel thread is created that
2086	runs the test. This thread will alternate between CPUs
2087	listed in the tracing_cpumask between each period
2088	(one "window"). To limit the test to specific CPUs
2089	set the mask in this file to only the CPUs that the test
2090	should run on.
2091
2092function
2093--------
2094
2095This tracer is the function tracer. Enabling the function tracer
2096can be done from the debug file system. Make sure the
2097ftrace_enabled is set; otherwise this tracer is a nop.
2098See the "ftrace_enabled" section below.
2099::
2100
2101  # sysctl kernel.ftrace_enabled=1
2102  # echo function > current_tracer
2103  # echo 1 > tracing_on
2104  # usleep 1
2105  # echo 0 > tracing_on
2106  # cat trace
2107  # tracer: function
2108  #
2109  # entries-in-buffer/entries-written: 24799/24799   #P:4
2110  #
2111  #                              _-----=> irqs-off
2112  #                             / _----=> need-resched
2113  #                            | / _---=> hardirq/softirq
2114  #                            || / _--=> preempt-depth
2115  #                            ||| /     delay
2116  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2117  #              | |       |   ||||       |         |
2118              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2119              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2120              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2121              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2122              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2123              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2124              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2125              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2126  [...]
2127
2128
2129Note: function tracer uses ring buffers to store the above
2130entries. The newest data may overwrite the oldest data.
2131Sometimes using echo to stop the trace is not sufficient because
2132the tracing could have overwritten the data that you wanted to
2133record. For this reason, it is sometimes better to disable
2134tracing directly from a program. This allows you to stop the
2135tracing at the point that you hit the part that you are
2136interested in. To disable the tracing directly from a C program,
2137something like following code snippet can be used::
2138
2139	int trace_fd;
2140	[...]
2141	int main(int argc, char *argv[]) {
2142		[...]
2143		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2144		[...]
2145		if (condition_hit()) {
2146			write(trace_fd, "0", 1);
2147		}
2148		[...]
2149	}
2150
2151
2152Single thread tracing
2153---------------------
2154
2155By writing into set_ftrace_pid you can trace a
2156single thread. For example::
2157
2158  # cat set_ftrace_pid
2159  no pid
2160  # echo 3111 > set_ftrace_pid
2161  # cat set_ftrace_pid
2162  3111
2163  # echo function > current_tracer
2164  # cat trace | head
2165  # tracer: function
2166  #
2167  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2168  #              | |       |          |         |
2169      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2170      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2171      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2172      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2173      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2174      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2175  # echo > set_ftrace_pid
2176  # cat trace |head
2177  # tracer: function
2178  #
2179  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2180  #              | |       |          |         |
2181  ##### CPU 3 buffer started ####
2182      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2183      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2184      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2185      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2186      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2187
2188If you want to trace a function when executing, you could use
2189something like this simple program.
2190::
2191
2192	#include <stdio.h>
2193	#include <stdlib.h>
2194	#include <sys/types.h>
2195	#include <sys/stat.h>
2196	#include <fcntl.h>
2197	#include <unistd.h>
2198	#include <string.h>
2199
2200	#define _STR(x) #x
2201	#define STR(x) _STR(x)
2202	#define MAX_PATH 256
2203
2204	const char *find_tracefs(void)
2205	{
2206	       static char tracefs[MAX_PATH+1];
2207	       static int tracefs_found;
2208	       char type[100];
2209	       FILE *fp;
2210
2211	       if (tracefs_found)
2212		       return tracefs;
2213
2214	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2215		       perror("/proc/mounts");
2216		       return NULL;
2217	       }
2218
2219	       while (fscanf(fp, "%*s %"
2220		             STR(MAX_PATH)
2221		             "s %99s %*s %*d %*d\n",
2222		             tracefs, type) == 2) {
2223		       if (strcmp(type, "tracefs") == 0)
2224		               break;
2225	       }
2226	       fclose(fp);
2227
2228	       if (strcmp(type, "tracefs") != 0) {
2229		       fprintf(stderr, "tracefs not mounted");
2230		       return NULL;
2231	       }
2232
2233	       strcat(tracefs, "/tracing/");
2234	       tracefs_found = 1;
2235
2236	       return tracefs;
2237	}
2238
2239	const char *tracing_file(const char *file_name)
2240	{
2241	       static char trace_file[MAX_PATH+1];
2242	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2243	       return trace_file;
2244	}
2245
2246	int main (int argc, char **argv)
2247	{
2248		if (argc < 1)
2249		        exit(-1);
2250
2251		if (fork() > 0) {
2252		        int fd, ffd;
2253		        char line[64];
2254		        int s;
2255
2256		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2257		        if (ffd < 0)
2258		                exit(-1);
2259		        write(ffd, "nop", 3);
2260
2261		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2262		        s = sprintf(line, "%d\n", getpid());
2263		        write(fd, line, s);
2264
2265		        write(ffd, "function", 8);
2266
2267		        close(fd);
2268		        close(ffd);
2269
2270		        execvp(argv[1], argv+1);
2271		}
2272
2273		return 0;
2274	}
2275
2276Or this simple script!
