xref: /openbmc/linux/Documentation/trace/ftrace.rst (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a frame work of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Through out the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured.
99
100  available_tracers:
101
102	This holds the different types of tracers that
103	have been compiled into the kernel. The
104	tracers listed here can be configured by
105	echoing their name into current_tracer.
106
107  tracing_on:
108
109	This sets or displays whether writing to the trace
110	ring buffer is enabled. Echo 0 into this file to disable
111	the tracer or 1 to enable it. Note, this only disables
112	writing to the ring buffer, the tracing overhead may
113	still be occurring.
114
115	The kernel function tracing_off() can be used within the
116	kernel to disable writing to the ring buffer, which will
117	set this file to "0". User space can re-enable tracing by
118	echoing "1" into the file.
119
120	Note, the function and event trigger "traceoff" will also
121	set this file to zero and stop tracing. Which can also
122	be re-enabled by user space using this file.
123
124  trace:
125
126	This file holds the output of the trace in a human
127	readable format (described below). Note, tracing is temporarily
128	disabled while this file is being read (opened).
129
130  trace_pipe:
131
132	The output is the same as the "trace" file but this
133	file is meant to be streamed with live tracing.
134	Reads from this file will block until new data is
135	retrieved.  Unlike the "trace" file, this file is a
136	consumer. This means reading from this file causes
137	sequential reads to display more current data. Once
138	data is read from this file, it is consumed, and
139	will not be read again with a sequential read. The
140	"trace" file is static, and if the tracer is not
141	adding more data, it will display the same
142	information every time it is read. This file will not
143	disable tracing while being read.
144
145  trace_options:
146
147	This file lets the user control the amount of data
148	that is displayed in one of the above output
149	files. Options also exist to modify how a tracer
150	or events work (stack traces, timestamps, etc).
151
152  options:
153
154	This is a directory that has a file for every available
155	trace option (also in trace_options). Options may also be set
156	or cleared by writing a "1" or "0" respectively into the
157	corresponding file with the option name.
158
159  tracing_max_latency:
160
161	Some of the tracers record the max latency.
162	For example, the maximum time that interrupts are disabled.
163	The maximum time is saved in this file. The max trace will also be
164	stored,	and displayed by "trace". A new max trace will only be
165	recorded if the latency is greater than the value in this file
166	(in microseconds).
167
168	By echoing in a time into this file, no latency will be recorded
169	unless it is greater than the time in this file.
170
171  tracing_thresh:
172
173	Some latency tracers will record a trace whenever the
174	latency is greater than the number in this file.
175	Only active when the file contains a number greater than 0.
176	(in microseconds)
177
178  buffer_size_kb:
179
180	This sets or displays the number of kilobytes each CPU
181	buffer holds. By default, the trace buffers are the same size
182	for each CPU. The displayed number is the size of the
183	CPU buffer and not total size of all buffers. The
184	trace buffers are allocated in pages (blocks of memory
185	that the kernel uses for allocation, usually 4 KB in size).
186	If the last page allocated has room for more bytes
187	than requested, the rest of the page will be used,
188	making the actual allocation bigger than requested or shown.
189	( Note, the size may not be a multiple of the page size
190	due to buffer management meta-data. )
191
192	Buffer sizes for individual CPUs may vary
193	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194	this file will show "X".
195
196  buffer_total_size_kb:
197
198	This displays the total combined size of all the trace buffers.
199
200  free_buffer:
201
202	If a process is performing tracing, and the ring buffer	should be
203	shrunk "freed" when the process is finished, even if it were to be
204	killed by a signal, this file can be used for that purpose. On close
205	of this file, the ring buffer will be resized to its minimum size.
206	Having a process that is tracing also open this file, when the process
207	exits its file descriptor for this file will be closed, and in doing so,
208	the ring buffer will be "freed".
209
210	It may also stop tracing if disable_on_free option is set.
211
212  tracing_cpumask:
213
214	This is a mask that lets the user only trace on specified CPUs.
215	The format is a hex string representing the CPUs.
216
217  set_ftrace_filter:
218
219	When dynamic ftrace is configured in (see the
220	section below "dynamic ftrace"), the code is dynamically
221	modified (code text rewrite) to disable calling of the
222	function profiler (mcount). This lets tracing be configured
223	in with practically no overhead in performance.  This also
224	has a side effect of enabling or disabling specific functions
225	to be traced. Echoing names of functions into this file
226	will limit the trace to only those functions.
227
228	The functions listed in "available_filter_functions" are what
229	can be written into this file.
230
231	This interface also allows for commands to be used. See the
232	"Filter commands" section for more details.
233
234  set_ftrace_notrace:
235
236	This has an effect opposite to that of
237	set_ftrace_filter. Any function that is added here will not
238	be traced. If a function exists in both set_ftrace_filter
239	and set_ftrace_notrace,	the function will _not_ be traced.
240
241  set_ftrace_pid:
242
243	Have the function tracer only trace the threads whose PID are
244	listed in this file.
245
246	If the "function-fork" option is set, then when a task whose
247	PID is listed in this file forks, the child's PID will
248	automatically be added to this file, and the child will be
249	traced by the function tracer as well. This option will also
250	cause PIDs of tasks that exit to be removed from the file.
251
252  set_event_pid:
253
254	Have the events only trace a task with a PID listed in this file.
255	Note, sched_switch and sched_wake_up will also trace events
256	listed in this file.
257
258	To have the PIDs of children of tasks with their PID in this file
259	added on fork, enable the "event-fork" option. That option will also
260	cause the PIDs of tasks to be removed from this file when the task
261	exits.
262
263  set_graph_function:
264
265	Functions listed in this file will cause the function graph
266	tracer to only trace these functions and the functions that
267	they call. (See the section "dynamic ftrace" for more details).
268
269  set_graph_notrace:
270
271	Similar to set_graph_function, but will disable function graph
272	tracing when the function is hit until it exits the function.
273	This makes it possible to ignore tracing functions that are called
274	by a specific function.
275
276  available_filter_functions:
277
278	This lists the functions that ftrace has processed and can trace.
279	These are the function names that you can pass to
280	"set_ftrace_filter" or "set_ftrace_notrace".
281	(See the section "dynamic ftrace" below for more details.)
282
283  dyn_ftrace_total_info:
284
285	This file is for debugging purposes. The number of functions that
286	have been converted to nops and are available to be traced.
287
288  enabled_functions:
289
290	This file is more for debugging ftrace, but can also be useful
291	in seeing if any function has a callback attached to it.
292	Not only does the trace infrastructure use ftrace function
293	trace utility, but other subsystems might too. This file
294	displays all functions that have a callback attached to them
295	as well as the number of callbacks that have been attached.
296	Note, a callback may also call multiple functions which will
297	not be listed in this count.
298
299	If the callback registered to be traced by a function with
300	the "save regs" attribute (thus even more overhead), a 'R'
301	will be displayed on the same line as the function that
302	is returning registers.
303
304	If the callback registered to be traced by a function with
305	the "ip modify" attribute (thus the regs->ip can be changed),
306	an 'I' will be displayed on the same line as the function that
307	can be overridden.
308
309	If the architecture supports it, it will also show what callback
310	is being directly called by the function. If the count is greater
311	than 1 it most likely will be ftrace_ops_list_func().
312
313	If the callback of the function jumps to a trampoline that is
314	specific to a the callback and not the standard trampoline,
315	its address will be printed as well as the function that the
316	trampoline calls.
317
318  function_profile_enabled:
319
320	When set it will enable all functions with either the function
321	tracer, or if configured, the function graph tracer. It will
322	keep a histogram of the number of functions that were called
323	and if the function graph tracer was configured, it will also keep
324	track of the time spent in those functions. The histogram
325	content can be displayed in the files:
326
327	trace_stats/function<cpu> ( function0, function1, etc).
328
329  trace_stats:
330
331	A directory that holds different tracing stats.
332
333  kprobe_events:
334
335	Enable dynamic trace points. See kprobetrace.txt.
336
337  kprobe_profile:
338
339	Dynamic trace points stats. See kprobetrace.txt.
340
341  max_graph_depth:
342
343	Used with the function graph tracer. This is the max depth
344	it will trace into a function. Setting this to a value of
345	one will show only the first kernel function that is called
346	from user space.
347
348  printk_formats:
349
350	This is for tools that read the raw format files. If an event in
351	the ring buffer references a string, only a pointer to the string
352	is recorded into the buffer and not the string itself. This prevents
353	tools from knowing what that string was. This file displays the string
354	and address for	the string allowing tools to map the pointers to what
355	the strings were.
356
357  saved_cmdlines:
358
359	Only the pid of the task is recorded in a trace event unless
360	the event specifically saves the task comm as well. Ftrace
361	makes a cache of pid mappings to comms to try to display
362	comms for events. If a pid for a comm is not listed, then
363	"<...>" is displayed in the output.
364
365	If the option "record-cmd" is set to "0", then comms of tasks
366	will not be saved during recording. By default, it is enabled.
367
368  saved_cmdlines_size:
369
370	By default, 128 comms are saved (see "saved_cmdlines" above). To
371	increase or decrease the amount of comms that are cached, echo
372	in a the number of comms to cache, into this file.
373
374  saved_tgids:
375
376	If the option "record-tgid" is set, on each scheduling context switch
377	the Task Group ID of a task is saved in a table mapping the PID of
378	the thread to its TGID. By default, the "record-tgid" option is
379	disabled.
380
381  snapshot:
382
383	This displays the "snapshot" buffer and also lets the user
384	take a snapshot of the current running trace.
385	See the "Snapshot" section below for more details.
386
387  stack_max_size:
388
389	When the stack tracer is activated, this will display the
390	maximum stack size it has encountered.
391	See the "Stack Trace" section below.
392
393  stack_trace:
394
395	This displays the stack back trace of the largest stack
396	that was encountered when the stack tracer is activated.
397	See the "Stack Trace" section below.
398
399  stack_trace_filter:
400
401	This is similar to "set_ftrace_filter" but it limits what
402	functions the stack tracer will check.
403
404  trace_clock:
405
406	Whenever an event is recorded into the ring buffer, a
407	"timestamp" is added. This stamp comes from a specified
408	clock. By default, ftrace uses the "local" clock. This
409	clock is very fast and strictly per cpu, but on some
410	systems it may not be monotonic with respect to other
411	CPUs. In other words, the local clocks may not be in sync
412	with local clocks on other CPUs.
413
414	Usual clocks for tracing::
415
416	  # cat trace_clock
417	  [local] global counter x86-tsc
418
419	The clock with the square brackets around it is the one in effect.
420
421	local:
422		Default clock, but may not be in sync across CPUs
423
424	global:
425		This clock is in sync with all CPUs but may
426		be a bit slower than the local clock.
427
428	counter:
429		This is not a clock at all, but literally an atomic
430		counter. It counts up one by one, but is in sync
431		with all CPUs. This is useful when you need to
432		know exactly the order events occurred with respect to
433		each other on different CPUs.
434
435	uptime:
436		This uses the jiffies counter and the time stamp
437		is relative to the time since boot up.
438
439	perf:
440		This makes ftrace use the same clock that perf uses.
441		Eventually perf will be able to read ftrace buffers
442		and this will help out in interleaving the data.
443
444	x86-tsc:
445		Architectures may define their own clocks. For
446		example, x86 uses its own TSC cycle clock here.
447
448	ppc-tb:
449		This uses the powerpc timebase register value.
450		This is in sync across CPUs and can also be used
451		to correlate events across hypervisor/guest if
452		tb_offset is known.
453
454	mono:
455		This uses the fast monotonic clock (CLOCK_MONOTONIC)
456		which is monotonic and is subject to NTP rate adjustments.
457
458	mono_raw:
459		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
460		which is montonic but is not subject to any rate adjustments
461		and ticks at the same rate as the hardware clocksource.
462
463	boot:
464		Same as mono. Used to be a separate clock which accounted
465		for the time spent in suspend while CLOCK_MONOTONIC did
466		not.
