1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a framework of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Throughout the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured. Changing the current tracer clears
99	the ring buffer content as well as the "snapshot" buffer.
100
101  available_tracers:
102
103	This holds the different types of tracers that
104	have been compiled into the kernel. The
105	tracers listed here can be configured by
106	echoing their name into current_tracer.
107
108  tracing_on:
109
110	This sets or displays whether writing to the trace
111	ring buffer is enabled. Echo 0 into this file to disable
112	the tracer or 1 to enable it. Note, this only disables
113	writing to the ring buffer, the tracing overhead may
114	still be occurring.
115
116	The kernel function tracing_off() can be used within the
117	kernel to disable writing to the ring buffer, which will
118	set this file to "0". User space can re-enable tracing by
119	echoing "1" into the file.
120
121	Note, the function and event trigger "traceoff" will also
122	set this file to zero and stop tracing. Which can also
123	be re-enabled by user space using this file.
124
125  trace:
126
127	This file holds the output of the trace in a human
128	readable format (described below). Opening this file for
129	writing with the O_TRUNC flag clears the ring buffer content.
130        Note, this file is not a consumer. If tracing is off
131        (no tracer running, or tracing_on is zero), it will produce
132        the same output each time it is read. When tracing is on,
133        it may produce inconsistent results as it tries to read
134        the entire buffer without consuming it.
135
136  trace_pipe:
137
138	The output is the same as the "trace" file but this
139	file is meant to be streamed with live tracing.
140	Reads from this file will block until new data is
141	retrieved.  Unlike the "trace" file, this file is a
142	consumer. This means reading from this file causes
143	sequential reads to display more current data. Once
144	data is read from this file, it is consumed, and
145	will not be read again with a sequential read. The
146	"trace" file is static, and if the tracer is not
147	adding more data, it will display the same
148	information every time it is read.
149
150  trace_options:
151
152	This file lets the user control the amount of data
153	that is displayed in one of the above output
154	files. Options also exist to modify how a tracer
155	or events work (stack traces, timestamps, etc).
156
157  options:
158
159	This is a directory that has a file for every available
160	trace option (also in trace_options). Options may also be set
161	or cleared by writing a "1" or "0" respectively into the
162	corresponding file with the option name.
163
164  tracing_max_latency:
165
166	Some of the tracers record the max latency.
167	For example, the maximum time that interrupts are disabled.
168	The maximum time is saved in this file. The max trace will also be
169	stored,	and displayed by "trace". A new max trace will only be
170	recorded if the latency is greater than the value in this file
171	(in microseconds).
172
173	By echoing in a time into this file, no latency will be recorded
174	unless it is greater than the time in this file.
175
176  tracing_thresh:
177
178	Some latency tracers will record a trace whenever the
179	latency is greater than the number in this file.
180	Only active when the file contains a number greater than 0.
181	(in microseconds)
182
183  buffer_size_kb:
184
185	This sets or displays the number of kilobytes each CPU
186	buffer holds. By default, the trace buffers are the same size
187	for each CPU. The displayed number is the size of the
188	CPU buffer and not total size of all buffers. The
189	trace buffers are allocated in pages (blocks of memory
190	that the kernel uses for allocation, usually 4 KB in size).
191	A few extra pages may be allocated to accommodate buffer management
192	meta-data. If the last page allocated has room for more bytes
193	than requested, the rest of the page will be used,
194	making the actual allocation bigger than requested or shown.
195	( Note, the size may not be a multiple of the page size
196	due to buffer management meta-data. )
197
198	Buffer sizes for individual CPUs may vary
199	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
200	this file will show "X".
201
202  buffer_total_size_kb:
203
204	This displays the total combined size of all the trace buffers.
205
206  free_buffer:
207
208	If a process is performing tracing, and the ring buffer	should be
209	shrunk "freed" when the process is finished, even if it were to be
210	killed by a signal, this file can be used for that purpose. On close
211	of this file, the ring buffer will be resized to its minimum size.
212	Having a process that is tracing also open this file, when the process
213	exits its file descriptor for this file will be closed, and in doing so,
214	the ring buffer will be "freed".
215
216	It may also stop tracing if disable_on_free option is set.
217
218  tracing_cpumask:
219
220	This is a mask that lets the user only trace on specified CPUs.
221	The format is a hex string representing the CPUs.
222
223  set_ftrace_filter:
224
225	When dynamic ftrace is configured in (see the
226	section below "dynamic ftrace"), the code is dynamically
227	modified (code text rewrite) to disable calling of the
228	function profiler (mcount). This lets tracing be configured
229	in with practically no overhead in performance.  This also
230	has a side effect of enabling or disabling specific functions
231	to be traced. Echoing names of functions into this file
232	will limit the trace to only those functions.
233	This influences the tracers "function" and "function_graph"
234	and thus also function profiling (see "function_profile_enabled").
235
236	The functions listed in "available_filter_functions" are what
237	can be written into this file.
238
239	This interface also allows for commands to be used. See the
240	"Filter commands" section for more details.
241
242	As a speed up, since processing strings can be quite expensive
243	and requires a check of all functions registered to tracing, instead
244	an index can be written into this file. A number (starting with "1")
245	written will instead select the same corresponding at the line position
246	of the "available_filter_functions" file.
247
248  set_ftrace_notrace:
249
250	This has an effect opposite to that of
251	set_ftrace_filter. Any function that is added here will not
252	be traced. If a function exists in both set_ftrace_filter
253	and set_ftrace_notrace,	the function will _not_ be traced.
254
255  set_ftrace_pid:
256
257	Have the function tracer only trace the threads whose PID are
258	listed in this file.
259
260	If the "function-fork" option is set, then when a task whose
261	PID is listed in this file forks, the child's PID will
262	automatically be added to this file, and the child will be
263	traced by the function tracer as well. This option will also
264	cause PIDs of tasks that exit to be removed from the file.
265
266  set_ftrace_notrace_pid:
267
268        Have the function tracer ignore threads whose PID are listed in
269        this file.
270
271        If the "function-fork" option is set, then when a task whose
272	PID is listed in this file forks, the child's PID will
273	automatically be added to this file, and the child will not be
274	traced by the function tracer as well. This option will also
275	cause PIDs of tasks that exit to be removed from the file.