2277::
2278
2279  #!/bin/bash
2280
2281  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2282  echo nop > $tracefs/tracing/current_tracer
2283  echo 0 > $tracefs/tracing/tracing_on
2284  echo $$ > $tracefs/tracing/set_ftrace_pid
2285  echo function > $tracefs/tracing/current_tracer
2286  echo 1 > $tracefs/tracing/tracing_on
2287  exec "$@"
2288
2289
2290function graph tracer
2291---------------------------
2292
2293This tracer is similar to the function tracer except that it
2294probes a function on its entry and its exit. This is done by
2295using a dynamically allocated stack of return addresses in each
2296task_struct. On function entry the tracer overwrites the return
2297address of each function traced to set a custom probe. Thus the
2298original return address is stored on the stack of return address
2299in the task_struct.
2300
2301Probing on both ends of a function leads to special features
2302such as:
2303
2304- measure of a function's time execution
2305- having a reliable call stack to draw function calls graph
2306
2307This tracer is useful in several situations:
2308
2309- you want to find the reason of a strange kernel behavior and
2310  need to see what happens in detail on any areas (or specific
2311  ones).
2312
2313- you are experiencing weird latencies but it's difficult to
2314  find its origin.
2315
2316- you want to find quickly which path is taken by a specific
2317  function
2318
2319- you just want to peek inside a working kernel and want to see
2320  what happens there.
2321
2322::
2323
2324  # tracer: function_graph
2325  #
2326  # CPU  DURATION                  FUNCTION CALLS
2327  # |     |   |                     |   |   |   |
2328
2329   0)               |  sys_open() {
2330   0)               |    do_sys_open() {
2331   0)               |      getname() {
2332   0)               |        kmem_cache_alloc() {
2333   0)   1.382 us    |          __might_sleep();
2334   0)   2.478 us    |        }
2335   0)               |        strncpy_from_user() {
2336   0)               |          might_fault() {
2337   0)   1.389 us    |            __might_sleep();
2338   0)   2.553 us    |          }
2339   0)   3.807 us    |        }
2340   0)   7.876 us    |      }
2341   0)               |      alloc_fd() {
2342   0)   0.668 us    |        _spin_lock();
2343   0)   0.570 us    |        expand_files();
2344   0)   0.586 us    |        _spin_unlock();
2345
2346
2347There are several columns that can be dynamically
2348enabled/disabled. You can use every combination of options you
2349want, depending on your needs.
2350
2351- The cpu number on which the function executed is default
2352  enabled.  It is sometimes better to only trace one cpu (see
2353  tracing_cpu_mask file) or you might sometimes see unordered
2354  function calls while cpu tracing switch.
2355
2356	- hide: echo nofuncgraph-cpu > trace_options
2357	- show: echo funcgraph-cpu > trace_options
2358
2359- The duration (function's time of execution) is displayed on
2360  the closing bracket line of a function or on the same line
2361  than the current function in case of a leaf one. It is default
2362  enabled.
2363
2364	- hide: echo nofuncgraph-duration > trace_options
2365	- show: echo funcgraph-duration > trace_options
2366
2367- The overhead field precedes the duration field in case of
2368  reached duration thresholds.
2369
2370	- hide: echo nofuncgraph-overhead > trace_options
2371	- show: echo funcgraph-overhead > trace_options
2372	- depends on: funcgraph-duration
2373
2374  ie::
2375
2376    3) # 1837.709 us |          } /* __switch_to */
2377    3)               |          finish_task_switch() {
2378    3)   0.313 us    |            _raw_spin_unlock_irq();
2379    3)   3.177 us    |          }
2380    3) # 1889.063 us |        } /* __schedule */
2381    3) ! 140.417 us  |      } /* __schedule */
2382    3) # 2034.948 us |    } /* schedule */
2383    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2384
2385    [...]
2386
2387    1)   0.260 us    |              msecs_to_jiffies();
2388    1)   0.313 us    |              __rcu_read_unlock();
2389    1) + 61.770 us   |            }
2390    1) + 64.479 us   |          }
2391    1)   0.313 us    |          rcu_bh_qs();
2392    1)   0.313 us    |          __local_bh_enable();
2393    1) ! 217.240 us  |        }
2394    1)   0.365 us    |        idle_cpu();
2395    1)               |        rcu_irq_exit() {
2396    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2397    1)   3.125 us    |        }
2398    1) ! 227.812 us  |      }
2399    1) ! 457.395 us  |    }
2400    1) @ 119760.2 us |  }
2401
2402    [...]
2403
2404    2)               |    handle_IPI() {
2405    1)   6.979 us    |                  }
2406    2)   0.417 us    |      scheduler_ipi();
2407    1)   9.791 us    |                }
2408    1) + 12.917 us   |              }
2409    2)   3.490 us    |    }
2410    1) + 15.729 us   |            }
2411    1) + 18.542 us   |          }
2412    2) $ 3594274 us  |  }
2413
2414Flags::
2415
2416  + means that the function exceeded 10 usecs.