467
468	To set a clock, simply echo the clock name into this file::
469
470	  # echo global > trace_clock
471
472  trace_marker:
473
474	This is a very useful file for synchronizing user space
475	with events happening in the kernel. Writing strings into
476	this file will be written into the ftrace buffer.
477
478	It is useful in applications to open this file at the start
479	of the application and just reference the file descriptor
480	for the file::
481
482		void trace_write(const char *fmt, ...)
483		{
484			va_list ap;
485			char buf[256];
486			int n;
487
488			if (trace_fd < 0)
489				return;
490
491			va_start(ap, fmt);
492			n = vsnprintf(buf, 256, fmt, ap);
493			va_end(ap);
494
495			write(trace_fd, buf, n);
496		}
497
498	start::
499
500		trace_fd = open("trace_marker", WR_ONLY);
501
502  trace_marker_raw:
503
504	This is similar to trace_marker above, but is meant for for binary data
505	to be written to it, where a tool can be used to parse the data
506	from trace_pipe_raw.
507
508  uprobe_events:
509
510	Add dynamic tracepoints in programs.
511	See uprobetracer.txt
512
513  uprobe_profile:
514
515	Uprobe statistics. See uprobetrace.txt
516
517  instances:
518
519	This is a way to make multiple trace buffers where different
520	events can be recorded in different buffers.
521	See "Instances" section below.
522
523  events:
524
525	This is the trace event directory. It holds event tracepoints
526	(also known as static tracepoints) that have been compiled
527	into the kernel. It shows what event tracepoints exist
528	and how they are grouped by system. There are "enable"
529	files at various levels that can enable the tracepoints
530	when a "1" is written to them.
531
532	See events.txt for more information.
533
534  set_event:
535
536	By echoing in the event into this file, will enable that event.
537
538	See events.txt for more information.
539
540  available_events:
541
542	A list of events that can be enabled in tracing.
543
544	See events.txt for more information.
545
546  hwlat_detector:
547
548	Directory for the Hardware Latency Detector.
549	See "Hardware Latency Detector" section below.
550
551  per_cpu:
552
553	This is a directory that contains the trace per_cpu information.
554
555  per_cpu/cpu0/buffer_size_kb:
556
557	The ftrace buffer is defined per_cpu. That is, there's a separate
558	buffer for each CPU to allow writes to be done atomically,
559	and free from cache bouncing. These buffers may have different
560	size buffers. This file is similar to the buffer_size_kb
561	file, but it only displays or sets the buffer size for the
562	specific CPU. (here cpu0).
563
564  per_cpu/cpu0/trace:
565
566	This is similar to the "trace" file, but it will only display
567	the data specific for the CPU. If written to, it only clears
568	the specific CPU buffer.
569
570  per_cpu/cpu0/trace_pipe
571
572	This is similar to the "trace_pipe" file, and is a consuming
573	read, but it will only display (and consume) the data specific
574	for the CPU.
575
576  per_cpu/cpu0/trace_pipe_raw
577
578	For tools that can parse the ftrace ring buffer binary format,
579	the trace_pipe_raw file can be used to extract the data
580	from the ring buffer directly. With the use of the splice()
581	system call, the buffer data can be quickly transferred to
582	a file or to the network where a server is collecting the
583	data.
584
585	Like trace_pipe, this is a consuming reader, where multiple
586	reads will always produce different data.
587
588  per_cpu/cpu0/snapshot:
589
590	This is similar to the main "snapshot" file, but will only
591	snapshot the current CPU (if supported). It only displays
592	the content of the snapshot for a given CPU, and if
593	written to, only clears this CPU buffer.
594
595  per_cpu/cpu0/snapshot_raw:
596
597	Similar to the trace_pipe_raw, but will read the binary format
598	from the snapshot buffer for the given CPU.
599
600  per_cpu/cpu0/stats:
601
602	This displays certain stats about the ring buffer:
603
604	entries:
605		The number of events that are still in the buffer.
606
607	overrun:
608		The number of lost events due to overwriting when
609		the buffer was full.
610
611	commit overrun:
612		Should always be zero.
613		This gets set if so many events happened within a nested
614		event (ring buffer is re-entrant), that it fills the
615		buffer and starts dropping events.
616
617	bytes:
618		Bytes actually read (not overwritten).
619
620	oldest event ts:
621		The oldest timestamp in the buffer
622
623	now ts:
624		The current timestamp
625
626	dropped events:
627		Events lost due to overwrite option being off.
628
629	read events:
630		The number of events read.
631
632The Tracers
633-----------
634
635Here is the list of current tracers that may be configured.
636
637  "function"
638
639	Function call tracer to trace all kernel functions.
640
641  "function_graph"
642
643	Similar to the function tracer except that the
644	function tracer probes the functions on their entry
645	whereas the function graph tracer traces on both entry
646	and exit of the functions. It then provides the ability
647	to draw a graph of function calls similar to C code
648	source.
649
650  "blk"
651
652	The block tracer. The tracer used by the blktrace user
653	application.
654
655  "hwlat"
656
657	The Hardware Latency tracer is used to detect if the hardware
658	produces any latency. See "Hardware Latency Detector" section
659	below.
660
661  "irqsoff"
662
663	Traces the areas that disable interrupts and saves
664	the trace with the longest max latency.
665	See tracing_max_latency. When a new max is recorded,
666	it replaces the old trace. It is best to view this
667	trace with the latency-format option enabled, which
668	happens automatically when the tracer is selected.
669
670  "preemptoff"
671
672	Similar to irqsoff but traces and records the amount of
673	time for which preemption is disabled.
674
675  "preemptirqsoff"
676
677	Similar to irqsoff and preemptoff, but traces and
678	records the largest time for which irqs and/or preemption
679	is disabled.
680
681  "wakeup"
682
683	Traces and records the max latency that it takes for
684	the highest priority task to get scheduled after
685	it has been woken up.
686        Traces all tasks as an average developer would expect.
687
688  "wakeup_rt"
689
690        Traces and records the max latency that it takes for just
691        RT tasks (as the current "wakeup" does). This is useful
692        for those interested in wake up timings of RT tasks.
693
694  "wakeup_dl"
695
696	Traces and records the max latency that it takes for
697	a SCHED_DEADLINE task to be woken (as the "wakeup" and
698	"wakeup_rt" does).
699
700  "mmiotrace"
701
702	A special tracer that is used to trace binary module.
703	It will trace all the calls that a module makes to the
704	hardware. Everything it writes and reads from the I/O
705	as well.
706
707  "branch"
708
709	This tracer can be configured when tracing likely/unlikely
710	calls within the kernel. It will trace when a likely and
711	unlikely branch is hit and if it was correct in its prediction
712	of being correct.
713
714  "nop"
715
716	This is the "trace nothing" tracer. To remove all
717	tracers from tracing simply echo "nop" into
718	current_tracer.
719
720
721Examples of using the tracer
722----------------------------
723
724Here are typical examples of using the tracers when controlling
725them only with the tracefs interface (without using any
726user-land utilities).
727
728Output format:
729--------------
730
731Here is an example of the output format of the file "trace"::
732
733  # tracer: function
734  #
735  # entries-in-buffer/entries-written: 140080/250280   #P:4
736  #
737  #                              _-----=> irqs-off
738  #                             / _----=> need-resched
739  #                            | / _---=> hardirq/softirq
740  #                            || / _--=> preempt-depth
741  #                            ||| /     delay
742  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
743  #              | |       |   ||||       |         |
744              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
745              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
746              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
747              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
748              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
749              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
750              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
751              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
752              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
753              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
754              ....
755
756A header is printed with the tracer name that is represented by
757the trace. In this case the tracer is "function". Then it shows the
758number of events in the buffer as well as the total number of entries
759that were written. The difference is the number of entries that were
760lost due to the buffer filling up (250280 - 140080 = 110200 events
761lost).
762
763The header explains the content of the events. Task name "bash", the task
764PID "1977", the CPU that it was running on "000", the latency format
765(explained below), the timestamp in <secs>.<usecs> format, the
766function name that was traced "sys_close" and the parent function that
767called this function "system_call_fastpath". The timestamp is the time
768at which the function was entered.
769
770Latency trace format
771--------------------
772
773When the latency-format option is enabled or when one of the latency
774tracers is set, the trace file gives somewhat more information to see
775why a latency happened. Here is a typical trace::
776
777  # tracer: irqsoff
778  #
779  # irqsoff latency trace v1.1.5 on 3.8.0-test+
780  # --------------------------------------------------------------------
781  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
782  #    -----------------
783  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
784  #    -----------------
785  #  => started at: __lock_task_sighand
786  #  => ended at:   _raw_spin_unlock_irqrestore
787  #
788  #
789  #                  _------=> CPU#
790  #                 / _-----=> irqs-off
791  #                | / _----=> need-resched
792  #                || / _---=> hardirq/softirq
793  #                ||| / _--=> preempt-depth
794  #                |||| /     delay
795  #  cmd     pid   ||||| time  |   caller
796  #     \   /      |||||  \    |   /
797        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
798        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
799        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
800        ps-6143    2d..1  306us : <stack trace>
801   => trace_hardirqs_on_caller
802   => trace_hardirqs_on
803   => _raw_spin_unlock_irqrestore
804   => do_task_stat
805   => proc_tgid_stat
806   => proc_single_show
807   => seq_read
808   => vfs_read
809   => sys_read
810   => system_call_fastpath
811
812
813This shows that the current tracer is "irqsoff" tracing the time
814for which interrupts were disabled. It gives the trace version (which
815never changes) and the version of the kernel upon which this was executed on
816(3.8). Then it displays the max latency in microseconds (259 us). The number
817of trace entries displayed and the total number (both are four: #4/4).
818VP, KP, SP, and HP are always zero and are reserved for later use.
819#P is the number of online CPUs (#P:4).
820
821The task is the process that was running when the latency
822occurred. (ps pid: 6143).
823
824The start and stop (the functions in which the interrupts were
825disabled and enabled respectively) that caused the latencies:
826
827  - __lock_task_sighand is where the interrupts were disabled.
828  - _raw_spin_unlock_irqrestore is where they were enabled again.
829
830The next lines after the header are the trace itself. The header
831explains which is which.
832
833  cmd: The name of the process in the trace.
834
835  pid: The PID of that process.
836
837  CPU#: The CPU which the process was running on.
838
839  irqs-off: 'd' interrupts are disabled. '.' otherwise.
840	.. caution:: If the architecture does not support a way to
841		read the irq flags variable, an 'X' will always
842		be printed here.
843
844  need-resched:
845	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
846	- 'n' only TIF_NEED_RESCHED is set,
847	- 'p' only PREEMPT_NEED_RESCHED is set,
848	- '.' otherwise.
849
850  hardirq/softirq:
851	- 'Z' - NMI occurred inside a hardirq
852	- 'z' - NMI is running
853	- 'H' - hard irq occurred inside a softirq.
854	- 'h' - hard irq is running
855	- 's' - soft irq is running
856	- '.' - normal context.
857
858  preempt-depth: The level of preempt_disabled
859
860The above is mostly meaningful for kernel developers.
861
862  time:
863	When the latency-format option is enabled, the trace file
864	output includes a timestamp relative to the start of the
865	trace. This differs from the output when latency-format
866	is disabled, which includes an absolute timestamp.
867
868  delay:
869	This is just to help catch your eye a bit better. And
870	needs to be fixed to be only relative to the same CPU.
871	The marks are determined by the difference between this
872	current trace and the next trace.
873
874	  - '$' - greater than 1 second
875	  - '@' - greater than 100 milisecond
876	  - '*' - greater than 10 milisecond
877	  - '#' - greater than 1000 microsecond
878	  - '!' - greater than 100 microsecond
879	  - '+' - greater than 10 microsecond
880	  - ' ' - less than or equal to 10 microsecond.