276
277        If a PID is in both this file and "set_ftrace_pid", then this
278        file takes precedence, and the thread will not be traced.
279
280  set_event_pid:
281
282	Have the events only trace a task with a PID listed in this file.
283	Note, sched_switch and sched_wake_up will also trace events
284	listed in this file.
285
286	To have the PIDs of children of tasks with their PID in this file
287	added on fork, enable the "event-fork" option. That option will also
288	cause the PIDs of tasks to be removed from this file when the task
289	exits.
290
291  set_event_notrace_pid:
292
293	Have the events not trace a task with a PID listed in this file.
294	Note, sched_switch and sched_wakeup will trace threads not listed
295	in this file, even if a thread's PID is in the file if the
296        sched_switch or sched_wakeup events also trace a thread that should
297        be traced.
298
299	To have the PIDs of children of tasks with their PID in this file
300	added on fork, enable the "event-fork" option. That option will also
301	cause the PIDs of tasks to be removed from this file when the task
302	exits.
303
304  set_graph_function:
305
306	Functions listed in this file will cause the function graph
307	tracer to only trace these functions and the functions that
308	they call. (See the section "dynamic ftrace" for more details).
309	Note, set_ftrace_filter and set_ftrace_notrace still affects
310	what functions are being traced.
311
312  set_graph_notrace:
313
314	Similar to set_graph_function, but will disable function graph
315	tracing when the function is hit until it exits the function.
316	This makes it possible to ignore tracing functions that are called
317	by a specific function.
318
319  available_filter_functions:
320
321	This lists the functions that ftrace has processed and can trace.
322	These are the function names that you can pass to
323	"set_ftrace_filter", "set_ftrace_notrace",
324	"set_graph_function", or "set_graph_notrace".
325	(See the section "dynamic ftrace" below for more details.)
326
327  dyn_ftrace_total_info:
328
329	This file is for debugging purposes. The number of functions that
330	have been converted to nops and are available to be traced.
331
332  enabled_functions:
333
334	This file is more for debugging ftrace, but can also be useful
335	in seeing if any function has a callback attached to it.
336	Not only does the trace infrastructure use ftrace function
337	trace utility, but other subsystems might too. This file
338	displays all functions that have a callback attached to them
339	as well as the number of callbacks that have been attached.
340	Note, a callback may also call multiple functions which will
341	not be listed in this count.
342
343	If the callback registered to be traced by a function with
344	the "save regs" attribute (thus even more overhead), a 'R'
345	will be displayed on the same line as the function that
346	is returning registers.
347
348	If the callback registered to be traced by a function with
349	the "ip modify" attribute (thus the regs->ip can be changed),
350	an 'I' will be displayed on the same line as the function that
351	can be overridden.
352
353	If the architecture supports it, it will also show what callback
354	is being directly called by the function. If the count is greater
355	than 1 it most likely will be ftrace_ops_list_func().
356
357	If the callback of the function jumps to a trampoline that is
358	specific to a the callback and not the standard trampoline,
359	its address will be printed as well as the function that the
360	trampoline calls.
361
362  function_profile_enabled:
363
364	When set it will enable all functions with either the function
365	tracer, or if configured, the function graph tracer. It will
366	keep a histogram of the number of functions that were called
367	and if the function graph tracer was configured, it will also keep
368	track of the time spent in those functions. The histogram
369	content can be displayed in the files:
370
371	trace_stat/function<cpu> ( function0, function1, etc).
372
373  trace_stat:
374
375	A directory that holds different tracing stats.
376
377  kprobe_events:
378
379	Enable dynamic trace points. See kprobetrace.txt.
380
381  kprobe_profile:
382
383	Dynamic trace points stats. See kprobetrace.txt.
384
385  max_graph_depth:
386
387	Used with the function graph tracer. This is the max depth
388	it will trace into a function. Setting this to a value of
389	one will show only the first kernel function that is called
390	from user space.
391
392  printk_formats:
393
394	This is for tools that read the raw format files. If an event in
395	the ring buffer references a string, only a pointer to the string
396	is recorded into the buffer and not the string itself. This prevents
397	tools from knowing what that string was. This file displays the string
398	and address for	the string allowing tools to map the pointers to what
399	the strings were.
400
401  saved_cmdlines:
402
403	Only the pid of the task is recorded in a trace event unless
404	the event specifically saves the task comm as well. Ftrace
405	makes a cache of pid mappings to comms to try to display
406	comms for events. If a pid for a comm is not listed, then
407	"<...>" is displayed in the output.
408
409	If the option "record-cmd" is set to "0", then comms of tasks
410	will not be saved during recording. By default, it is enabled.
411
412  saved_cmdlines_size:
413
414	By default, 128 comms are saved (see "saved_cmdlines" above). To
415	increase or decrease the amount of comms that are cached, echo
416	the number of comms to cache into this file.
417
418  saved_tgids:
419
420	If the option "record-tgid" is set, on each scheduling context switch
421	the Task Group ID of a task is saved in a table mapping the PID of
422	the thread to its TGID. By default, the "record-tgid" option is
423	disabled.
424
425  snapshot:
426
427	This displays the "snapshot" buffer and also lets the user
428	take a snapshot of the current running trace.
429	See the "Snapshot" section below for more details.
430
431  stack_max_size:
432
433	When the stack tracer is activated, this will display the
434	maximum stack size it has encountered.
435	See the "Stack Trace" section below.
436
437  stack_trace:
438
439	This displays the stack back trace of the largest stack
440	that was encountered when the stack tracer is activated.
441	See the "Stack Trace" section below.
442
443  stack_trace_filter:
444
445	This is similar to "set_ftrace_filter" but it limits what
446	functions the stack tracer will check.
447
448  trace_clock:
449
450	Whenever an event is recorded into the ring buffer, a
451	"timestamp" is added. This stamp comes from a specified
452	clock. By default, ftrace uses the "local" clock. This
453	clock is very fast and strictly per cpu, but on some
454	systems it may not be monotonic with respect to other
455	CPUs. In other words, the local clocks may not be in sync
456	with local clocks on other CPUs.
457
458	Usual clocks for tracing::
459
460	  # cat trace_clock
461	  [local] global counter x86-tsc
462
463	The clock with the square brackets around it is the one in effect.
464
465	local:
466		Default clock, but may not be in sync across CPUs
467
468	global:
469		This clock is in sync with all CPUs but may
470		be a bit slower than the local clock.