2417  ! means that the function exceeded 100 usecs.
2418  # means that the function exceeded 1000 usecs.
2419  * means that the function exceeded 10 msecs.
2420  @ means that the function exceeded 100 msecs.
2421  $ means that the function exceeded 1 sec.
2422
2423
2424- The task/pid field displays the thread cmdline and pid which
2425  executed the function. It is default disabled.
2426
2427	- hide: echo nofuncgraph-proc > trace_options
2428	- show: echo funcgraph-proc > trace_options
2429
2430  ie::
2431
2432    # tracer: function_graph
2433    #
2434    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2435    # |    |    |           |   |                     |   |   |   |
2436    0)    sh-4802     |               |                  d_free() {
2437    0)    sh-4802     |               |                    call_rcu() {
2438    0)    sh-4802     |               |                      __call_rcu() {
2439    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2440    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2441    0)    sh-4802     |   2.899 us    |                      }
2442    0)    sh-4802     |   4.040 us    |                    }
2443    0)    sh-4802     |   5.151 us    |                  }
2444    0)    sh-4802     | + 49.370 us   |                }
2445
2446
2447- The absolute time field is an absolute timestamp given by the
2448  system clock since it started. A snapshot of this time is
2449  given on each entry/exit of functions
2450
2451	- hide: echo nofuncgraph-abstime > trace_options
2452	- show: echo funcgraph-abstime > trace_options
2453
2454  ie::
2455
2456    #
2457    #      TIME       CPU  DURATION                  FUNCTION CALLS
2458    #       |         |     |   |                     |   |   |   |
2459    360.774522 |   1)   0.541 us    |                                          }
2460    360.774522 |   1)   4.663 us    |                                        }
2461    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2462    360.774524 |   1)   6.796 us    |                                      }
2463    360.774524 |   1)   7.952 us    |                                    }
2464    360.774525 |   1)   9.063 us    |                                  }
2465    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2466    360.774527 |   1)   0.578 us    |                                  __brelse();
2467    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2468    360.774528 |   1)               |                                    unlock_buffer() {
2469    360.774529 |   1)               |                                      wake_up_bit() {
2470    360.774529 |   1)               |                                        bit_waitqueue() {
2471    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2472
2473
2474The function name is always displayed after the closing bracket
2475for a function if the start of that function is not in the
2476trace buffer.
2477
2478Display of the function name after the closing bracket may be
2479enabled for functions whose start is in the trace buffer,
2480allowing easier searching with grep for function durations.
2481It is default disabled.
2482
2483	- hide: echo nofuncgraph-tail > trace_options
2484	- show: echo funcgraph-tail > trace_options
2485
2486  Example with nofuncgraph-tail (default)::
2487
2488    0)               |      putname() {
2489    0)               |        kmem_cache_free() {
2490    0)   0.518 us    |          __phys_addr();
2491    0)   1.757 us    |        }
2492    0)   2.861 us    |      }
2493
2494  Example with funcgraph-tail::
2495
2496    0)               |      putname() {
2497    0)               |        kmem_cache_free() {
2498    0)   0.518 us    |          __phys_addr();
2499    0)   1.757 us    |        } /* kmem_cache_free() */
2500    0)   2.861 us    |      } /* putname() */
2501
2502You can put some comments on specific functions by using
2503trace_printk() For example, if you want to put a comment inside
2504the __might_sleep() function, you just have to include
2505<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2506
2507	trace_printk("I'm a comment!\n")
2508
2509will produce::
2510
2511   1)               |             __might_sleep() {
2512   1)               |                /* I'm a comment! */
2513   1)   1.449 us    |             }
2514
2515
2516You might find other useful features for this tracer in the
2517following "dynamic ftrace" section such as tracing only specific
2518functions or tasks.
2519
2520dynamic ftrace
2521--------------
2522
2523If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2524virtually no overhead when function tracing is disabled. The way
2525this works is the mcount function call (placed at the start of
2526every kernel function, produced by the -pg switch in gcc),
2527starts of pointing to a simple return. (Enabling FTRACE will
2528include the -pg switch in the compiling of the kernel.)
2529
2530At compile time every C file object is run through the
2531recordmcount program (located in the scripts directory). This
2532program will parse the ELF headers in the C object to find all
2533the locations in the .text section that call mcount. Starting
2534with gcc verson 4.6, the -mfentry has been added for x86, which
2535calls "__fentry__" instead of "mcount". Which is called before
2536the creation of the stack frame.
2537
2538Note, not all sections are traced. They may be prevented by either
2539a notrace, or blocked another way and all inline functions are not
2540traced. Check the "available_filter_functions" file to see what functions
2541can be traced.
2542
2543A section called "__mcount_loc" is created that holds
2544references to all the mcount/fentry call sites in the .text section.