881
882  The rest is the same as the 'trace' file.
883
884  Note, the latency tracers will usually end with a back trace
885  to easily find where the latency occurred.
886
887trace_options
888-------------
889
890The trace_options file (or the options directory) is used to control
891what gets printed in the trace output, or manipulate the tracers.
892To see what is available, simply cat the file::
893
894  cat trace_options
895	print-parent
896	nosym-offset
897	nosym-addr
898	noverbose
899	noraw
900	nohex
901	nobin
902	noblock
903	trace_printk
904	annotate
905	nouserstacktrace
906	nosym-userobj
907	noprintk-msg-only
908	context-info
909	nolatency-format
910	record-cmd
911	norecord-tgid
912	overwrite
913	nodisable_on_free
914	irq-info
915	markers
916	noevent-fork
917	function-trace
918	nofunction-fork
919	nodisplay-graph
920	nostacktrace
921	nobranch
922
923To disable one of the options, echo in the option prepended with
924"no"::
925
926  echo noprint-parent > trace_options
927
928To enable an option, leave off the "no"::
929
930  echo sym-offset > trace_options
931
932Here are the available options:
933
934  print-parent
935	On function traces, display the calling (parent)
936	function as well as the function being traced.
937	::
938
939	  print-parent:
940	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
941
942	  noprint-parent:
943	   bash-4000  [01]  1477.606694: simple_strtoul
944
945
946  sym-offset
947	Display not only the function name, but also the
948	offset in the function. For example, instead of
949	seeing just "ktime_get", you will see
950	"ktime_get+0xb/0x20".
951	::
952
953	  sym-offset:
954	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
955
956  sym-addr
957	This will also display the function address as well
958	as the function name.
959	::
960
961	  sym-addr:
962	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
963
964  verbose
965	This deals with the trace file when the
966        latency-format option is enabled.
967	::
968
969	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
970	    (+0.000ms): simple_strtoul (kstrtoul)
971
972  raw
973	This will display raw numbers. This option is best for
974	use with user applications that can translate the raw
975	numbers better than having it done in the kernel.
976
977  hex
978	Similar to raw, but the numbers will be in a hexadecimal format.
979
980  bin
981	This will print out the formats in raw binary.
982
983  block
984	When set, reading trace_pipe will not block when polled.
985
986  trace_printk
987	Can disable trace_printk() from writing into the buffer.
988
989  annotate
990	It is sometimes confusing when the CPU buffers are full
991	and one CPU buffer had a lot of events recently, thus
992	a shorter time frame, were another CPU may have only had
993	a few events, which lets it have older events. When
994	the trace is reported, it shows the oldest events first,
995	and it may look like only one CPU ran (the one with the
996	oldest events). When the annotate option is set, it will
997	display when a new CPU buffer started::
998
999			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1000			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1001			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1002		##### CPU 2 buffer started ####
1003			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1004			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1005			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1006
1007  userstacktrace
1008	This option changes the trace. It records a
1009	stacktrace of the current user space thread after
1010	each trace event.
1011
1012  sym-userobj
1013	when user stacktrace are enabled, look up which
1014	object the address belongs to, and print a
1015	relative address. This is especially useful when
1016	ASLR is on, otherwise you don't get a chance to
1017	resolve the address to object/file/line after
1018	the app is no longer running
1019
1020	The lookup is performed when you read
1021	trace,trace_pipe. Example::
1022
1023		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1024		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1025
1026
1027  printk-msg-only
1028	When set, trace_printk()s will only show the format
1029	and not their parameters (if trace_bprintk() or
1030	trace_bputs() was used to save the trace_printk()).
1031
1032  context-info
1033	Show only the event data. Hides the comm, PID,
1034	timestamp, CPU, and other useful data.
1035
1036  latency-format
1037	This option changes the trace output. When it is enabled,
1038	the trace displays additional information about the
1039	latency, as described in "Latency trace format".
1040
1041  record-cmd
1042	When any event or tracer is enabled, a hook is enabled
1043	in the sched_switch trace point to fill comm cache
1044	with mapped pids and comms. But this may cause some
1045	overhead, and if you only care about pids, and not the
1046	name of the task, disabling this option can lower the
1047	impact of tracing. See "saved_cmdlines".
1048
1049  record-tgid
1050	When any event or tracer is enabled, a hook is enabled
1051	in the sched_switch trace point to fill the cache of
1052	mapped Thread Group IDs (TGID) mapping to pids. See
1053	"saved_tgids".
1054
1055  overwrite
1056	This controls what happens when the trace buffer is
1057	full. If "1" (default), the oldest events are
1058	discarded and overwritten. If "0", then the newest
1059	events are discarded.
1060	(see per_cpu/cpu0/stats for overrun and dropped)
1061
1062  disable_on_free
1063	When the free_buffer is closed, tracing will
1064	stop (tracing_on set to 0).
1065
1066  irq-info
1067	Shows the interrupt, preempt count, need resched data.
1068	When disabled, the trace looks like::
1069
1070		# tracer: function
1071		#
1072		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1073		#
1074		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1075		#              | |       |          |         |
1076			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1077			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1078			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1079
1080
1081  markers
1082	When set, the trace_marker is writable (only by root).
1083	When disabled, the trace_marker will error with EINVAL
1084	on write.
1085
1086  event-fork
1087	When set, tasks with PIDs listed in set_event_pid will have
1088	the PIDs of their children added to set_event_pid when those
1089	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1090	their PIDs will be removed from the file.
1091
1092  function-trace
1093	The latency tracers will enable function tracing
1094	if this option is enabled (default it is). When
1095	it is disabled, the latency tracers do not trace
1096	functions. This keeps the overhead of the tracer down
1097	when performing latency tests.
1098
1099  function-fork
1100	When set, tasks with PIDs listed in set_ftrace_pid will
1101	have the PIDs of their children added to set_ftrace_pid
1102	when those tasks fork. Also, when tasks with PIDs in
1103	set_ftrace_pid exit, their PIDs will be removed from the
1104	file.
1105
1106  display-graph
1107	When set, the latency tracers (irqsoff, wakeup, etc) will
1108	use function graph tracing instead of function tracing.
1109
1110  stacktrace
1111	When set, a stack trace is recorded after any trace event
1112	is recorded.
1113
1114  branch
1115	Enable branch tracing with the tracer. This enables branch
1116	tracer along with the currently set tracer. Enabling this
1117	with the "nop" tracer is the same as just enabling the
1118	"branch" tracer.
1119
1120.. tip:: Some tracers have their own options. They only appear in this
1121       file when the tracer is active. They always appear in the
1122       options directory.
1123
1124
1125Here are the per tracer options:
1126
1127Options for function tracer:
1128
1129  func_stack_trace
1130	When set, a stack trace is recorded after every
1131	function that is recorded. NOTE! Limit the functions
1132	that are recorded before enabling this, with
1133	"set_ftrace_filter" otherwise the system performance
1134	will be critically degraded. Remember to disable
1135	this option before clearing the function filter.
1136
1137Options for function_graph tracer:
1138
1139 Since the function_graph tracer has a slightly different output
1140 it has its own options to control what is displayed.
1141
1142  funcgraph-overrun
1143	When set, the "overrun" of the graph stack is
1144	displayed after each function traced. The
1145	overrun, is when the stack depth of the calls
1146	is greater than what is reserved for each task.
1147	Each task has a fixed array of functions to
1148	trace in the call graph. If the depth of the
1149	calls exceeds that, the function is not traced.
1150	The overrun is the number of functions missed
1151	due to exceeding this array.
1152
1153  funcgraph-cpu
1154	When set, the CPU number of the CPU where the trace
1155	occurred is displayed.
1156
1157  funcgraph-overhead
1158	When set, if the function takes longer than
1159	A certain amount, then a delay marker is
1160	displayed. See "delay" above, under the
1161	header description.
1162
1163  funcgraph-proc
1164	Unlike other tracers, the process' command line
1165	is not displayed by default, but instead only
1166	when a task is traced in and out during a context
1167	switch. Enabling this options has the command
1168	of each process displayed at every line.
1169
1170  funcgraph-duration
1171	At the end of each function (the return)
1172	the duration of the amount of time in the
1173	function is displayed in microseconds.
1174
1175  funcgraph-abstime
1176	When set, the timestamp is displayed at each line.
1177
1178  funcgraph-irqs
1179	When disabled, functions that happen inside an
1180	interrupt will not be traced.
1181
1182  funcgraph-tail
1183	When set, the return event will include the function
1184	that it represents. By default this is off, and
1185	only a closing curly bracket "}" is displayed for
1186	the return of a function.
1187
1188  sleep-time
1189	When running function graph tracer, to include
1190	the time a task schedules out in its function.
1191	When enabled, it will account time the task has been
1192	scheduled out as part of the function call.
1193
1194  graph-time
1195	When running function profiler with function graph tracer,
1196	to include the time to call nested functions. When this is
1197	not set, the time reported for the function will only
1198	include the time the function itself executed for, not the
1199	time for functions that it called.
1200
1201Options for blk tracer:
1202
1203  blk_classic
1204	Shows a more minimalistic output.
1205
1206
1207irqsoff
1208-------
1209
1210When interrupts are disabled, the CPU can not react to any other
1211external event (besides NMIs and SMIs). This prevents the timer
1212interrupt from triggering or the mouse interrupt from letting
1213the kernel know of a new mouse event. The result is a latency
1214with the reaction time.
1215
1216The irqsoff tracer tracks the time for which interrupts are
1217disabled. When a new maximum latency is hit, the tracer saves
1218the trace leading up to that latency point so that every time a
1219new maximum is reached, the old saved trace is discarded and the
1220new trace is saved.
1221
1222To reset the maximum, echo 0 into tracing_max_latency. Here is
1223an example::
1224
1225  # echo 0 > options/function-trace
1226  # echo irqsoff > current_tracer
1227  # echo 1 > tracing_on
1228  # echo 0 > tracing_max_latency
1229  # ls -ltr
1230  [...]
1231  # echo 0 > tracing_on
1232  # cat trace
1233  # tracer: irqsoff
1234  #
1235  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1236  # --------------------------------------------------------------------
1237  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1238  #    -----------------
1239  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1240  #    -----------------
1241  #  => started at: run_timer_softirq
1242  #  => ended at:   run_timer_softirq
1243  #
1244  #
1245  #                  _------=> CPU#
1246  #                 / _-----=> irqs-off
1247  #                | / _----=> need-resched
1248  #                || / _---=> hardirq/softirq
1249  #                ||| / _--=> preempt-depth
1250  #                |||| /     delay
1251  #  cmd     pid   ||||| time  |   caller
1252  #     \   /      |||||  \    |   /
1253    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1254    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1255    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1256    <idle>-0       0dNs3   25us : <stack trace>
1257   => _raw_spin_unlock_irq
1258   => run_timer_softirq
1259   => __do_softirq
1260   => call_softirq
1261   => do_softirq
1262   => irq_exit
1263   => smp_apic_timer_interrupt
1264   => apic_timer_interrupt
1265   => rcu_idle_exit
1266   => cpu_idle
1267   => rest_init
1268   => start_kernel
1269   => x86_64_start_reservations
1270   => x86_64_start_kernel
1271
1272Here we see that that we had a latency of 16 microseconds (which is
1273very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1274interrupts. The difference between the 16 and the displayed
1275timestamp 25us occurred because the clock was incremented
1276between the time of recording the max latency and the time of
1277recording the function that had that latency.
1278
1279Note the above example had function-trace not set. If we set
1280function-trace, we get a much larger output::
1281
1282 with echo 1 > options/function-trace
1283
1284  # tracer: irqsoff
1285  #
1286  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1287  # --------------------------------------------------------------------
1288  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1289  #    -----------------
1290  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1291  #    -----------------
1292  #  => started at: ata_scsi_queuecmd
1293  #  => ended at:   ata_scsi_queuecmd
1294  #
1295  #
1296  #                  _------=> CPU#
1297  #                 / _-----=> irqs-off
1298  #                | / _----=> need-resched
1299  #                || / _---=> hardirq/softirq
1300  #                ||| / _--=> preempt-depth
1301  #                |||| /     delay
1302  #  cmd     pid   ||||| time  |   caller
1303  #     \   /      |||||  \    |   /
1304      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1305      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1306      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1307      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1308      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1309      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1310      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1311      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1312      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1313  [...]