471
472	counter:
473		This is not a clock at all, but literally an atomic
474		counter. It counts up one by one, but is in sync
475		with all CPUs. This is useful when you need to
476		know exactly the order events occurred with respect to
477		each other on different CPUs.
478
479	uptime:
480		This uses the jiffies counter and the time stamp
481		is relative to the time since boot up.
482
483	perf:
484		This makes ftrace use the same clock that perf uses.
485		Eventually perf will be able to read ftrace buffers
486		and this will help out in interleaving the data.
487
488	x86-tsc:
489		Architectures may define their own clocks. For
490		example, x86 uses its own TSC cycle clock here.
491
492	ppc-tb:
493		This uses the powerpc timebase register value.
494		This is in sync across CPUs and can also be used
495		to correlate events across hypervisor/guest if
496		tb_offset is known.
497
498	mono:
499		This uses the fast monotonic clock (CLOCK_MONOTONIC)
500		which is monotonic and is subject to NTP rate adjustments.
501
502	mono_raw:
503		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
504		which is monotonic but is not subject to any rate adjustments
505		and ticks at the same rate as the hardware clocksource.
506
507	boot:
508		This is the boot clock (CLOCK_BOOTTIME) and is based on the
509		fast monotonic clock, but also accounts for time spent in
510		suspend. Since the clock access is designed for use in
511		tracing in the suspend path, some side effects are possible
512		if clock is accessed after the suspend time is accounted before
513		the fast mono clock is updated. In this case, the clock update
514		appears to happen slightly sooner than it normally would have.
515		Also on 32-bit systems, it's possible that the 64-bit boot offset
516		sees a partial update. These effects are rare and post
517		processing should be able to handle them. See comments in the
518		ktime_get_boot_fast_ns() function for more information.
519
520	To set a clock, simply echo the clock name into this file::
521
522	  # echo global > trace_clock
523
524	Setting a clock clears the ring buffer content as well as the
525	"snapshot" buffer.
526
527  trace_marker:
528
529	This is a very useful file for synchronizing user space
530	with events happening in the kernel. Writing strings into
531	this file will be written into the ftrace buffer.
532
533	It is useful in applications to open this file at the start
534	of the application and just reference the file descriptor
535	for the file::
536
537		void trace_write(const char *fmt, ...)
538		{
539			va_list ap;
540			char buf[256];
541			int n;
542
543			if (trace_fd < 0)
544				return;
545
546			va_start(ap, fmt);
547			n = vsnprintf(buf, 256, fmt, ap);
548			va_end(ap);
549
550			write(trace_fd, buf, n);
551		}
552
553	start::
554
555		trace_fd = open("trace_marker", WR_ONLY);
556
557	Note: Writing into the trace_marker file can also initiate triggers
558	      that are written into /sys/kernel/tracing/events/ftrace/print/trigger
559	      See "Event triggers" in Documentation/trace/events.rst and an
560              example in Documentation/trace/histogram.rst (Section 3.)
561
562  trace_marker_raw:
563
564	This is similar to trace_marker above, but is meant for for binary data
565	to be written to it, where a tool can be used to parse the data
566	from trace_pipe_raw.
567
568  uprobe_events:
569
570	Add dynamic tracepoints in programs.
571	See uprobetracer.txt
572
573  uprobe_profile:
574
575	Uprobe statistics. See uprobetrace.txt
576
577  instances:
578
579	This is a way to make multiple trace buffers where different
580	events can be recorded in different buffers.
581	See "Instances" section below.
582
583  events:
584
585	This is the trace event directory. It holds event tracepoints
586	(also known as static tracepoints) that have been compiled
587	into the kernel. It shows what event tracepoints exist
588	and how they are grouped by system. There are "enable"
589	files at various levels that can enable the tracepoints
590	when a "1" is written to them.
591
592	See events.txt for more information.
593
594  set_event:
595
596	By echoing in the event into this file, will enable that event.
597
598	See events.txt for more information.
599
600  available_events:
601
602	A list of events that can be enabled in tracing.
603
604	See events.txt for more information.
605
606  timestamp_mode:
607
608	Certain tracers may change the timestamp mode used when
609	logging trace events into the event buffer.  Events with
610	different modes can coexist within a buffer but the mode in
611	effect when an event is logged determines which timestamp mode
612	is used for that event.  The default timestamp mode is
613	'delta'.
614
615	Usual timestamp modes for tracing:
616
617	  # cat timestamp_mode
618	  [delta] absolute
619
620	  The timestamp mode with the square brackets around it is the
621	  one in effect.
622
623	  delta: Default timestamp mode - timestamp is a delta against
624	         a per-buffer timestamp.
625
626	  absolute: The timestamp is a full timestamp, not a delta
627                 against some other value.  As such it takes up more
628                 space and is less efficient.
629
630  hwlat_detector:
631
632	Directory for the Hardware Latency Detector.
633	See "Hardware Latency Detector" section below.
634
635  per_cpu:
636
637	This is a directory that contains the trace per_cpu information.
638
639  per_cpu/cpu0/buffer_size_kb:
640
641	The ftrace buffer is defined per_cpu. That is, there's a separate
642	buffer for each CPU to allow writes to be done atomically,
643	and free from cache bouncing. These buffers may have different
644	size buffers. This file is similar to the buffer_size_kb
645	file, but it only displays or sets the buffer size for the
646	specific CPU. (here cpu0).
647
648  per_cpu/cpu0/trace:
649
650	This is similar to the "trace" file, but it will only display
651	the data specific for the CPU. If written to, it only clears
652	the specific CPU buffer.
653
654  per_cpu/cpu0/trace_pipe
655
656	This is similar to the "trace_pipe" file, and is a consuming
657	read, but it will only display (and consume) the data specific
658	for the CPU.
659
660  per_cpu/cpu0/trace_pipe_raw
661
662	For tools that can parse the ftrace ring buffer binary format,
663	the trace_pipe_raw file can be used to extract the data
664	from the ring buffer directly. With the use of the splice()
665	system call, the buffer data can be quickly transferred to
666	a file or to the network where a server is collecting the
667	data.
668
669	Like trace_pipe, this is a consuming reader, where multiple
670	reads will always produce different data.