2545The recordmcount program re-links this section back into the
2546original object. The final linking stage of the kernel will add all these
2547references into a single table.
2548
2549On boot up, before SMP is initialized, the dynamic ftrace code
2550scans this table and updates all the locations into nops. It
2551also records the locations, which are added to the
2552available_filter_functions list.  Modules are processed as they
2553are loaded and before they are executed.  When a module is
2554unloaded, it also removes its functions from the ftrace function
2555list. This is automatic in the module unload code, and the
2556module author does not need to worry about it.
2557
2558When tracing is enabled, the process of modifying the function
2559tracepoints is dependent on architecture. The old method is to use
2560kstop_machine to prevent races with the CPUs executing code being
2561modified (which can cause the CPU to do undesirable things, especially
2562if the modified code crosses cache (or page) boundaries), and the nops are
2563patched back to calls. But this time, they do not call mcount
2564(which is just a function stub). They now call into the ftrace
2565infrastructure.
2566
2567The new method of modifying the function tracepoints is to place
2568a breakpoint at the location to be modified, sync all CPUs, modify
2569the rest of the instruction not covered by the breakpoint. Sync
2570all CPUs again, and then remove the breakpoint with the finished
2571version to the ftrace call site.
2572
2573Some archs do not even need to monkey around with the synchronization,
2574and can just slap the new code on top of the old without any
2575problems with other CPUs executing it at the same time.
2576
2577One special side-effect to the recording of the functions being
2578traced is that we can now selectively choose which functions we
2579wish to trace and which ones we want the mcount calls to remain
2580as nops.
2581
2582Two files are used, one for enabling and one for disabling the
2583tracing of specified functions. They are:
2584
2585  set_ftrace_filter
2586
2587and
2588
2589  set_ftrace_notrace
2590
2591A list of available functions that you can add to these files is
2592listed in:
2593
2594   available_filter_functions
2595
2596::
2597
2598  # cat available_filter_functions
2599  put_prev_task_idle
2600  kmem_cache_create
2601  pick_next_task_rt
2602  get_online_cpus
2603  pick_next_task_fair
2604  mutex_lock
2605  [...]
2606
2607If I am only interested in sys_nanosleep and hrtimer_interrupt::
2608
2609  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2610  # echo function > current_tracer
2611  # echo 1 > tracing_on
2612  # usleep 1
2613  # echo 0 > tracing_on
2614  # cat trace
2615  # tracer: function
2616  #
2617  # entries-in-buffer/entries-written: 5/5   #P:4
2618  #
2619  #                              _-----=> irqs-off
2620  #                             / _----=> need-resched
2621  #                            | / _---=> hardirq/softirq
2622  #                            || / _--=> preempt-depth
2623  #                            ||| /     delay
2624  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2625  #              | |       |   ||||       |         |
2626            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2627            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2628            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2629            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2630            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2631
2632To see which functions are being traced, you can cat the file:
2633::
2634
2635  # cat set_ftrace_filter
2636  hrtimer_interrupt
2637  sys_nanosleep
2638
2639
2640Perhaps this is not enough. The filters also allow glob(7) matching.
2641
2642  ``<match>*``
2643	will match functions that begin with <match>
2644  ``*<match>``
2645	will match functions that end with <match>
2646  ``*<match>*``
2647	will match functions that have <match> in it
2648  ``<match1>*<match2>``
2649	will match functions that begin with <match1> and end with <match2>
2650
2651.. note::
2652      It is better to use quotes to enclose the wild cards,
2653      otherwise the shell may expand the parameters into names
2654      of files in the local directory.
2655
2656::
2657
2658  # echo 'hrtimer_*' > set_ftrace_filter
2659
2660Produces::
2661
2662  # tracer: function
2663  #
2664  # entries-in-buffer/entries-written: 897/897   #P:4
2665  #
2666  #                              _-----=> irqs-off
2667  #                             / _----=> need-resched
2668  #                            | / _---=> hardirq/softirq
2669  #                            || / _--=> preempt-depth
2670  #                            ||| /     delay
2671  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2672  #              | |       |   ||||       |         |
2673            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2674            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2675            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2676            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2677            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2678            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2679            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2680            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2681
2682Notice that we lost the sys_nanosleep.
2683::
2684
2685  # cat set_ftrace_filter
2686  hrtimer_run_queues
2687  hrtimer_run_pending
2688  hrtimer_init
2689  hrtimer_cancel
2690  hrtimer_try_to_cancel
2691  hrtimer_forward
2692  hrtimer_start
2693  hrtimer_reprogram
2694  hrtimer_force_reprogram
2695  hrtimer_get_next_event
2696  hrtimer_interrupt
2697  hrtimer_nanosleep
2698  hrtimer_wakeup
2699  hrtimer_get_remaining
2700  hrtimer_get_res
2701  hrtimer_init_sleeper
2702
2703
2704This is because the '>' and '>>' act just like they do in bash.