1314      bash-2042    3d..1   67us : delay_tsc <-__delay
1315      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1316      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1317      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1318      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1319      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1320      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1321      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1322      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1323      bash-2042    3d..1  120us : <stack trace>
1324   => _raw_spin_unlock_irqrestore
1325   => ata_scsi_queuecmd
1326   => scsi_dispatch_cmd
1327   => scsi_request_fn
1328   => __blk_run_queue_uncond
1329   => __blk_run_queue
1330   => blk_queue_bio
1331   => generic_make_request
1332   => submit_bio
1333   => submit_bh
1334   => __ext3_get_inode_loc
1335   => ext3_iget
1336   => ext3_lookup
1337   => lookup_real
1338   => __lookup_hash
1339   => walk_component
1340   => lookup_last
1341   => path_lookupat
1342   => filename_lookup
1343   => user_path_at_empty
1344   => user_path_at
1345   => vfs_fstatat
1346   => vfs_stat
1347   => sys_newstat
1348   => system_call_fastpath
1349
1350
1351Here we traced a 71 microsecond latency. But we also see all the
1352functions that were called during that time. Note that by
1353enabling function tracing, we incur an added overhead. This
1354overhead may extend the latency times. But nevertheless, this
1355trace has provided some very helpful debugging information.
1356
1357
1358preemptoff
1359----------
1360
1361When preemption is disabled, we may be able to receive
1362interrupts but the task cannot be preempted and a higher
1363priority task must wait for preemption to be enabled again
1364before it can preempt a lower priority task.
1365
1366The preemptoff tracer traces the places that disable preemption.
1367Like the irqsoff tracer, it records the maximum latency for
1368which preemption was disabled. The control of preemptoff tracer
1369is much like the irqsoff tracer.
1370::
1371
1372  # echo 0 > options/function-trace
1373  # echo preemptoff > current_tracer
1374  # echo 1 > tracing_on
1375  # echo 0 > tracing_max_latency
1376  # ls -ltr
1377  [...]
1378  # echo 0 > tracing_on
1379  # cat trace
1380  # tracer: preemptoff
1381  #
1382  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1383  # --------------------------------------------------------------------
1384  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1385  #    -----------------
1386  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1387  #    -----------------
1388  #  => started at: do_IRQ
1389  #  => ended at:   do_IRQ
1390  #
1391  #
1392  #                  _------=> CPU#
1393  #                 / _-----=> irqs-off
1394  #                | / _----=> need-resched
1395  #                || / _---=> hardirq/softirq
1396  #                ||| / _--=> preempt-depth
1397  #                |||| /     delay
1398  #  cmd     pid   ||||| time  |   caller
1399  #     \   /      |||||  \    |   /
1400      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1401      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1402      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1403      sshd-1991    1d..1   52us : <stack trace>
1404   => sub_preempt_count
1405   => irq_exit
1406   => do_IRQ
1407   => ret_from_intr
1408
1409
1410This has some more changes. Preemption was disabled when an
1411interrupt came in (notice the 'h'), and was enabled on exit.
1412But we also see that interrupts have been disabled when entering
1413the preempt off section and leaving it (the 'd'). We do not know if
1414interrupts were enabled in the mean time or shortly after this
1415was over.
1416::
1417
1418  # tracer: preemptoff
1419  #
1420  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1421  # --------------------------------------------------------------------
1422  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1423  #    -----------------
1424  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1425  #    -----------------
1426  #  => started at: wake_up_new_task
1427  #  => ended at:   task_rq_unlock
1428  #
1429  #
1430  #                  _------=> CPU#
1431  #                 / _-----=> irqs-off
1432  #                | / _----=> need-resched
1433  #                || / _---=> hardirq/softirq
1434  #                ||| / _--=> preempt-depth
1435  #                |||| /     delay
1436  #  cmd     pid   ||||| time  |   caller
1437  #     \   /      |||||  \    |   /
1438      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1439      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1440      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1441      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1442      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1443  [...]
1444      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1445      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1446      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1447      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1448      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1449      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1450      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1451      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1452  [...]
1453      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1454      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1455      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1456      bash-1994    1d..2   36us : do_softirq <-irq_exit
1457      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1458      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1459      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1460      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1461      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1462      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1463  [...]
1464      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1465      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1466      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1467      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1468      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1469      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1470      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1471      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1472      bash-1994    1.N.1  104us : <stack trace>
1473   => sub_preempt_count
1474   => _raw_spin_unlock_irqrestore
1475   => task_rq_unlock
1476   => wake_up_new_task
1477   => do_fork
1478   => sys_clone
1479   => stub_clone
1480
1481
1482The above is an example of the preemptoff trace with
1483function-trace set. Here we see that interrupts were not disabled
1484the entire time. The irq_enter code lets us know that we entered
1485an interrupt 'h'. Before that, the functions being traced still
1486show that it is not in an interrupt, but we can see from the
1487functions themselves that this is not the case.
1488
1489preemptirqsoff
1490--------------
1491
1492Knowing the locations that have interrupts disabled or
1493preemption disabled for the longest times is helpful. But
1494sometimes we would like to know when either preemption and/or
1495interrupts are disabled.
1496
1497Consider the following code::
1498
1499    local_irq_disable();
1500    call_function_with_irqs_off();
1501    preempt_disable();
1502    call_function_with_irqs_and_preemption_off();
1503    local_irq_enable();
1504    call_function_with_preemption_off();
1505    preempt_enable();
1506
1507The irqsoff tracer will record the total length of
1508call_function_with_irqs_off() and
1509call_function_with_irqs_and_preemption_off().
1510
1511The preemptoff tracer will record the total length of
1512call_function_with_irqs_and_preemption_off() and
1513call_function_with_preemption_off().
1514
1515But neither will trace the time that interrupts and/or
1516preemption is disabled. This total time is the time that we can
1517not schedule. To record this time, use the preemptirqsoff
1518tracer.
1519
1520Again, using this trace is much like the irqsoff and preemptoff
1521tracers.
1522::
1523
1524  # echo 0 > options/function-trace
1525  # echo preemptirqsoff > current_tracer
1526  # echo 1 > tracing_on
1527  # echo 0 > tracing_max_latency
1528  # ls -ltr
1529  [...]
1530  # echo 0 > tracing_on
1531  # cat trace
1532  # tracer: preemptirqsoff
1533  #
1534  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1535  # --------------------------------------------------------------------
1536  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1537  #    -----------------
1538  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1539  #    -----------------
1540  #  => started at: ata_scsi_queuecmd
1541  #  => ended at:   ata_scsi_queuecmd
1542  #
1543  #
1544  #                  _------=> CPU#
1545  #                 / _-----=> irqs-off
1546  #                | / _----=> need-resched
1547  #                || / _---=> hardirq/softirq
1548  #                ||| / _--=> preempt-depth
1549  #                |||| /     delay
1550  #  cmd     pid   ||||| time  |   caller
1551  #     \   /      |||||  \    |   /
1552        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1553        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1554        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1555        ls-2230    3...1  111us : <stack trace>
1556   => sub_preempt_count
1557   => _raw_spin_unlock_irqrestore
1558   => ata_scsi_queuecmd
1559   => scsi_dispatch_cmd
1560   => scsi_request_fn
1561   => __blk_run_queue_uncond
1562   => __blk_run_queue
1563   => blk_queue_bio
1564   => generic_make_request
1565   => submit_bio
1566   => submit_bh
1567   => ext3_bread
1568   => ext3_dir_bread
1569   => htree_dirblock_to_tree
1570   => ext3_htree_fill_tree
1571   => ext3_readdir
1572   => vfs_readdir
1573   => sys_getdents
1574   => system_call_fastpath
1575
1576
1577The trace_hardirqs_off_thunk is called from assembly on x86 when
1578interrupts are disabled in the assembly code. Without the
1579function tracing, we do not know if interrupts were enabled
1580within the preemption points. We do see that it started with
1581preemption enabled.
1582
1583Here is a trace with function-trace set::
1584
1585  # tracer: preemptirqsoff
1586  #
1587  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1588  # --------------------------------------------------------------------
1589  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1590  #    -----------------
1591  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1592  #    -----------------
1593  #  => started at: schedule
1594  #  => ended at:   mutex_unlock
1595  #
1596  #
1597  #                  _------=> CPU#
1598  #                 / _-----=> irqs-off
1599  #                | / _----=> need-resched
1600  #                || / _---=> hardirq/softirq
1601  #                ||| / _--=> preempt-depth
1602  #                |||| /     delay
1603  #  cmd     pid   ||||| time  |   caller
1604  #     \   /      |||||  \    |   /
1605  kworker/-59      3...1    0us : __schedule <-schedule
1606  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1607  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1608  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1609  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1610  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1611  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1612  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1613  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1614  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1615  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1616  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1617  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1618  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1619  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1620  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1621  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1622  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1623  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1624  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1625  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1626  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1627  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1628  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1629  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1630        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1631        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1632        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1633        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1634        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1635        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1636        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1637  [...]
1638        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1639        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1640        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1641        ls-2269    3d..3   21us : do_softirq <-irq_exit
1642        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1643        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1644        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1645        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1646        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1647        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1648        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1649  [...]
1650        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1651        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1652        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1653        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1654        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1655        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1656  [...]
1657        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1658        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1659        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1660        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1661        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1662        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1663        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1664        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1665        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1666        ls-2269    3d...  186us : <stack trace>
1667   => __mutex_unlock_slowpath
1668   => mutex_unlock
1669   => process_output
1670   => n_tty_write
1671   => tty_write
1672   => vfs_write
1673   => sys_write
1674   => system_call_fastpath
1675
1676This is an interesting trace. It started with kworker running and
1677scheduling out and ls taking over. But as soon as ls released the
1678rq lock and enabled interrupts (but not preemption) an interrupt
1679triggered. When the interrupt finished, it started running softirqs.
1680But while the softirq was running, another interrupt triggered.
1681When an interrupt is running inside a softirq, the annotation is 'H'.
1682
1683
1684wakeup
1685------
1686
1687One common case that people are interested in tracing is the
1688time it takes for a task that is woken to actually wake up.
1689Now for non Real-Time tasks, this can be arbitrary. But tracing
1690it none the less can be interesting.
1691
1692Without function tracing::
1693
1694  # echo 0 > options/function-trace
1695  # echo wakeup > current_tracer
1696  # echo 1 > tracing_on
1697  # echo 0 > tracing_max_latency
1698  # chrt -f 5 sleep 1
1699  # echo 0 > tracing_on
1700  # cat trace
1701  # tracer: wakeup
1702  #
1703  # wakeup latency trace v1.1.5 on 3.8.0-test+
1704  # --------------------------------------------------------------------
1705  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1706  #    -----------------
1707  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1708  #    -----------------
1709  #
1710  #                  _------=> CPU#
1711  #                 / _-----=> irqs-off
1712  #                | / _----=> need-resched
1713  #                || / _---=> hardirq/softirq
1714  #                ||| / _--=> preempt-depth
1715  #                |||| /     delay
1716  #  cmd     pid   ||||| time  |   caller
1717  #     \   /      |||||  \    |   /
1718    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1719    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1720    <idle>-0       3d..3   15us : __schedule <-schedule
1721    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1722
1723The tracer only traces the highest priority task in the system
1724to avoid tracing the normal circumstances. Here we see that
1725the kworker with a nice priority of -20 (not very nice), took
1726just 15 microseconds from the time it woke up, to the time it
1727ran.