671
672  per_cpu/cpu0/snapshot:
673
674	This is similar to the main "snapshot" file, but will only
675	snapshot the current CPU (if supported). It only displays
676	the content of the snapshot for a given CPU, and if
677	written to, only clears this CPU buffer.
678
679  per_cpu/cpu0/snapshot_raw:
680
681	Similar to the trace_pipe_raw, but will read the binary format
682	from the snapshot buffer for the given CPU.
683
684  per_cpu/cpu0/stats:
685
686	This displays certain stats about the ring buffer:
687
688	entries:
689		The number of events that are still in the buffer.
690
691	overrun:
692		The number of lost events due to overwriting when
693		the buffer was full.
694
695	commit overrun:
696		Should always be zero.
697		This gets set if so many events happened within a nested
698		event (ring buffer is re-entrant), that it fills the
699		buffer and starts dropping events.
700
701	bytes:
702		Bytes actually read (not overwritten).
703
704	oldest event ts:
705		The oldest timestamp in the buffer
706
707	now ts:
708		The current timestamp
709
710	dropped events:
711		Events lost due to overwrite option being off.
712
713	read events:
714		The number of events read.
715
716The Tracers
717-----------
718
719Here is the list of current tracers that may be configured.
720
721  "function"
722
723	Function call tracer to trace all kernel functions.
724
725  "function_graph"
726
727	Similar to the function tracer except that the
728	function tracer probes the functions on their entry
729	whereas the function graph tracer traces on both entry
730	and exit of the functions. It then provides the ability
731	to draw a graph of function calls similar to C code
732	source.
733
734  "blk"
735
736	The block tracer. The tracer used by the blktrace user
737	application.
738
739  "hwlat"
740
741	The Hardware Latency tracer is used to detect if the hardware
742	produces any latency. See "Hardware Latency Detector" section
743	below.
744
745  "irqsoff"
746
747	Traces the areas that disable interrupts and saves
748	the trace with the longest max latency.
749	See tracing_max_latency. When a new max is recorded,
750	it replaces the old trace. It is best to view this
751	trace with the latency-format option enabled, which
752	happens automatically when the tracer is selected.
753
754  "preemptoff"
755
756	Similar to irqsoff but traces and records the amount of
757	time for which preemption is disabled.
758
759  "preemptirqsoff"
760
761	Similar to irqsoff and preemptoff, but traces and
762	records the largest time for which irqs and/or preemption
763	is disabled.
764
765  "wakeup"
766
767	Traces and records the max latency that it takes for
768	the highest priority task to get scheduled after
769	it has been woken up.
770        Traces all tasks as an average developer would expect.
771
772  "wakeup_rt"
773
774        Traces and records the max latency that it takes for just
775        RT tasks (as the current "wakeup" does). This is useful
776        for those interested in wake up timings of RT tasks.
777
778  "wakeup_dl"
779
780	Traces and records the max latency that it takes for
781	a SCHED_DEADLINE task to be woken (as the "wakeup" and
782	"wakeup_rt" does).
783
784  "mmiotrace"
785
786	A special tracer that is used to trace binary module.
787	It will trace all the calls that a module makes to the
788	hardware. Everything it writes and reads from the I/O
789	as well.
790
791  "branch"
792
793	This tracer can be configured when tracing likely/unlikely
794	calls within the kernel. It will trace when a likely and
795	unlikely branch is hit and if it was correct in its prediction
796	of being correct.
797
798  "nop"
799
800	This is the "trace nothing" tracer. To remove all
801	tracers from tracing simply echo "nop" into
802	current_tracer.
803
804Error conditions
805----------------
806
807  For most ftrace commands, failure modes are obvious and communicated
808  using standard return codes.
809
810  For other more involved commands, extended error information may be
811  available via the tracing/error_log file.  For the commands that
812  support it, reading the tracing/error_log file after an error will
813  display more detailed information about what went wrong, if
814  information is available.  The tracing/error_log file is a circular
815  error log displaying a small number (currently, 8) of ftrace errors
816  for the last (8) failed commands.
817
818  The extended error information and usage takes the form shown in
819  this example::
820
821    # echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/trigger
822    echo: write error: Invalid argument
823
824    # cat /sys/kernel/debug/tracing/error_log
825    [ 5348.887237] location: error: Couldn't yyy: zzz
826      Command: xxx
827               ^
828    [ 7517.023364] location: error: Bad rrr: sss
829      Command: ppp qqq
830                   ^
831
832  To clear the error log, echo the empty string into it::
833
834    # echo > /sys/kernel/debug/tracing/error_log
835
836Examples of using the tracer
837----------------------------
838
839Here are typical examples of using the tracers when controlling
840them only with the tracefs interface (without using any
841user-land utilities).
842
843Output format:
844--------------
845
846Here is an example of the output format of the file "trace"::
847
848  # tracer: function
849  #
850  # entries-in-buffer/entries-written: 140080/250280   #P:4
851  #
852  #                              _-----=> irqs-off
853  #                             / _----=> need-resched
854  #                            | / _---=> hardirq/softirq
855  #                            || / _--=> preempt-depth
856  #                            ||| /     delay
857  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
858  #              | |       |   ||||       |         |
859              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
860              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
861              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
862              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
863              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
864              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
865              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
866              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
867              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
868              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
869              ....
870
871A header is printed with the tracer name that is represented by
872the trace. In this case the tracer is "function". Then it shows the
873number of events in the buffer as well as the total number of entries
874that were written. The difference is the number of entries that were
875lost due to the buffer filling up (250280 - 140080 = 110200 events
876lost).
877
878The header explains the content of the events. Task name "bash", the task
879PID "1977", the CPU that it was running on "000", the latency format
880(explained below), the timestamp in <secs>.<usecs> format, the
881function name that was traced "sys_close" and the parent function that
882called this function "system_call_fastpath". The timestamp is the time
883at which the function was entered.