2705To rewrite the filters, use '>'
2706To append to the filters, use '>>'
2707
2708To clear out a filter so that all functions will be recorded
2709again::
2710
2711 # echo > set_ftrace_filter
2712 # cat set_ftrace_filter
2713 #
2714
2715Again, now we want to append.
2716
2717::
2718
2719  # echo sys_nanosleep > set_ftrace_filter
2720  # cat set_ftrace_filter
2721  sys_nanosleep
2722  # echo 'hrtimer_*' >> set_ftrace_filter
2723  # cat set_ftrace_filter
2724  hrtimer_run_queues
2725  hrtimer_run_pending
2726  hrtimer_init
2727  hrtimer_cancel
2728  hrtimer_try_to_cancel
2729  hrtimer_forward
2730  hrtimer_start
2731  hrtimer_reprogram
2732  hrtimer_force_reprogram
2733  hrtimer_get_next_event
2734  hrtimer_interrupt
2735  sys_nanosleep
2736  hrtimer_nanosleep
2737  hrtimer_wakeup
2738  hrtimer_get_remaining
2739  hrtimer_get_res
2740  hrtimer_init_sleeper
2741
2742
2743The set_ftrace_notrace prevents those functions from being
2744traced.
2745::
2746
2747  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2748
2749Produces::
2750
2751  # tracer: function
2752  #
2753  # entries-in-buffer/entries-written: 39608/39608   #P:4
2754  #
2755  #                              _-----=> irqs-off
2756  #                             / _----=> need-resched
2757  #                            | / _---=> hardirq/softirq
2758  #                            || / _--=> preempt-depth
2759  #                            ||| /     delay
2760  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2761  #              | |       |   ||||       |         |
2762              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2763              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2764              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2765              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2766              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2767              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2768              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2769              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2770              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2771              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2772              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2773              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2774
2775We can see that there's no more lock or preempt tracing.
2776
2777
2778Dynamic ftrace with the function graph tracer
2779---------------------------------------------
2780
2781Although what has been explained above concerns both the
2782function tracer and the function-graph-tracer, there are some
2783special features only available in the function-graph tracer.
2784
2785If you want to trace only one function and all of its children,
2786you just have to echo its name into set_graph_function::
2787
2788 echo __do_fault > set_graph_function
2789
2790will produce the following "expanded" trace of the __do_fault()
2791function::
2792
2793   0)               |  __do_fault() {
2794   0)               |    filemap_fault() {
2795   0)               |      find_lock_page() {
2796   0)   0.804 us    |        find_get_page();
2797   0)               |        __might_sleep() {
2798   0)   1.329 us    |        }
2799   0)   3.904 us    |      }
2800   0)   4.979 us    |    }
2801   0)   0.653 us    |    _spin_lock();
2802   0)   0.578 us    |    page_add_file_rmap();
2803   0)   0.525 us    |    native_set_pte_at();
2804   0)   0.585 us    |    _spin_unlock();
2805   0)               |    unlock_page() {
2806   0)   0.541 us    |      page_waitqueue();
2807   0)   0.639 us    |      __wake_up_bit();
2808   0)   2.786 us    |    }
2809   0) + 14.237 us   |  }
2810   0)               |  __do_fault() {
2811   0)               |    filemap_fault() {
2812   0)               |      find_lock_page() {
2813   0)   0.698 us    |        find_get_page();
2814   0)               |        __might_sleep() {
2815   0)   1.412 us    |        }
2816   0)   3.950 us    |      }
2817   0)   5.098 us    |    }
2818   0)   0.631 us    |    _spin_lock();
2819   0)   0.571 us    |    page_add_file_rmap();
2820   0)   0.526 us    |    native_set_pte_at();
2821   0)   0.586 us    |    _spin_unlock();
2822   0)               |    unlock_page() {
2823   0)   0.533 us    |      page_waitqueue();
2824   0)   0.638 us    |      __wake_up_bit();
2825   0)   2.793 us    |    }
2826   0) + 14.012 us   |  }
2827
2828You can also expand several functions at once::
2829
2830 echo sys_open > set_graph_function
2831 echo sys_close >> set_graph_function
2832
2833Now if you want to go back to trace all functions you can clear
2834this special filter via::
2835
2836 echo > set_graph_function
2837
2838
2839ftrace_enabled
2840--------------
2841
2842Note, the proc sysctl ftrace_enable is a big on/off switch for the
2843function tracer. By default it is enabled (when function tracing is
2844enabled in the kernel). If it is disabled, all function tracing is
2845disabled. This includes not only the function tracers for ftrace, but
2846also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2847
2848Please disable this with care.
2849
2850This can be disable (and enabled) with::
2851
2852  sysctl kernel.ftrace_enabled=0
2853  sysctl kernel.ftrace_enabled=1
2854
2855 or
2856
2857  echo 0 > /proc/sys/kernel/ftrace_enabled
2858  echo 1 > /proc/sys/kernel/ftrace_enabled
2859
2860
2861Filter commands
2862---------------
2863
2864A few commands are supported by the set_ftrace_filter interface.