1728
1729Non Real-Time tasks are not that interesting. A more interesting
1730trace is to concentrate only on Real-Time tasks.
1731
1732wakeup_rt
1733---------
1734
1735In a Real-Time environment it is very important to know the
1736wakeup time it takes for the highest priority task that is woken
1737up to the time that it executes. This is also known as "schedule
1738latency". I stress the point that this is about RT tasks. It is
1739also important to know the scheduling latency of non-RT tasks,
1740but the average schedule latency is better for non-RT tasks.
1741Tools like LatencyTop are more appropriate for such
1742measurements.
1743
1744Real-Time environments are interested in the worst case latency.
1745That is the longest latency it takes for something to happen,
1746and not the average. We can have a very fast scheduler that may
1747only have a large latency once in a while, but that would not
1748work well with Real-Time tasks.  The wakeup_rt tracer was designed
1749to record the worst case wakeups of RT tasks. Non-RT tasks are
1750not recorded because the tracer only records one worst case and
1751tracing non-RT tasks that are unpredictable will overwrite the
1752worst case latency of RT tasks (just run the normal wakeup
1753tracer for a while to see that effect).
1754
1755Since this tracer only deals with RT tasks, we will run this
1756slightly differently than we did with the previous tracers.
1757Instead of performing an 'ls', we will run 'sleep 1' under
1758'chrt' which changes the priority of the task.
1759::
1760
1761  # echo 0 > options/function-trace
1762  # echo wakeup_rt > current_tracer
1763  # echo 1 > tracing_on
1764  # echo 0 > tracing_max_latency
1765  # chrt -f 5 sleep 1
1766  # echo 0 > tracing_on
1767  # cat trace
1768  # tracer: wakeup
1769  #
1770  # tracer: wakeup_rt
1771  #
1772  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1773  # --------------------------------------------------------------------
1774  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1775  #    -----------------
1776  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1777  #    -----------------
1778  #
1779  #                  _------=> CPU#
1780  #                 / _-----=> irqs-off
1781  #                | / _----=> need-resched
1782  #                || / _---=> hardirq/softirq
1783  #                ||| / _--=> preempt-depth
1784  #                |||| /     delay
1785  #  cmd     pid   ||||| time  |   caller
1786  #     \   /      |||||  \    |   /
1787    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1788    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1789    <idle>-0       3d..3    5us : __schedule <-schedule
1790    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1791
1792
1793Running this on an idle system, we see that it only took 5 microseconds
1794to perform the task switch.  Note, since the trace point in the schedule
1795is before the actual "switch", we stop the tracing when the recorded task
1796is about to schedule in. This may change if we add a new marker at the
1797end of the scheduler.
1798
1799Notice that the recorded task is 'sleep' with the PID of 2389
1800and it has an rt_prio of 5. This priority is user-space priority
1801and not the internal kernel priority. The policy is 1 for
1802SCHED_FIFO and 2 for SCHED_RR.
1803
1804Note, that the trace data shows the internal priority (99 - rtprio).
1805::
1806
1807  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1808
1809The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1810and in the running state 'R'. The sleep task was scheduled in with
18112389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1812and it too is in the running state.
1813
1814Doing the same with chrt -r 5 and function-trace set.
1815::
1816
1817  echo 1 > options/function-trace
1818
1819  # tracer: wakeup_rt
1820  #
1821  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1822  # --------------------------------------------------------------------
1823  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1824  #    -----------------
1825  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1826  #    -----------------
1827  #
1828  #                  _------=> CPU#
1829  #                 / _-----=> irqs-off
1830  #                | / _----=> need-resched
1831  #                || / _---=> hardirq/softirq
1832  #                ||| / _--=> preempt-depth
1833  #                |||| /     delay
1834  #  cmd     pid   ||||| time  |   caller
1835  #     \   /      |||||  \    |   /
1836    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1837    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1838    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1839    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1840    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1841    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1842    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1843    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1844    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1845    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1846    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1847    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1848    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1849    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1850    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1851    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1852    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1853    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1854    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1855    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1856    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1857    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1858    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1859    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1860    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1861    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1862    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1863    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1864    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1865    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1866    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1867    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
1868    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1869    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
1870    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
1871    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
1872    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1873    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1874    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1875    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1876    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1877    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1878    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1879    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1880    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1881    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1882    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1883    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1884    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1885    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1886    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1887    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1888    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1889    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1890    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1891    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1892    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1893    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1894    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1895    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1896    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1897    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1898    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1899    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1900    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1901    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1902    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1903    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1904    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1905    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1906    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1907    <idle>-0       3.N..   25us : schedule <-cpu_idle
1908    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1909    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1910    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1911    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1912    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1913    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1914    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1915    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1916    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1917    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1918    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1919    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1920    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1921
1922This isn't that big of a trace, even with function tracing enabled,
1923so I included the entire trace.
1924
1925The interrupt went off while when the system was idle. Somewhere
1926before task_woken_rt() was called, the NEED_RESCHED flag was set,
1927this is indicated by the first occurrence of the 'N' flag.
1928
1929Latency tracing and events
1930--------------------------
1931As function tracing can induce a much larger latency, but without
1932seeing what happens within the latency it is hard to know what
1933caused it. There is a middle ground, and that is with enabling
1934events.
1935::
1936
1937  # echo 0 > options/function-trace
1938  # echo wakeup_rt > current_tracer
1939  # echo 1 > events/enable
1940  # echo 1 > tracing_on
1941  # echo 0 > tracing_max_latency
1942  # chrt -f 5 sleep 1
1943  # echo 0 > tracing_on
1944  # cat trace
1945  # tracer: wakeup_rt
1946  #
1947  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1948  # --------------------------------------------------------------------
1949  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1950  #    -----------------
1951  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1952  #    -----------------
1953  #
1954  #                  _------=> CPU#
1955  #                 / _-----=> irqs-off
1956  #                | / _----=> need-resched
1957  #                || / _---=> hardirq/softirq
1958  #                ||| / _--=> preempt-depth
1959  #                |||| /     delay
1960  #  cmd     pid   ||||| time  |   caller
1961  #     \   /      |||||  \    |   /
1962    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
1963    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1964    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1965    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1966    <idle>-0       2.N.2    2us : power_end: cpu_id=2
1967    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
1968    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1969    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1970    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
1971    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
1972    <idle>-0       2d..3    6us : __schedule <-schedule
1973    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
1974
1975
1976Hardware Latency Detector
1977-------------------------
1978
1979The hardware latency detector is executed by enabling the "hwlat" tracer.
1980
1981NOTE, this tracer will affect the performance of the system as it will
1982periodically make a CPU constantly busy with interrupts disabled.
1983::
1984
1985  # echo hwlat > current_tracer
1986  # sleep 100
1987  # cat trace
1988  # tracer: hwlat
1989  #
1990  #                              _-----=> irqs-off
1991  #                             / _----=> need-resched
1992  #                            | / _---=> hardirq/softirq
1993  #                            || / _--=> preempt-depth
1994  #                            ||| /     delay
1995  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
1996  #              | |       |   ||||       |         |
1997             <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
1998             <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
1999             <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
2000             <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
2001             <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
2002             <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1
2003
2004
2005The above output is somewhat the same in the header. All events will have
2006interrupts disabled 'd'. Under the FUNCTION title there is:
2007
2008 #1
2009	This is the count of events recorded that were greater than the
2010	tracing_threshold (See below).
2011
2012 inner/outer(us):   12/14
2013
2014      This shows two numbers as "inner latency" and "outer latency". The test
2015      runs in a loop checking a timestamp twice. The latency detected within
2016      the two timestamps is the "inner latency" and the latency detected
2017      after the previous timestamp and the next timestamp in the loop is
2018      the "outer latency".
2019
2020 ts:1499801089.066141940
2021
2022      The absolute timestamp that the event happened.
2023
2024 nmi-total:4 nmi-count:1
2025
2026      On architectures that support it, if an NMI comes in during the
2027      test, the time spent in NMI is reported in "nmi-total" (in
2028      microseconds).
2029
2030      All architectures that have NMIs will show the "nmi-count" if an
2031      NMI comes in during the test.
2032
2033hwlat files:
2034
2035  tracing_threshold
2036	This gets automatically set to "10" to represent 10
2037	microseconds. This is the threshold of latency that
2038	needs to be detected before the trace will be recorded.
2039
2040	Note, when hwlat tracer is finished (another tracer is
2041	written into "current_tracer"), the original value for
2042	tracing_threshold is placed back into this file.
2043
2044  hwlat_detector/width
2045	The length of time the test runs with interrupts disabled.
2046
2047  hwlat_detector/window
2048	The length of time of the window which the test
2049	runs. That is, the test will run for "width"
2050	microseconds per "window" microseconds
2051
2052  tracing_cpumask
2053	When the test is started. A kernel thread is created that
2054	runs the test. This thread will alternate between CPUs
2055	listed in the tracing_cpumask between each period
2056	(one "window"). To limit the test to specific CPUs
2057	set the mask in this file to only the CPUs that the test
2058	should run on.
2059
2060function
2061--------
2062
2063This tracer is the function tracer. Enabling the function tracer
2064can be done from the debug file system. Make sure the
2065ftrace_enabled is set; otherwise this tracer is a nop.
2066See the "ftrace_enabled" section below.
2067::
2068
2069  # sysctl kernel.ftrace_enabled=1
2070  # echo function > current_tracer
2071  # echo 1 > tracing_on
2072  # usleep 1
2073  # echo 0 > tracing_on
2074  # cat trace
2075  # tracer: function
2076  #
2077  # entries-in-buffer/entries-written: 24799/24799   #P:4
2078  #
2079  #                              _-----=> irqs-off
2080  #                             / _----=> need-resched
2081  #                            | / _---=> hardirq/softirq
2082  #                            || / _--=> preempt-depth
2083  #                            ||| /     delay
2084  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2085  #              | |       |   ||||       |         |
2086              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2087              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2088              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2089              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2090              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2091              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2092              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2093              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2094  [...]
2095
2096
2097Note: function tracer uses ring buffers to store the above
2098entries. The newest data may overwrite the oldest data.
2099Sometimes using echo to stop the trace is not sufficient because
2100the tracing could have overwritten the data that you wanted to
2101record. For this reason, it is sometimes better to disable
2102tracing directly from a program. This allows you to stop the
2103tracing at the point that you hit the part that you are
2104interested in. To disable the tracing directly from a C program,
2105something like following code snippet can be used::
2106
2107	int trace_fd;
2108	[...]
2109	int main(int argc, char *argv[]) {
2110		[...]
2111		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2112		[...]
2113		if (condition_hit()) {
2114			write(trace_fd, "0", 1);
2115		}
2116		[...]
2117	}
2118
2119
2120Single thread tracing
2121---------------------
2122
2123By writing into set_ftrace_pid you can trace a
2124single thread. For example::
2125
2126  # cat set_ftrace_pid
2127  no pid
2128  # echo 3111 > set_ftrace_pid
2129  # cat set_ftrace_pid
2130  3111
2131  # echo function > current_tracer
2132  # cat trace | head
2133  # tracer: function
2134  #
2135  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2136  #              | |       |          |         |
2137      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2138      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2139      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2140      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2141      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2142      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2143  # echo > set_ftrace_pid
2144  # cat trace |head
2145  # tracer: function
2146  #
2147  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2148  #              | |       |          |         |
2149  ##### CPU 3 buffer started ####
2150      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2151      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2152      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2153      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2154      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2155
2156If you want to trace a function when executing, you could use
2157something like this simple program.