884
885Latency trace format
886--------------------
887
888When the latency-format option is enabled or when one of the latency
889tracers is set, the trace file gives somewhat more information to see
890why a latency happened. Here is a typical trace::
891
892  # tracer: irqsoff
893  #
894  # irqsoff latency trace v1.1.5 on 3.8.0-test+
895  # --------------------------------------------------------------------
896  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
897  #    -----------------
898  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
899  #    -----------------
900  #  => started at: __lock_task_sighand
901  #  => ended at:   _raw_spin_unlock_irqrestore
902  #
903  #
904  #                  _------=> CPU#
905  #                 / _-----=> irqs-off
906  #                | / _----=> need-resched
907  #                || / _---=> hardirq/softirq
908  #                ||| / _--=> preempt-depth
909  #                |||| /     delay
910  #  cmd     pid   ||||| time  |   caller
911  #     \   /      |||||  \    |   /
912        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
913        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
914        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
915        ps-6143    2d..1  306us : <stack trace>
916   => trace_hardirqs_on_caller
917   => trace_hardirqs_on
918   => _raw_spin_unlock_irqrestore
919   => do_task_stat
920   => proc_tgid_stat
921   => proc_single_show
922   => seq_read
923   => vfs_read
924   => sys_read
925   => system_call_fastpath
926
927
928This shows that the current tracer is "irqsoff" tracing the time
929for which interrupts were disabled. It gives the trace version (which
930never changes) and the version of the kernel upon which this was executed on
931(3.8). Then it displays the max latency in microseconds (259 us). The number
932of trace entries displayed and the total number (both are four: #4/4).
933VP, KP, SP, and HP are always zero and are reserved for later use.
934#P is the number of online CPUs (#P:4).
935
936The task is the process that was running when the latency
937occurred. (ps pid: 6143).
938
939The start and stop (the functions in which the interrupts were
940disabled and enabled respectively) that caused the latencies:
941
942  - __lock_task_sighand is where the interrupts were disabled.
943  - _raw_spin_unlock_irqrestore is where they were enabled again.
944
945The next lines after the header are the trace itself. The header
946explains which is which.
947
948  cmd: The name of the process in the trace.
949
950  pid: The PID of that process.
951
952  CPU#: The CPU which the process was running on.
953
954  irqs-off: 'd' interrupts are disabled. '.' otherwise.
955	.. caution:: If the architecture does not support a way to
956		read the irq flags variable, an 'X' will always
957		be printed here.
958
959  need-resched:
960	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
961	- 'n' only TIF_NEED_RESCHED is set,
962	- 'p' only PREEMPT_NEED_RESCHED is set,
963	- '.' otherwise.
964
965  hardirq/softirq:
966	- 'Z' - NMI occurred inside a hardirq
967	- 'z' - NMI is running
968	- 'H' - hard irq occurred inside a softirq.
969	- 'h' - hard irq is running
970	- 's' - soft irq is running
971	- '.' - normal context.
972
973  preempt-depth: The level of preempt_disabled
974
975The above is mostly meaningful for kernel developers.
976
977  time:
978	When the latency-format option is enabled, the trace file
979	output includes a timestamp relative to the start of the
980	trace. This differs from the output when latency-format
981	is disabled, which includes an absolute timestamp.
982
983  delay:
984	This is just to help catch your eye a bit better. And
985	needs to be fixed to be only relative to the same CPU.
986	The marks are determined by the difference between this
987	current trace and the next trace.
988
989	  - '$' - greater than 1 second
990	  - '@' - greater than 100 millisecond
991	  - '*' - greater than 10 millisecond
992	  - '#' - greater than 1000 microsecond
993	  - '!' - greater than 100 microsecond
994	  - '+' - greater than 10 microsecond
995	  - ' ' - less than or equal to 10 microsecond.
996
997  The rest is the same as the 'trace' file.
998
999  Note, the latency tracers will usually end with a back trace
1000  to easily find where the latency occurred.
1001
1002trace_options
1003-------------
1004
1005The trace_options file (or the options directory) is used to control
1006what gets printed in the trace output, or manipulate the tracers.
1007To see what is available, simply cat the file::
1008
1009  cat trace_options
1010	print-parent
1011	nosym-offset
1012	nosym-addr
1013	noverbose
1014	noraw
1015	nohex
1016	nobin
1017	noblock
1018	trace_printk
1019	annotate
1020	nouserstacktrace
1021	nosym-userobj
1022	noprintk-msg-only
1023	context-info
1024	nolatency-format
1025	record-cmd
1026	norecord-tgid
1027	overwrite
1028	nodisable_on_free
1029	irq-info
1030	markers
1031	noevent-fork
1032	function-trace
1033	nofunction-fork
1034	nodisplay-graph
1035	nostacktrace
1036	nobranch
1037
1038To disable one of the options, echo in the option prepended with
1039"no"::
1040
1041  echo noprint-parent > trace_options
1042
1043To enable an option, leave off the "no"::
1044
1045  echo sym-offset > trace_options
1046
1047Here are the available options:
1048
1049  print-parent
1050	On function traces, display the calling (parent)
1051	function as well as the function being traced.
1052	::
1053
1054	  print-parent:
1055	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
1056
1057	  noprint-parent:
1058	   bash-4000  [01]  1477.606694: simple_strtoul
1059
1060
1061  sym-offset
1062	Display not only the function name, but also the
1063	offset in the function. For example, instead of
1064	seeing just "ktime_get", you will see
1065	"ktime_get+0xb/0x20".
1066	::
1067
1068	  sym-offset:
1069	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
1070
1071  sym-addr
1072	This will also display the function address as well
1073	as the function name.
1074	::
1075
1076	  sym-addr:
1077	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
1078
1079  verbose
1080	This deals with the trace file when the
1081        latency-format option is enabled.
1082	::
1083
1084	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1085	    (+0.000ms): simple_strtoul (kstrtoul)
1086
1087  raw
1088	This will display raw numbers. This option is best for
1089	use with user applications that can translate the raw
1090	numbers better than having it done in the kernel.
1091
1092  hex
1093	Similar to raw, but the numbers will be in a hexadecimal format.
1094
1095  bin
1096	This will print out the formats in raw binary.
1097
1098  block
1099	When set, reading trace_pipe will not block when polled.
1100
1101  trace_printk
1102	Can disable trace_printk() from writing into the buffer.
1103
1104  annotate
1105	It is sometimes confusing when the CPU buffers are full
1106	and one CPU buffer had a lot of events recently, thus
1107	a shorter time frame, were another CPU may have only had
1108	a few events, which lets it have older events. When
1109	the trace is reported, it shows the oldest events first,
1110	and it may look like only one CPU ran (the one with the
1111	oldest events). When the annotate option is set, it will
1112	display when a new CPU buffer started::
1113
1114			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1115			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1116			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1117		##### CPU 2 buffer started ####
1118			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1119			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1120			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1121
1122  userstacktrace
1123	This option changes the trace. It records a
1124	stacktrace of the current user space thread after
1125	each trace event.