2865Trace commands have the following format::
2866
2867  <function>:<command>:<parameter>
2868
2869The following commands are supported:
2870
2871- mod:
2872  This command enables function filtering per module. The
2873  parameter defines the module. For example, if only the write*
2874  functions in the ext3 module are desired, run:
2875
2876   echo 'write*:mod:ext3' > set_ftrace_filter
2877
2878  This command interacts with the filter in the same way as
2879  filtering based on function names. Thus, adding more functions
2880  in a different module is accomplished by appending (>>) to the
2881  filter file. Remove specific module functions by prepending
2882  '!'::
2883
2884   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2885
2886  Mod command supports module globbing. Disable tracing for all
2887  functions except a specific module::
2888
2889   echo '!*:mod:!ext3' >> set_ftrace_filter
2890
2891  Disable tracing for all modules, but still trace kernel::
2892
2893   echo '!*:mod:*' >> set_ftrace_filter
2894
2895  Enable filter only for kernel::
2896
2897   echo '*write*:mod:!*' >> set_ftrace_filter
2898
2899  Enable filter for module globbing::
2900
2901   echo '*write*:mod:*snd*' >> set_ftrace_filter
2902
2903- traceon/traceoff:
2904  These commands turn tracing on and off when the specified
2905  functions are hit. The parameter determines how many times the
2906  tracing system is turned on and off. If unspecified, there is
2907  no limit. For example, to disable tracing when a schedule bug
2908  is hit the first 5 times, run::
2909
2910   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2911
2912  To always disable tracing when __schedule_bug is hit::
2913
2914   echo '__schedule_bug:traceoff' > set_ftrace_filter
2915
2916  These commands are cumulative whether or not they are appended
2917  to set_ftrace_filter. To remove a command, prepend it by '!'
2918  and drop the parameter::
2919
2920   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2921
2922  The above removes the traceoff command for __schedule_bug
2923  that have a counter. To remove commands without counters::
2924
2925   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2926
2927- snapshot:
2928  Will cause a snapshot to be triggered when the function is hit.
2929  ::
2930
2931   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2932
2933  To only snapshot once:
2934  ::
2935
2936   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2937
2938  To remove the above commands::
2939
2940   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2941   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2942
2943- enable_event/disable_event:
2944  These commands can enable or disable a trace event. Note, because
2945  function tracing callbacks are very sensitive, when these commands
2946  are registered, the trace point is activated, but disabled in
2947  a "soft" mode. That is, the tracepoint will be called, but
2948  just will not be traced. The event tracepoint stays in this mode
2949  as long as there's a command that triggers it.
2950  ::
2951
2952   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2953   	 set_ftrace_filter
2954
2955  The format is::
2956
2957    <function>:enable_event:<system>:<event>[:count]
2958    <function>:disable_event:<system>:<event>[:count]
2959
2960  To remove the events commands::
2961
2962   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2963   	 set_ftrace_filter
2964   echo '!schedule:disable_event:sched:sched_switch' > \
2965   	 set_ftrace_filter
2966
2967- dump:
2968  When the function is hit, it will dump the contents of the ftrace
2969  ring buffer to the console. This is useful if you need to debug
2970  something, and want to dump the trace when a certain function
2971  is hit. Perhaps its a function that is called before a tripple
2972  fault happens and does not allow you to get a regular dump.
2973
2974- cpudump:
2975  When the function is hit, it will dump the contents of the ftrace
2976  ring buffer for the current CPU to the console. Unlike the "dump"
2977  command, it only prints out the contents of the ring buffer for the
2978  CPU that executed the function that triggered the dump.
2979
2980trace_pipe
2981----------
2982
2983The trace_pipe outputs the same content as the trace file, but
2984the effect on the tracing is different. Every read from
2985trace_pipe is consumed. This means that subsequent reads will be
2986different. The trace is live.
2987::
2988
2989  # echo function > current_tracer
2990  # cat trace_pipe > /tmp/trace.out &
2991  [1] 4153
2992  # echo 1 > tracing_on
2993  # usleep 1
2994  # echo 0 > tracing_on
2995  # cat trace
2996  # tracer: function
2997  #
2998  # entries-in-buffer/entries-written: 0/0   #P:4
2999  #
3000  #                              _-----=> irqs-off
3001  #                             / _----=> need-resched
3002  #                            | / _---=> hardirq/softirq
3003  #                            || / _--=> preempt-depth
3004  #                            ||| /     delay
3005  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3006  #              | |       |   ||||       |         |
3007
3008  #
3009  # cat /tmp/trace.out
3010             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3011             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3012             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3013             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3014             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3015             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3016             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3017             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3018             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3019
3020
3021Note, reading the trace_pipe file will block until more input is
3022added.