2158::
2159
2160	#include <stdio.h>
2161	#include <stdlib.h>
2162	#include <sys/types.h>
2163	#include <sys/stat.h>
2164	#include <fcntl.h>
2165	#include <unistd.h>
2166	#include <string.h>
2167
2168	#define _STR(x) #x
2169	#define STR(x) _STR(x)
2170	#define MAX_PATH 256
2171
2172	const char *find_tracefs(void)
2173	{
2174	       static char tracefs[MAX_PATH+1];
2175	       static int tracefs_found;
2176	       char type[100];
2177	       FILE *fp;
2178
2179	       if (tracefs_found)
2180		       return tracefs;
2181
2182	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2183		       perror("/proc/mounts");
2184		       return NULL;
2185	       }
2186
2187	       while (fscanf(fp, "%*s %"
2188		             STR(MAX_PATH)
2189		             "s %99s %*s %*d %*d\n",
2190		             tracefs, type) == 2) {
2191		       if (strcmp(type, "tracefs") == 0)
2192		               break;
2193	       }
2194	       fclose(fp);
2195
2196	       if (strcmp(type, "tracefs") != 0) {
2197		       fprintf(stderr, "tracefs not mounted");
2198		       return NULL;
2199	       }
2200
2201	       strcat(tracefs, "/tracing/");
2202	       tracefs_found = 1;
2203
2204	       return tracefs;
2205	}
2206
2207	const char *tracing_file(const char *file_name)
2208	{
2209	       static char trace_file[MAX_PATH+1];
2210	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2211	       return trace_file;
2212	}
2213
2214	int main (int argc, char **argv)
2215	{
2216		if (argc < 1)
2217		        exit(-1);
2218
2219		if (fork() > 0) {
2220		        int fd, ffd;
2221		        char line[64];
2222		        int s;
2223
2224		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2225		        if (ffd < 0)
2226		                exit(-1);
2227		        write(ffd, "nop", 3);
2228
2229		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2230		        s = sprintf(line, "%d\n", getpid());
2231		        write(fd, line, s);
2232
2233		        write(ffd, "function", 8);
2234
2235		        close(fd);
2236		        close(ffd);
2237
2238		        execvp(argv[1], argv+1);
2239		}
2240
2241		return 0;
2242	}
2243
2244Or this simple script!
2245::
2246
2247  #!/bin/bash
2248
2249  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2250  echo nop > $tracefs/tracing/current_tracer
2251  echo 0 > $tracefs/tracing/tracing_on
2252  echo $$ > $tracefs/tracing/set_ftrace_pid
2253  echo function > $tracefs/tracing/current_tracer
2254  echo 1 > $tracefs/tracing/tracing_on
2255  exec "$@"
2256
2257
2258function graph tracer
2259---------------------------
2260
2261This tracer is similar to the function tracer except that it
2262probes a function on its entry and its exit. This is done by
2263using a dynamically allocated stack of return addresses in each
2264task_struct. On function entry the tracer overwrites the return
2265address of each function traced to set a custom probe. Thus the
2266original return address is stored on the stack of return address
2267in the task_struct.
2268
2269Probing on both ends of a function leads to special features
2270such as:
2271
2272- measure of a function's time execution
2273- having a reliable call stack to draw function calls graph
2274
2275This tracer is useful in several situations:
2276
2277- you want to find the reason of a strange kernel behavior and
2278  need to see what happens in detail on any areas (or specific
2279  ones).
2280
2281- you are experiencing weird latencies but it's difficult to
2282  find its origin.
2283
2284- you want to find quickly which path is taken by a specific
2285  function
2286
2287- you just want to peek inside a working kernel and want to see
2288  what happens there.
2289
2290::
2291
2292  # tracer: function_graph
2293  #
2294  # CPU  DURATION                  FUNCTION CALLS
2295  # |     |   |                     |   |   |   |
2296
2297   0)               |  sys_open() {
2298   0)               |    do_sys_open() {
2299   0)               |      getname() {
2300   0)               |        kmem_cache_alloc() {
2301   0)   1.382 us    |          __might_sleep();
2302   0)   2.478 us    |        }
2303   0)               |        strncpy_from_user() {
2304   0)               |          might_fault() {
2305   0)   1.389 us    |            __might_sleep();
2306   0)   2.553 us    |          }
2307   0)   3.807 us    |        }
2308   0)   7.876 us    |      }
2309   0)               |      alloc_fd() {
2310   0)   0.668 us    |        _spin_lock();
2311   0)   0.570 us    |        expand_files();
2312   0)   0.586 us    |        _spin_unlock();
2313
2314
2315There are several columns that can be dynamically
2316enabled/disabled. You can use every combination of options you
2317want, depending on your needs.
2318
2319- The cpu number on which the function executed is default
2320  enabled.  It is sometimes better to only trace one cpu (see
2321  tracing_cpu_mask file) or you might sometimes see unordered
2322  function calls while cpu tracing switch.
2323
2324	- hide: echo nofuncgraph-cpu > trace_options
2325	- show: echo funcgraph-cpu > trace_options
2326
2327- The duration (function's time of execution) is displayed on
2328  the closing bracket line of a function or on the same line
2329  than the current function in case of a leaf one. It is default
2330  enabled.
2331
2332	- hide: echo nofuncgraph-duration > trace_options
2333	- show: echo funcgraph-duration > trace_options
2334
2335- The overhead field precedes the duration field in case of
2336  reached duration thresholds.
2337
2338	- hide: echo nofuncgraph-overhead > trace_options
2339	- show: echo funcgraph-overhead > trace_options
2340	- depends on: funcgraph-duration
2341
2342  ie::
2343
2344    3) # 1837.709 us |          } /* __switch_to */
2345    3)               |          finish_task_switch() {
2346    3)   0.313 us    |            _raw_spin_unlock_irq();
2347    3)   3.177 us    |          }
2348    3) # 1889.063 us |        } /* __schedule */
2349    3) ! 140.417 us  |      } /* __schedule */
2350    3) # 2034.948 us |    } /* schedule */
2351    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2352
2353    [...]
2354
2355    1)   0.260 us    |              msecs_to_jiffies();
2356    1)   0.313 us    |              __rcu_read_unlock();
2357    1) + 61.770 us   |            }
2358    1) + 64.479 us   |          }
2359    1)   0.313 us    |          rcu_bh_qs();
2360    1)   0.313 us    |          __local_bh_enable();
2361    1) ! 217.240 us  |        }
2362    1)   0.365 us    |        idle_cpu();
2363    1)               |        rcu_irq_exit() {
2364    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2365    1)   3.125 us    |        }
2366    1) ! 227.812 us  |      }
2367    1) ! 457.395 us  |    }
2368    1) @ 119760.2 us |  }
2369
2370    [...]
2371
2372    2)               |    handle_IPI() {
2373    1)   6.979 us    |                  }
2374    2)   0.417 us    |      scheduler_ipi();
2375    1)   9.791 us    |                }
2376    1) + 12.917 us   |              }
2377    2)   3.490 us    |    }
2378    1) + 15.729 us   |            }
2379    1) + 18.542 us   |          }
2380    2) $ 3594274 us  |  }
2381
2382Flags::
2383
2384  + means that the function exceeded 10 usecs.
2385  ! means that the function exceeded 100 usecs.
2386  # means that the function exceeded 1000 usecs.
2387  * means that the function exceeded 10 msecs.
2388  @ means that the function exceeded 100 msecs.
2389  $ means that the function exceeded 1 sec.
2390
2391
2392- The task/pid field displays the thread cmdline and pid which
2393  executed the function. It is default disabled.
2394
2395	- hide: echo nofuncgraph-proc > trace_options
2396	- show: echo funcgraph-proc > trace_options
2397
2398  ie::
2399
2400    # tracer: function_graph
2401    #
2402    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2403    # |    |    |           |   |                     |   |   |   |
2404    0)    sh-4802     |               |                  d_free() {
2405    0)    sh-4802     |               |                    call_rcu() {
2406    0)    sh-4802     |               |                      __call_rcu() {
2407    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2408    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2409    0)    sh-4802     |   2.899 us    |                      }
2410    0)    sh-4802     |   4.040 us    |                    }
2411    0)    sh-4802     |   5.151 us    |                  }
2412    0)    sh-4802     | + 49.370 us   |                }
2413
2414
2415- The absolute time field is an absolute timestamp given by the
2416  system clock since it started. A snapshot of this time is
2417  given on each entry/exit of functions
2418
2419	- hide: echo nofuncgraph-abstime > trace_options
2420	- show: echo funcgraph-abstime > trace_options
2421
2422  ie::
2423
2424    #
2425    #      TIME       CPU  DURATION                  FUNCTION CALLS
2426    #       |         |     |   |                     |   |   |   |
2427    360.774522 |   1)   0.541 us    |                                          }
2428    360.774522 |   1)   4.663 us    |                                        }
2429    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2430    360.774524 |   1)   6.796 us    |                                      }
2431    360.774524 |   1)   7.952 us    |                                    }
2432    360.774525 |   1)   9.063 us    |                                  }
2433    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2434    360.774527 |   1)   0.578 us    |                                  __brelse();
2435    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2436    360.774528 |   1)               |                                    unlock_buffer() {
2437    360.774529 |   1)               |                                      wake_up_bit() {
2438    360.774529 |   1)               |                                        bit_waitqueue() {
2439    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2440
2441
2442The function name is always displayed after the closing bracket
2443for a function if the start of that function is not in the
2444trace buffer.
2445
2446Display of the function name after the closing bracket may be
2447enabled for functions whose start is in the trace buffer,
2448allowing easier searching with grep for function durations.
2449It is default disabled.
2450
2451	- hide: echo nofuncgraph-tail > trace_options
2452	- show: echo funcgraph-tail > trace_options
2453
2454  Example with nofuncgraph-tail (default)::
2455
2456    0)               |      putname() {
2457    0)               |        kmem_cache_free() {
2458    0)   0.518 us    |          __phys_addr();
2459    0)   1.757 us    |        }
2460    0)   2.861 us    |      }
2461
2462  Example with funcgraph-tail::
2463
2464    0)               |      putname() {
2465    0)               |        kmem_cache_free() {
2466    0)   0.518 us    |          __phys_addr();
2467    0)   1.757 us    |        } /* kmem_cache_free() */
2468    0)   2.861 us    |      } /* putname() */
2469
2470You can put some comments on specific functions by using
2471trace_printk() For example, if you want to put a comment inside
2472the __might_sleep() function, you just have to include
2473<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2474
2475	trace_printk("I'm a comment!\n")
2476
2477will produce::
2478
2479   1)               |             __might_sleep() {
2480   1)               |                /* I'm a comment! */
2481   1)   1.449 us    |             }
2482
2483
2484You might find other useful features for this tracer in the
2485following "dynamic ftrace" section such as tracing only specific
2486functions or tasks.
2487
2488dynamic ftrace
2489--------------
2490
2491If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2492virtually no overhead when function tracing is disabled. The way
2493this works is the mcount function call (placed at the start of
2494every kernel function, produced by the -pg switch in gcc),
2495starts of pointing to a simple return. (Enabling FTRACE will
2496include the -pg switch in the compiling of the kernel.)
2497
2498At compile time every C file object is run through the
2499recordmcount program (located in the scripts directory). This
2500program will parse the ELF headers in the C object to find all
2501the locations in the .text section that call mcount. Starting
2502with gcc verson 4.6, the -mfentry has been added for x86, which
2503calls "__fentry__" instead of "mcount". Which is called before
2504the creation of the stack frame.
2505
2506Note, not all sections are traced. They may be prevented by either
2507a notrace, or blocked another way and all inline functions are not
2508traced. Check the "available_filter_functions" file to see what functions
2509can be traced.
2510
2511A section called "__mcount_loc" is created that holds
2512references to all the mcount/fentry call sites in the .text section.
2513The recordmcount program re-links this section back into the
2514original object. The final linking stage of the kernel will add all these
2515references into a single table.
2516
2517On boot up, before SMP is initialized, the dynamic ftrace code
2518scans this table and updates all the locations into nops. It
2519also records the locations, which are added to the
2520available_filter_functions list.  Modules are processed as they
2521are loaded and before they are executed.  When a module is
2522unloaded, it also removes its functions from the ftrace function
2523list. This is automatic in the module unload code, and the
2524module author does not need to worry about it.