1126
1127  sym-userobj
1128	when user stacktrace are enabled, look up which
1129	object the address belongs to, and print a
1130	relative address. This is especially useful when
1131	ASLR is on, otherwise you don't get a chance to
1132	resolve the address to object/file/line after
1133	the app is no longer running
1134
1135	The lookup is performed when you read
1136	trace,trace_pipe. Example::
1137
1138		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1139		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1140
1141
1142  printk-msg-only
1143	When set, trace_printk()s will only show the format
1144	and not their parameters (if trace_bprintk() or
1145	trace_bputs() was used to save the trace_printk()).
1146
1147  context-info
1148	Show only the event data. Hides the comm, PID,
1149	timestamp, CPU, and other useful data.
1150
1151  latency-format
1152	This option changes the trace output. When it is enabled,
1153	the trace displays additional information about the
1154	latency, as described in "Latency trace format".
1155
1156  pause-on-trace
1157	When set, opening the trace file for read, will pause
1158	writing to the ring buffer (as if tracing_on was set to zero).
1159	This simulates the original behavior of the trace file.
1160	When the file is closed, tracing will be enabled again.
1161
1162  record-cmd
1163	When any event or tracer is enabled, a hook is enabled
1164	in the sched_switch trace point to fill comm cache
1165	with mapped pids and comms. But this may cause some
1166	overhead, and if you only care about pids, and not the
1167	name of the task, disabling this option can lower the
1168	impact of tracing. See "saved_cmdlines".
1169
1170  record-tgid
1171	When any event or tracer is enabled, a hook is enabled
1172	in the sched_switch trace point to fill the cache of
1173	mapped Thread Group IDs (TGID) mapping to pids. See
1174	"saved_tgids".
1175
1176  overwrite
1177	This controls what happens when the trace buffer is
1178	full. If "1" (default), the oldest events are
1179	discarded and overwritten. If "0", then the newest
1180	events are discarded.
1181	(see per_cpu/cpu0/stats for overrun and dropped)
1182
1183  disable_on_free
1184	When the free_buffer is closed, tracing will
1185	stop (tracing_on set to 0).
1186
1187  irq-info
1188	Shows the interrupt, preempt count, need resched data.
1189	When disabled, the trace looks like::
1190
1191		# tracer: function
1192		#
1193		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1194		#
1195		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1196		#              | |       |          |         |
1197			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1198			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1199			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1200
1201
1202  markers
1203	When set, the trace_marker is writable (only by root).
1204	When disabled, the trace_marker will error with EINVAL
1205	on write.
1206
1207  event-fork
1208	When set, tasks with PIDs listed in set_event_pid will have
1209	the PIDs of their children added to set_event_pid when those
1210	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1211	their PIDs will be removed from the file.
1212
1213        This affects PIDs listed in set_event_notrace_pid as well.
1214
1215  function-trace
1216	The latency tracers will enable function tracing
1217	if this option is enabled (default it is). When
1218	it is disabled, the latency tracers do not trace
1219	functions. This keeps the overhead of the tracer down
1220	when performing latency tests.
1221
1222  function-fork
1223	When set, tasks with PIDs listed in set_ftrace_pid will
1224	have the PIDs of their children added to set_ftrace_pid
1225	when those tasks fork. Also, when tasks with PIDs in
1226	set_ftrace_pid exit, their PIDs will be removed from the
1227	file.
1228
1229        This affects PIDs in set_ftrace_notrace_pid as well.
1230
1231  display-graph
1232	When set, the latency tracers (irqsoff, wakeup, etc) will
1233	use function graph tracing instead of function tracing.
1234
1235  stacktrace
1236	When set, a stack trace is recorded after any trace event
1237	is recorded.
1238
1239  branch
1240	Enable branch tracing with the tracer. This enables branch
1241	tracer along with the currently set tracer. Enabling this
1242	with the "nop" tracer is the same as just enabling the
1243	"branch" tracer.
1244
1245.. tip:: Some tracers have their own options. They only appear in this
1246       file when the tracer is active. They always appear in the
1247       options directory.
1248
1249
1250Here are the per tracer options:
1251
1252Options for function tracer:
1253
1254  func_stack_trace
1255	When set, a stack trace is recorded after every
1256	function that is recorded. NOTE! Limit the functions
1257	that are recorded before enabling this, with
1258	"set_ftrace_filter" otherwise the system performance
1259	will be critically degraded. Remember to disable
1260	this option before clearing the function filter.
1261
1262Options for function_graph tracer:
1263
1264 Since the function_graph tracer has a slightly different output
1265 it has its own options to control what is displayed.
1266
1267  funcgraph-overrun
1268	When set, the "overrun" of the graph stack is
1269	displayed after each function traced. The
1270	overrun, is when the stack depth of the calls
1271	is greater than what is reserved for each task.
1272	Each task has a fixed array of functions to
1273	trace in the call graph. If the depth of the
1274	calls exceeds that, the function is not traced.
1275	The overrun is the number of functions missed
1276	due to exceeding this array.
1277
1278  funcgraph-cpu
1279	When set, the CPU number of the CPU where the trace
1280	occurred is displayed.
1281
1282  funcgraph-overhead
1283	When set, if the function takes longer than
1284	A certain amount, then a delay marker is
1285	displayed. See "delay" above, under the
1286	header description.
1287
1288  funcgraph-proc
1289	Unlike other tracers, the process' command line
1290	is not displayed by default, but instead only
1291	when a task is traced in and out during a context
1292	switch. Enabling this options has the command
1293	of each process displayed at every line.
1294
1295  funcgraph-duration
1296	At the end of each function (the return)
1297	the duration of the amount of time in the
1298	function is displayed in microseconds.
1299
1300  funcgraph-abstime
1301	When set, the timestamp is displayed at each line.
1302
1303  funcgraph-irqs
1304	When disabled, functions that happen inside an
1305	interrupt will not be traced.