3023
3024trace entries
3025-------------
3026
3027Having too much or not enough data can be troublesome in
3028diagnosing an issue in the kernel. The file buffer_size_kb is
3029used to modify the size of the internal trace buffers. The
3030number listed is the number of entries that can be recorded per
3031CPU. To know the full size, multiply the number of possible CPUs
3032with the number of entries.
3033::
3034
3035  # cat buffer_size_kb
3036  1408 (units kilobytes)
3037
3038Or simply read buffer_total_size_kb
3039::
3040
3041  # cat buffer_total_size_kb
3042  5632
3043
3044To modify the buffer, simple echo in a number (in 1024 byte segments).
3045::
3046
3047  # echo 10000 > buffer_size_kb
3048  # cat buffer_size_kb
3049  10000 (units kilobytes)
3050
3051It will try to allocate as much as possible. If you allocate too
3052much, it can cause Out-Of-Memory to trigger.
3053::
3054
3055  # echo 1000000000000 > buffer_size_kb
3056  -bash: echo: write error: Cannot allocate memory
3057  # cat buffer_size_kb
3058  85
3059
3060The per_cpu buffers can be changed individually as well:
3061::
3062
3063  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3064  # echo 100 > per_cpu/cpu1/buffer_size_kb
3065
3066When the per_cpu buffers are not the same, the buffer_size_kb
3067at the top level will just show an X
3068::
3069
3070  # cat buffer_size_kb
3071  X
3072
3073This is where the buffer_total_size_kb is useful:
3074::
3075
3076  # cat buffer_total_size_kb
3077  12916
3078
3079Writing to the top level buffer_size_kb will reset all the buffers
3080to be the same again.
3081
3082Snapshot
3083--------
3084CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3085available to all non latency tracers. (Latency tracers which
3086record max latency, such as "irqsoff" or "wakeup", can't use
3087this feature, since those are already using the snapshot
3088mechanism internally.)
3089
3090Snapshot preserves a current trace buffer at a particular point
3091in time without stopping tracing. Ftrace swaps the current
3092buffer with a spare buffer, and tracing continues in the new
3093current (=previous spare) buffer.
3094
3095The following tracefs files in "tracing" are related to this
3096feature:
3097
3098  snapshot:
3099
3100	This is used to take a snapshot and to read the output
3101	of the snapshot. Echo 1 into this file to allocate a
3102	spare buffer and to take a snapshot (swap), then read
3103	the snapshot from this file in the same format as
3104	"trace" (described above in the section "The File
3105	System"). Both reads snapshot and tracing are executable
3106	in parallel. When the spare buffer is allocated, echoing
3107	0 frees it, and echoing else (positive) values clear the
3108	snapshot contents.
3109	More details are shown in the table below.
3110
3111	+--------------+------------+------------+------------+
3112	|status\\input |     0      |     1      |    else    |
3113	+==============+============+============+============+
3114	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3115	+--------------+------------+------------+------------+
3116	|allocated     |    free    |    swap    |   clear    |
3117	+--------------+------------+------------+------------+
3118
3119Here is an example of using the snapshot feature.
3120::
3121
3122  # echo 1 > events/sched/enable
3123  # echo 1 > snapshot
3124  # cat snapshot
3125  # tracer: nop
3126  #
3127  # entries-in-buffer/entries-written: 71/71   #P:8
3128  #
3129  #                              _-----=> irqs-off
3130  #                             / _----=> need-resched
3131  #                            | / _---=> hardirq/softirq
3132  #                            || / _--=> preempt-depth
3133  #                            ||| /     delay
3134  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3135  #              | |       |   ||||       |         |
3136            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3137             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3138  [...]
3139          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3140
3141  # cat trace
3142  # tracer: nop
3143  #
3144  # entries-in-buffer/entries-written: 77/77   #P:8
3145  #
3146  #                              _-----=> irqs-off
3147  #                             / _----=> need-resched
3148  #                            | / _---=> hardirq/softirq
3149  #                            || / _--=> preempt-depth
3150  #                            ||| /     delay
3151  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3152  #              | |       |   ||||       |         |
3153            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3154   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3155  [...]
3156
3157
3158If you try to use this snapshot feature when current tracer is
3159one of the latency tracers, you will get the following results.
3160::
3161
3162  # echo wakeup > current_tracer
3163  # echo 1 > snapshot
3164  bash: echo: write error: Device or resource busy
3165  # cat snapshot
3166  cat: snapshot: Device or resource busy
3167
3168
3169Instances
3170---------
3171In the tracefs tracing directory is a directory called "instances".
3172This directory can have new directories created inside of it using
3173mkdir, and removing directories with rmdir. The directory created
3174with mkdir in this directory will already contain files and other
3175directories after it is created.
3176::
3177
3178  # mkdir instances/foo
3179  # ls instances/foo
3180  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3181  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3182  trace_pipe  tracing_on
3183
3184As you can see, the new directory looks similar to the tracing directory
3185itself. In fact, it is very similar, except that the buffer and
3186events are agnostic from the main director, or from any other
3187instances that are created.