2525
2526When tracing is enabled, the process of modifying the function
2527tracepoints is dependent on architecture. The old method is to use
2528kstop_machine to prevent races with the CPUs executing code being
2529modified (which can cause the CPU to do undesirable things, especially
2530if the modified code crosses cache (or page) boundaries), and the nops are
2531patched back to calls. But this time, they do not call mcount
2532(which is just a function stub). They now call into the ftrace
2533infrastructure.
2534
2535The new method of modifying the function tracepoints is to place
2536a breakpoint at the location to be modified, sync all CPUs, modify
2537the rest of the instruction not covered by the breakpoint. Sync
2538all CPUs again, and then remove the breakpoint with the finished
2539version to the ftrace call site.
2540
2541Some archs do not even need to monkey around with the synchronization,
2542and can just slap the new code on top of the old without any
2543problems with other CPUs executing it at the same time.
2544
2545One special side-effect to the recording of the functions being
2546traced is that we can now selectively choose which functions we
2547wish to trace and which ones we want the mcount calls to remain
2548as nops.
2549
2550Two files are used, one for enabling and one for disabling the
2551tracing of specified functions. They are:
2552
2553  set_ftrace_filter
2554
2555and
2556
2557  set_ftrace_notrace
2558
2559A list of available functions that you can add to these files is
2560listed in:
2561
2562   available_filter_functions
2563
2564::
2565
2566  # cat available_filter_functions
2567  put_prev_task_idle
2568  kmem_cache_create
2569  pick_next_task_rt
2570  get_online_cpus
2571  pick_next_task_fair
2572  mutex_lock
2573  [...]
2574
2575If I am only interested in sys_nanosleep and hrtimer_interrupt::
2576
2577  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2578  # echo function > current_tracer
2579  # echo 1 > tracing_on
2580  # usleep 1
2581  # echo 0 > tracing_on
2582  # cat trace
2583  # tracer: function
2584  #
2585  # entries-in-buffer/entries-written: 5/5   #P:4
2586  #
2587  #                              _-----=> irqs-off
2588  #                             / _----=> need-resched
2589  #                            | / _---=> hardirq/softirq
2590  #                            || / _--=> preempt-depth
2591  #                            ||| /     delay
2592  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2593  #              | |       |   ||||       |         |
2594            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2595            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2596            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2597            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2598            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2599
2600To see which functions are being traced, you can cat the file:
2601::
2602
2603  # cat set_ftrace_filter
2604  hrtimer_interrupt
2605  sys_nanosleep
2606
2607
2608Perhaps this is not enough. The filters also allow glob(7) matching.
2609
2610  ``<match>*``
2611	will match functions that begin with <match>
2612  ``*<match>``
2613	will match functions that end with <match>
2614  ``*<match>*``
2615	will match functions that have <match> in it
2616  ``<match1>*<match2>``
2617	will match functions that begin with <match1> and end with <match2>
2618
2619.. note::
2620      It is better to use quotes to enclose the wild cards,
2621      otherwise the shell may expand the parameters into names
2622      of files in the local directory.
2623
2624::
2625
2626  # echo 'hrtimer_*' > set_ftrace_filter
2627
2628Produces::
2629
2630  # tracer: function
2631  #
2632  # entries-in-buffer/entries-written: 897/897   #P:4
2633  #
2634  #                              _-----=> irqs-off
2635  #                             / _----=> need-resched
2636  #                            | / _---=> hardirq/softirq
2637  #                            || / _--=> preempt-depth
2638  #                            ||| /     delay
2639  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2640  #              | |       |   ||||       |         |
2641            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2642            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2643            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2644            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2645            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2646            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2647            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2648            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2649
2650Notice that we lost the sys_nanosleep.
2651::
2652
2653  # cat set_ftrace_filter
2654  hrtimer_run_queues
2655  hrtimer_run_pending
2656  hrtimer_init
2657  hrtimer_cancel
2658  hrtimer_try_to_cancel
2659  hrtimer_forward
2660  hrtimer_start
2661  hrtimer_reprogram
2662  hrtimer_force_reprogram
2663  hrtimer_get_next_event
2664  hrtimer_interrupt
2665  hrtimer_nanosleep
2666  hrtimer_wakeup
2667  hrtimer_get_remaining
2668  hrtimer_get_res
2669  hrtimer_init_sleeper
2670
2671
2672This is because the '>' and '>>' act just like they do in bash.
2673To rewrite the filters, use '>'
2674To append to the filters, use '>>'
2675
2676To clear out a filter so that all functions will be recorded
2677again::
2678
2679 # echo > set_ftrace_filter
2680 # cat set_ftrace_filter
2681 #
2682
2683Again, now we want to append.
2684
2685::
2686
2687  # echo sys_nanosleep > set_ftrace_filter
2688  # cat set_ftrace_filter
2689  sys_nanosleep
2690  # echo 'hrtimer_*' >> set_ftrace_filter
2691  # cat set_ftrace_filter
2692  hrtimer_run_queues
2693  hrtimer_run_pending
2694  hrtimer_init
2695  hrtimer_cancel
2696  hrtimer_try_to_cancel
2697  hrtimer_forward
2698  hrtimer_start
2699  hrtimer_reprogram
2700  hrtimer_force_reprogram
2701  hrtimer_get_next_event
2702  hrtimer_interrupt
2703  sys_nanosleep
2704  hrtimer_nanosleep
2705  hrtimer_wakeup
2706  hrtimer_get_remaining
2707  hrtimer_get_res
2708  hrtimer_init_sleeper
2709
2710
2711The set_ftrace_notrace prevents those functions from being
2712traced.
2713::
2714
2715  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2716
2717Produces::
2718
2719  # tracer: function
2720  #
2721  # entries-in-buffer/entries-written: 39608/39608   #P:4
2722  #
2723  #                              _-----=> irqs-off
2724  #                             / _----=> need-resched
2725  #                            | / _---=> hardirq/softirq
2726  #                            || / _--=> preempt-depth
2727  #                            ||| /     delay
2728  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2729  #              | |       |   ||||       |         |
2730              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2731              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2732              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2733              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2734              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2735              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2736              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2737              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2738              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2739              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2740              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2741              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2742
2743We can see that there's no more lock or preempt tracing.
2744
2745
2746Dynamic ftrace with the function graph tracer
2747---------------------------------------------
2748
2749Although what has been explained above concerns both the
2750function tracer and the function-graph-tracer, there are some
2751special features only available in the function-graph tracer.
2752
2753If you want to trace only one function and all of its children,
2754you just have to echo its name into set_graph_function::
2755
2756 echo __do_fault > set_graph_function
2757
2758will produce the following "expanded" trace of the __do_fault()
2759function::
2760
2761   0)               |  __do_fault() {
2762   0)               |    filemap_fault() {
2763   0)               |      find_lock_page() {
2764   0)   0.804 us    |        find_get_page();
2765   0)               |        __might_sleep() {
2766   0)   1.329 us    |        }
2767   0)   3.904 us    |      }
2768   0)   4.979 us    |    }
2769   0)   0.653 us    |    _spin_lock();
2770   0)   0.578 us    |    page_add_file_rmap();
2771   0)   0.525 us    |    native_set_pte_at();
2772   0)   0.585 us    |    _spin_unlock();
2773   0)               |    unlock_page() {
2774   0)   0.541 us    |      page_waitqueue();
2775   0)   0.639 us    |      __wake_up_bit();
2776   0)   2.786 us    |    }
2777   0) + 14.237 us   |  }
2778   0)               |  __do_fault() {
2779   0)               |    filemap_fault() {
2780   0)               |      find_lock_page() {
2781   0)   0.698 us    |        find_get_page();
2782   0)               |        __might_sleep() {
2783   0)   1.412 us    |        }
2784   0)   3.950 us    |      }
2785   0)   5.098 us    |    }
2786   0)   0.631 us    |    _spin_lock();
2787   0)   0.571 us    |    page_add_file_rmap();
2788   0)   0.526 us    |    native_set_pte_at();
2789   0)   0.586 us    |    _spin_unlock();
2790   0)               |    unlock_page() {
2791   0)   0.533 us    |      page_waitqueue();
2792   0)   0.638 us    |      __wake_up_bit();
2793   0)   2.793 us    |    }
2794   0) + 14.012 us   |  }
2795
2796You can also expand several functions at once::
2797
2798 echo sys_open > set_graph_function
2799 echo sys_close >> set_graph_function
2800
2801Now if you want to go back to trace all functions you can clear
2802this special filter via::
2803
2804 echo > set_graph_function
2805
2806
2807ftrace_enabled
2808--------------
2809
2810Note, the proc sysctl ftrace_enable is a big on/off switch for the
2811function tracer. By default it is enabled (when function tracing is
2812enabled in the kernel). If it is disabled, all function tracing is
2813disabled. This includes not only the function tracers for ftrace, but
2814also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2815
2816Please disable this with care.
2817
2818This can be disable (and enabled) with::
2819
2820  sysctl kernel.ftrace_enabled=0
2821  sysctl kernel.ftrace_enabled=1
2822
2823 or
2824
2825  echo 0 > /proc/sys/kernel/ftrace_enabled
2826  echo 1 > /proc/sys/kernel/ftrace_enabled
2827
2828
2829Filter commands
2830---------------
2831
2832A few commands are supported by the set_ftrace_filter interface.
2833Trace commands have the following format::
2834
2835  <function>:<command>:<parameter>
2836
2837The following commands are supported:
2838
2839- mod:
2840  This command enables function filtering per module. The
2841  parameter defines the module. For example, if only the write*
2842  functions in the ext3 module are desired, run:
2843
2844   echo 'write*:mod:ext3' > set_ftrace_filter
2845
2846  This command interacts with the filter in the same way as
2847  filtering based on function names. Thus, adding more functions
2848  in a different module is accomplished by appending (>>) to the
2849  filter file. Remove specific module functions by prepending
2850  '!'::
2851
2852   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2853
2854  Mod command supports module globbing. Disable tracing for all
2855  functions except a specific module::
2856
2857   echo '!*:mod:!ext3' >> set_ftrace_filter
2858
2859  Disable tracing for all modules, but still trace kernel::
2860
2861   echo '!*:mod:*' >> set_ftrace_filter
2862
2863  Enable filter only for kernel::
2864
2865   echo '*write*:mod:!*' >> set_ftrace_filter
2866
2867  Enable filter for module globbing::
2868
2869   echo '*write*:mod:*snd*' >> set_ftrace_filter
2870
2871- traceon/traceoff:
2872  These commands turn tracing on and off when the specified
2873  functions are hit. The parameter determines how many times the
2874  tracing system is turned on and off. If unspecified, there is
2875  no limit. For example, to disable tracing when a schedule bug
2876  is hit the first 5 times, run::
2877
2878   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2879
2880  To always disable tracing when __schedule_bug is hit::
2881
2882   echo '__schedule_bug:traceoff' > set_ftrace_filter
2883
2884  These commands are cumulative whether or not they are appended
2885  to set_ftrace_filter. To remove a command, prepend it by '!'
2886  and drop the parameter::
2887
2888   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2889
2890  The above removes the traceoff command for __schedule_bug
2891  that have a counter. To remove commands without counters::
2892
2893   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2894
2895- snapshot:
2896  Will cause a snapshot to be triggered when the function is hit.
2897  ::
2898
2899   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2900
2901  To only snapshot once:
2902  ::
2903
2904   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2905
2906  To remove the above commands::
2907
2908   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2909   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2910
2911- enable_event/disable_event:
2912  These commands can enable or disable a trace event. Note, because
2913  function tracing callbacks are very sensitive, when these commands
2914  are registered, the trace point is activated, but disabled in
2915  a "soft" mode. That is, the tracepoint will be called, but
2916  just will not be traced. The event tracepoint stays in this mode
2917  as long as there's a command that triggers it.