1306
1307  funcgraph-tail
1308	When set, the return event will include the function
1309	that it represents. By default this is off, and
1310	only a closing curly bracket "}" is displayed for
1311	the return of a function.
1312
1313  sleep-time
1314	When running function graph tracer, to include
1315	the time a task schedules out in its function.
1316	When enabled, it will account time the task has been
1317	scheduled out as part of the function call.
1318
1319  graph-time
1320	When running function profiler with function graph tracer,
1321	to include the time to call nested functions. When this is
1322	not set, the time reported for the function will only
1323	include the time the function itself executed for, not the
1324	time for functions that it called.
1325
1326Options for blk tracer:
1327
1328  blk_classic
1329	Shows a more minimalistic output.
1330
1331
1332irqsoff
1333-------
1334
1335When interrupts are disabled, the CPU can not react to any other
1336external event (besides NMIs and SMIs). This prevents the timer
1337interrupt from triggering or the mouse interrupt from letting
1338the kernel know of a new mouse event. The result is a latency
1339with the reaction time.
1340
1341The irqsoff tracer tracks the time for which interrupts are
1342disabled. When a new maximum latency is hit, the tracer saves
1343the trace leading up to that latency point so that every time a
1344new maximum is reached, the old saved trace is discarded and the
1345new trace is saved.
1346
1347To reset the maximum, echo 0 into tracing_max_latency. Here is
1348an example::
1349
1350  # echo 0 > options/function-trace
1351  # echo irqsoff > current_tracer
1352  # echo 1 > tracing_on
1353  # echo 0 > tracing_max_latency
1354  # ls -ltr
1355  [...]
1356  # echo 0 > tracing_on
1357  # cat trace
1358  # tracer: irqsoff
1359  #
1360  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1361  # --------------------------------------------------------------------
1362  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1363  #    -----------------
1364  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1365  #    -----------------
1366  #  => started at: run_timer_softirq
1367  #  => ended at:   run_timer_softirq
1368  #
1369  #
1370  #                  _------=> CPU#
1371  #                 / _-----=> irqs-off
1372  #                | / _----=> need-resched
1373  #                || / _---=> hardirq/softirq
1374  #                ||| / _--=> preempt-depth
1375  #                |||| /     delay
1376  #  cmd     pid   ||||| time  |   caller
1377  #     \   /      |||||  \    |   /
1378    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1379    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1380    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1381    <idle>-0       0dNs3   25us : <stack trace>
1382   => _raw_spin_unlock_irq
1383   => run_timer_softirq
1384   => __do_softirq
1385   => call_softirq
1386   => do_softirq
1387   => irq_exit
1388   => smp_apic_timer_interrupt
1389   => apic_timer_interrupt
1390   => rcu_idle_exit
1391   => cpu_idle
1392   => rest_init
1393   => start_kernel
1394   => x86_64_start_reservations
1395   => x86_64_start_kernel
1396
1397Here we see that that we had a latency of 16 microseconds (which is
1398very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1399interrupts. The difference between the 16 and the displayed
1400timestamp 25us occurred because the clock was incremented
1401between the time of recording the max latency and the time of
1402recording the function that had that latency.
1403
1404Note the above example had function-trace not set. If we set
1405function-trace, we get a much larger output::
1406
1407 with echo 1 > options/function-trace
1408
1409  # tracer: irqsoff
1410  #
1411  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1412  # --------------------------------------------------------------------
1413  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1414  #    -----------------
1415  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1416  #    -----------------
1417  #  => started at: ata_scsi_queuecmd
1418  #  => ended at:   ata_scsi_queuecmd
1419  #
1420  #
1421  #                  _------=> CPU#
1422  #                 / _-----=> irqs-off
1423  #                | / _----=> need-resched
1424  #                || / _---=> hardirq/softirq
1425  #                ||| / _--=> preempt-depth
1426  #                |||| /     delay
1427  #  cmd     pid   ||||| time  |   caller
1428  #     \   /      |||||  \    |   /
1429      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1430      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1431      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1432      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1433      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1434      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1435      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1436      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1437      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1438  [...]
1439      bash-2042    3d..1   67us : delay_tsc <-__delay
1440      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1441      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1442      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1443      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1444      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1445      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1446      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1447      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1448      bash-2042    3d..1  120us : <stack trace>
1449   => _raw_spin_unlock_irqrestore
1450   => ata_scsi_queuecmd
1451   => scsi_dispatch_cmd
1452   => scsi_request_fn
1453   => __blk_run_queue_uncond
1454   => __blk_run_queue
1455   => blk_queue_bio
1456   => generic_make_request
1457   => submit_bio
1458   => submit_bh
1459   => __ext3_get_inode_loc
1460   => ext3_iget
1461   => ext3_lookup
1462   => lookup_real
1463   => __lookup_hash
1464   => walk_component
1465   => lookup_last
1466   => path_lookupat
1467   => filename_lookup
1468   => user_path_at_empty
1469   => user_path_at
1470   => vfs_fstatat
1471   => vfs_stat
1472   => sys_newstat
1473   => system_call_fastpath
1474
1475
1476Here we traced a 71 microsecond latency. But we also see all the
1477functions that were called during that time. Note that by
1478enabling function tracing, we incur an added overhead. This
1479overhead may extend the latency times. But nevertheless, this
1480trace has provided some very helpful debugging information.
1481
1482If we prefer function graph output instead of function, we can set
1483display-graph option::
1484
1485 with echo 1 > options/display-graph
1486
1487  # tracer: irqsoff
1488  #
1489  # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1490  # --------------------------------------------------------------------
1491  # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1492  #    -----------------
1493  #    | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1494  #    -----------------
1495  #  => started at: free_debug_processing
1496  #  => ended at:   return_to_handler
1497  #
1498  #
1499  #                                       _-----=> irqs-off
1500  #                                      / _----=> need-resched
1501  #                                     | / _---=> hardirq/softirq
1502  #                                     || / _--=> preempt-depth
1503  #                                     ||| /
1504  #   REL TIME      CPU  TASK/PID       ||||     DURATION                  FUNCTION CALLS
1505  #      |          |     |    |        ||||      |   |                     |   |   |   |
1506          0 us |   0)   bash-1507    |  d... |   0.000 us    |  _raw_spin_lock_irqsave();
1507          0 us |   0)   bash-1507    |  d..1 |   0.378 us    |    do_raw_spin_trylock();
1508          1 us |   0)   bash-1507    |  d..2 |               |    set_track() {
1509          2 us |   0)   bash-1507    |  d..2 |               |      save_stack_trace() {
1510          2 us |   0)   bash-1507    |  d..2 |               |        __save_stack_trace() {
1511          3 us |   0)   bash-1507    |  d..2 |               |          __unwind_start() {
1512          3 us |   0)   bash-1507    |  d..2 |               |            get_stack_info() {
1513          3 us |   0)   bash-1507    |  d..2 |   0.351 us    |              in_task_stack();
1514          4 us |   0)   bash-1507    |  d..2 |   1.107 us    |            }
1515  [...]