3188
3189The files in the new directory work just like the files with the
3190same name in the tracing directory except the buffer that is used
3191is a separate and new buffer. The files affect that buffer but do not
3192affect the main buffer with the exception of trace_options. Currently,
3193the trace_options affect all instances and the top level buffer
3194the same, but this may change in future releases. That is, options
3195may become specific to the instance they reside in.
3196
3197Notice that none of the function tracer files are there, nor is
3198current_tracer and available_tracers. This is because the buffers
3199can currently only have events enabled for them.
3200::
3201
3202  # mkdir instances/foo
3203  # mkdir instances/bar
3204  # mkdir instances/zoot
3205  # echo 100000 > buffer_size_kb
3206  # echo 1000 > instances/foo/buffer_size_kb
3207  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3208  # echo function > current_trace
3209  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3210  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3211  # echo 1 > instances/foo/events/sched/sched_switch/enable
3212  # echo 1 > instances/bar/events/irq/enable
3213  # echo 1 > instances/zoot/events/syscalls/enable
3214  # cat trace_pipe
3215  CPU:2 [LOST 11745 EVENTS]
3216              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3217              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3218              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3219              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3220              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3221              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3222              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3223              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3224              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3225              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3226              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3227  [...]
3228
3229  # cat instances/foo/trace_pipe
3230              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3231              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3232            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3233            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3234       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3235              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3236              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3237              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3238       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3239       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3240  [...]
3241
3242  # cat instances/bar/trace_pipe
3243       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3244            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3245              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3246              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3247              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3248              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3249              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3250              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3251              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3252              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3253              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3254              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3255  [...]
3256
3257  # cat instances/zoot/trace
3258  # tracer: nop
3259  #
3260  # entries-in-buffer/entries-written: 18996/18996   #P:4
3261  #
3262  #                              _-----=> irqs-off
3263  #                             / _----=> need-resched
3264  #                            | / _---=> hardirq/softirq
3265  #                            || / _--=> preempt-depth
3266  #                            ||| /     delay
3267  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3268  #              | |       |   ||||       |         |
3269              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3270              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3271              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3272              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3273              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3274              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3275              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3276              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3277              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3278              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3279              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3280
3281You can see that the trace of the top most trace buffer shows only
3282the function tracing. The foo instance displays wakeups and task
3283switches.
3284
3285To remove the instances, simply delete their directories:
3286::
3287
3288  # rmdir instances/foo
3289  # rmdir instances/bar
3290  # rmdir instances/zoot
3291
3292Note, if a process has a trace file open in one of the instance
3293directories, the rmdir will fail with EBUSY.
3294
3295
3296Stack trace
3297-----------
3298Since the kernel has a fixed sized stack, it is important not to
3299waste it in functions. A kernel developer must be conscience of
3300what they allocate on the stack. If they add too much, the system
3301can be in danger of a stack overflow, and corruption will occur,
3302usually leading to a system panic.
3303
3304There are some tools that check this, usually with interrupts
3305periodically checking usage. But if you can perform a check
3306at every function call that will become very useful. As ftrace provides
3307a function tracer, it makes it convenient to check the stack size
3308at every function call. This is enabled via the stack tracer.
3309
3310CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3311To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3312::
3313
3314 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3315
3316You can also enable it from the kernel command line to trace
3317the stack size of the kernel during boot up, by adding "stacktrace"
3318to the kernel command line parameter.
3319
3320After running it for a few minutes, the output looks like:
3321::
3322
3323  # cat stack_max_size
3324  2928
3325
3326  # cat stack_trace
3327          Depth    Size   Location    (18 entries)
3328          -----    ----   --------
3329    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3330    1)     2704     160   find_busiest_group+0x31/0x1f1
3331    2)     2544     256   load_balance+0xd9/0x662
3332    3)     2288      80   idle_balance+0xbb/0x130
3333    4)     2208     128   __schedule+0x26e/0x5b9
3334    5)     2080      16   schedule+0x64/0x66
3335    6)     2064     128   schedule_timeout+0x34/0xe0
3336    7)     1936     112   wait_for_common+0x97/0xf1
3337    8)     1824      16   wait_for_completion+0x1d/0x1f
3338    9)     1808     128   flush_work+0xfe/0x119
3339   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3340   11)     1664      48   input_available_p+0x1d/0x5c
3341   12)     1616      48   n_tty_poll+0x6d/0x134
3342   13)     1568      64   tty_poll+0x64/0x7f
3343   14)     1504     880   do_select+0x31e/0x511
3344   15)      624     400   core_sys_select+0x177/0x216
3345   16)      224      96   sys_select+0x91/0xb9
3346   17)      128     128   system_call_fastpath+0x16/0x1b
3347
3348Note, if -mfentry is being used by gcc, functions get traced before
3349they set up the stack frame. This means that leaf level functions
3350are not tested by the stack tracer when -mfentry is used.
3351
3352Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3353
3354More
3355----
3356More details can be found in the source code, in the `kernel/trace/*.c` files.
3357