2918  ::
2919
2920   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2921   	 set_ftrace_filter
2922
2923  The format is::
2924
2925    <function>:enable_event:<system>:<event>[:count]
2926    <function>:disable_event:<system>:<event>[:count]
2927
2928  To remove the events commands::
2929
2930   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2931   	 set_ftrace_filter
2932   echo '!schedule:disable_event:sched:sched_switch' > \
2933   	 set_ftrace_filter
2934
2935- dump:
2936  When the function is hit, it will dump the contents of the ftrace
2937  ring buffer to the console. This is useful if you need to debug
2938  something, and want to dump the trace when a certain function
2939  is hit. Perhaps its a function that is called before a tripple
2940  fault happens and does not allow you to get a regular dump.
2941
2942- cpudump:
2943  When the function is hit, it will dump the contents of the ftrace
2944  ring buffer for the current CPU to the console. Unlike the "dump"
2945  command, it only prints out the contents of the ring buffer for the
2946  CPU that executed the function that triggered the dump.
2947
2948trace_pipe
2949----------
2950
2951The trace_pipe outputs the same content as the trace file, but
2952the effect on the tracing is different. Every read from
2953trace_pipe is consumed. This means that subsequent reads will be
2954different. The trace is live.
2955::
2956
2957  # echo function > current_tracer
2958  # cat trace_pipe > /tmp/trace.out &
2959  [1] 4153
2960  # echo 1 > tracing_on
2961  # usleep 1
2962  # echo 0 > tracing_on
2963  # cat trace
2964  # tracer: function
2965  #
2966  # entries-in-buffer/entries-written: 0/0   #P:4
2967  #
2968  #                              _-----=> irqs-off
2969  #                             / _----=> need-resched
2970  #                            | / _---=> hardirq/softirq
2971  #                            || / _--=> preempt-depth
2972  #                            ||| /     delay
2973  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2974  #              | |       |   ||||       |         |
2975
2976  #
2977  # cat /tmp/trace.out
2978             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
2979             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
2980             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
2981             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
2982             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
2983             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
2984             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
2985             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
2986             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
2987
2988
2989Note, reading the trace_pipe file will block until more input is
2990added.
2991
2992trace entries
2993-------------
2994
2995Having too much or not enough data can be troublesome in
2996diagnosing an issue in the kernel. The file buffer_size_kb is
2997used to modify the size of the internal trace buffers. The
2998number listed is the number of entries that can be recorded per
2999CPU. To know the full size, multiply the number of possible CPUs
3000with the number of entries.
3001::
3002
3003  # cat buffer_size_kb
3004  1408 (units kilobytes)
3005
3006Or simply read buffer_total_size_kb
3007::
3008
3009  # cat buffer_total_size_kb
3010  5632
3011
3012To modify the buffer, simple echo in a number (in 1024 byte segments).
3013::
3014
3015  # echo 10000 > buffer_size_kb
3016  # cat buffer_size_kb
3017  10000 (units kilobytes)
3018
3019It will try to allocate as much as possible. If you allocate too
3020much, it can cause Out-Of-Memory to trigger.
3021::
3022
3023  # echo 1000000000000 > buffer_size_kb
3024  -bash: echo: write error: Cannot allocate memory
3025  # cat buffer_size_kb
3026  85
3027
3028The per_cpu buffers can be changed individually as well:
3029::
3030
3031  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3032  # echo 100 > per_cpu/cpu1/buffer_size_kb
3033
3034When the per_cpu buffers are not the same, the buffer_size_kb
3035at the top level will just show an X
3036::
3037
3038  # cat buffer_size_kb
3039  X
3040
3041This is where the buffer_total_size_kb is useful:
3042::
3043
3044  # cat buffer_total_size_kb
3045  12916
3046
3047Writing to the top level buffer_size_kb will reset all the buffers
3048to be the same again.
3049
3050Snapshot
3051--------
3052CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3053available to all non latency tracers. (Latency tracers which
3054record max latency, such as "irqsoff" or "wakeup", can't use
3055this feature, since those are already using the snapshot
3056mechanism internally.)
3057
3058Snapshot preserves a current trace buffer at a particular point
3059in time without stopping tracing. Ftrace swaps the current
3060buffer with a spare buffer, and tracing continues in the new
3061current (=previous spare) buffer.
3062
3063The following tracefs files in "tracing" are related to this
3064feature:
3065
3066  snapshot:
3067
3068	This is used to take a snapshot and to read the output
3069	of the snapshot. Echo 1 into this file to allocate a
3070	spare buffer and to take a snapshot (swap), then read
3071	the snapshot from this file in the same format as
3072	"trace" (described above in the section "The File
3073	System"). Both reads snapshot and tracing are executable
3074	in parallel. When the spare buffer is allocated, echoing
3075	0 frees it, and echoing else (positive) values clear the
3076	snapshot contents.
3077	More details are shown in the table below.
3078
3079	+--------------+------------+------------+------------+
3080	|status\\input |     0      |     1      |    else    |
3081	+==============+============+============+============+
3082	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3083	+--------------+------------+------------+------------+
3084	|allocated     |    free    |    swap    |   clear    |
3085	+--------------+------------+------------+------------+
3086
3087Here is an example of using the snapshot feature.
3088::
3089
3090  # echo 1 > events/sched/enable
3091  # echo 1 > snapshot
3092  # cat snapshot
3093  # tracer: nop
3094  #
3095  # entries-in-buffer/entries-written: 71/71   #P:8
3096  #
3097  #                              _-----=> irqs-off
3098  #                             / _----=> need-resched
3099  #                            | / _---=> hardirq/softirq
3100  #                            || / _--=> preempt-depth
3101  #                            ||| /     delay
3102  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3103  #              | |       |   ||||       |         |
3104            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3105             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3106  [...]
3107          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3108
3109  # cat trace
3110  # tracer: nop
3111  #
3112  # entries-in-buffer/entries-written: 77/77   #P:8
3113  #
3114  #                              _-----=> irqs-off
3115  #                             / _----=> need-resched
3116  #                            | / _---=> hardirq/softirq
3117  #                            || / _--=> preempt-depth
3118  #                            ||| /     delay
3119  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3120  #              | |       |   ||||       |         |
3121            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3122   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3123  [...]
3124
3125
3126If you try to use this snapshot feature when current tracer is
3127one of the latency tracers, you will get the following results.
3128::
3129
3130  # echo wakeup > current_tracer
3131  # echo 1 > snapshot
3132  bash: echo: write error: Device or resource busy
3133  # cat snapshot
3134  cat: snapshot: Device or resource busy
3135
3136
3137Instances
3138---------
3139In the tracefs tracing directory is a directory called "instances".
3140This directory can have new directories created inside of it using
3141mkdir, and removing directories with rmdir. The directory created
3142with mkdir in this directory will already contain files and other
3143directories after it is created.
3144::
3145
3146  # mkdir instances/foo
3147  # ls instances/foo
3148  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3149  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3150  trace_pipe  tracing_on
3151
3152As you can see, the new directory looks similar to the tracing directory
3153itself. In fact, it is very similar, except that the buffer and
3154events are agnostic from the main director, or from any other
3155instances that are created.
3156
3157The files in the new directory work just like the files with the
3158same name in the tracing directory except the buffer that is used
3159is a separate and new buffer. The files affect that buffer but do not
3160affect the main buffer with the exception of trace_options. Currently,
3161the trace_options affect all instances and the top level buffer
3162the same, but this may change in future releases. That is, options
3163may become specific to the instance they reside in.
3164
3165Notice that none of the function tracer files are there, nor is
3166current_tracer and available_tracers. This is because the buffers
3167can currently only have events enabled for them.
3168::
3169
3170  # mkdir instances/foo
3171  # mkdir instances/bar
3172  # mkdir instances/zoot
3173  # echo 100000 > buffer_size_kb
3174  # echo 1000 > instances/foo/buffer_size_kb
3175  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3176  # echo function > current_trace
3177  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3178  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3179  # echo 1 > instances/foo/events/sched/sched_switch/enable
3180  # echo 1 > instances/bar/events/irq/enable
3181  # echo 1 > instances/zoot/events/syscalls/enable
3182  # cat trace_pipe
3183  CPU:2 [LOST 11745 EVENTS]
3184              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3185              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3186              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3187              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3188              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3189              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3190              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3191              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3192              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3193              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3194              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3195  [...]
3196
3197  # cat instances/foo/trace_pipe
3198              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3199              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3200            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3201            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3202       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3203              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3204              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3205              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3206       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3207       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3208  [...]
3209
3210  # cat instances/bar/trace_pipe
3211       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3212            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3213              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3214              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3215              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3216              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3217              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3218              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3219              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3220              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3221              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3222              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3223  [...]
3224
3225  # cat instances/zoot/trace
3226  # tracer: nop
3227  #
3228  # entries-in-buffer/entries-written: 18996/18996   #P:4
3229  #
3230  #                              _-----=> irqs-off
3231  #                             / _----=> need-resched
3232  #                            | / _---=> hardirq/softirq
3233  #                            || / _--=> preempt-depth
3234  #                            ||| /     delay
3235  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3236  #              | |       |   ||||       |         |
3237              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3238              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3239              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3240              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3241              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3242              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3243              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3244              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3245              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3246              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3247              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3248
3249You can see that the trace of the top most trace buffer shows only
3250the function tracing. The foo instance displays wakeups and task
3251switches.
3252
3253To remove the instances, simply delete their directories:
3254::
3255
3256  # rmdir instances/foo
3257  # rmdir instances/bar
3258  # rmdir instances/zoot
3259
3260Note, if a process has a trace file open in one of the instance
3261directories, the rmdir will fail with EBUSY.
3262
3263
3264Stack trace
3265-----------
3266Since the kernel has a fixed sized stack, it is important not to
3267waste it in functions. A kernel developer must be conscience of
3268what they allocate on the stack. If they add too much, the system
3269can be in danger of a stack overflow, and corruption will occur,
3270usually leading to a system panic.
3271
3272There are some tools that check this, usually with interrupts
3273periodically checking usage. But if you can perform a check
3274at every function call that will become very useful. As ftrace provides
3275a function tracer, it makes it convenient to check the stack size
3276at every function call. This is enabled via the stack tracer.
3277
3278CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3279To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3280::
3281
3282 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3283
3284You can also enable it from the kernel command line to trace
3285the stack size of the kernel during boot up, by adding "stacktrace"
3286to the kernel command line parameter.
3287
3288After running it for a few minutes, the output looks like:
3289::
3290
3291  # cat stack_max_size
3292  2928
3293
3294  # cat stack_trace
3295          Depth    Size   Location    (18 entries)
3296          -----    ----   --------
3297    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3298    1)     2704     160   find_busiest_group+0x31/0x1f1
3299    2)     2544     256   load_balance+0xd9/0x662
3300    3)     2288      80   idle_balance+0xbb/0x130
3301    4)     2208     128   __schedule+0x26e/0x5b9
3302    5)     2080      16   schedule+0x64/0x66
3303    6)     2064     128   schedule_timeout+0x34/0xe0
3304    7)     1936     112   wait_for_common+0x97/0xf1
3305    8)     1824      16   wait_for_completion+0x1d/0x1f
3306    9)     1808     128   flush_work+0xfe/0x119
3307   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3308   11)     1664      48   input_available_p+0x1d/0x5c
3309   12)     1616      48   n_tty_poll+0x6d/0x134
3310   13)     1568      64   tty_poll+0x64/0x7f
3311   14)     1504     880   do_select+0x31e/0x511
3312   15)      624     400   core_sys_select+0x177/0x216
3313   16)      224      96   sys_select+0x91/0xb9
3314   17)      128     128   system_call_fastpath+0x16/0x1b
3315
3316Note, if -mfentry is being used by gcc, functions get traced before
3317they set up the stack frame. This means that leaf level functions
3318are not tested by the stack tracer when -mfentry is used.
3319
3320Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3321
3322More
3323----
3324More details can be found in the source code, in the `kernel/trace/*.c` files.
3325