1516       3750 us |   0)   bash-1507    |  d..1 |   0.516 us    |      do_raw_spin_unlock();
1517       3750 us |   0)   bash-1507    |  d..1 |   0.000 us    |  _raw_spin_unlock_irqrestore();
1518       3764 us |   0)   bash-1507    |  d..1 |   0.000 us    |  tracer_hardirqs_on();
1519      bash-1507    0d..1 3792us : <stack trace>
1520   => free_debug_processing
1521   => __slab_free
1522   => kmem_cache_free
1523   => vm_area_free
1524   => remove_vma
1525   => exit_mmap
1526   => mmput
1527   => begin_new_exec
1528   => load_elf_binary
1529   => search_binary_handler
1530   => __do_execve_file.isra.32
1531   => __x64_sys_execve
1532   => do_syscall_64
1533   => entry_SYSCALL_64_after_hwframe
1534
1535preemptoff
1536----------
1537
1538When preemption is disabled, we may be able to receive
1539interrupts but the task cannot be preempted and a higher
1540priority task must wait for preemption to be enabled again
1541before it can preempt a lower priority task.
1542
1543The preemptoff tracer traces the places that disable preemption.
1544Like the irqsoff tracer, it records the maximum latency for
1545which preemption was disabled. The control of preemptoff tracer
1546is much like the irqsoff tracer.
1547::
1548
1549  # echo 0 > options/function-trace
1550  # echo preemptoff > current_tracer
1551  # echo 1 > tracing_on
1552  # echo 0 > tracing_max_latency
1553  # ls -ltr
1554  [...]
1555  # echo 0 > tracing_on
1556  # cat trace
1557  # tracer: preemptoff
1558  #
1559  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1560  # --------------------------------------------------------------------
1561  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1562  #    -----------------
1563  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1564  #    -----------------
1565  #  => started at: do_IRQ
1566  #  => ended at:   do_IRQ
1567  #
1568  #
1569  #                  _------=> CPU#
1570  #                 / _-----=> irqs-off
1571  #                | / _----=> need-resched
1572  #                || / _---=> hardirq/softirq
1573  #                ||| / _--=> preempt-depth
1574  #                |||| /     delay
1575  #  cmd     pid   ||||| time  |   caller
1576  #     \   /      |||||  \    |   /
1577      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1578      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1579      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1580      sshd-1991    1d..1   52us : <stack trace>
1581   => sub_preempt_count
1582   => irq_exit
1583   => do_IRQ
1584   => ret_from_intr
1585
1586
1587This has some more changes. Preemption was disabled when an
1588interrupt came in (notice the 'h'), and was enabled on exit.
1589But we also see that interrupts have been disabled when entering
1590the preempt off section and leaving it (the 'd'). We do not know if
1591interrupts were enabled in the mean time or shortly after this
1592was over.
1593::
1594
1595  # tracer: preemptoff
1596  #
1597  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1598  # --------------------------------------------------------------------
1599  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1600  #    -----------------
1601  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1602  #    -----------------
1603  #  => started at: wake_up_new_task
1604  #  => ended at:   task_rq_unlock
1605  #
1606  #
1607  #                  _------=> CPU#
1608  #                 / _-----=> irqs-off
1609  #                | / _----=> need-resched
1610  #                || / _---=> hardirq/softirq
1611  #                ||| / _--=> preempt-depth
1612  #                |||| /     delay
1613  #  cmd     pid   ||||| time  |   caller
1614  #     \   /      |||||  \    |   /
1615      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1616      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1617      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1618      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1619      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1620  [...]
1621      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1622      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1623      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1624      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1625      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1626      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1627      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1628      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1629  [...]
1630      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1631      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1632      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1633      bash-1994    1d..2   36us : do_softirq <-irq_exit
1634      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1635      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1636      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1637      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1638      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1639      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1640  [...]
1641      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1642      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1643      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1644      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1645      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1646      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1647      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1648      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1649      bash-1994    1.N.1  104us : <stack trace>
1650   => sub_preempt_count
1651   => _raw_spin_unlock_irqrestore
1652   => task_rq_unlock
1653   => wake_up_new_task
1654   => do_fork
1655   => sys_clone
1656   => stub_clone
1657
1658
1659The above is an example of the preemptoff trace with
1660function-trace set. Here we see that interrupts were not disabled
1661the entire time. The irq_enter code lets us know that we entered
1662an interrupt 'h'. Before that, the functions being traced still
1663show that it is not in an interrupt, but we can see from the
1664functions themselves that this is not the case.
1665
1666preemptirqsoff
1667--------------
1668
1669Knowing the locations that have interrupts disabled or
1670preemption disabled for the longest times is helpful. But
1671sometimes we would like to know when either preemption and/or
1672interrupts are disabled.
1673
1674Consider the following code::
1675
1676    local_irq_disable();
1677    call_function_with_irqs_off();
1678    preempt_disable();
1679    call_function_with_irqs_and_preemption_off();
1680    local_irq_enable();
1681    call_function_with_preemption_off();
1682    preempt_enable();
1683
1684The irqsoff tracer will record the total length of
1685call_function_with_irqs_off() and
1686call_function_with_irqs_and_preemption_off().
1687
1688The preemptoff tracer will record the total length of
1689call_function_with_irqs_and_preemption_off() and
1690call_function_with_preemption_off().
1691
1692But neither will trace the time that interrupts and/or
1693preemption is disabled. This total time is the time that we can
1694not schedule. To record this time, use the preemptirqsoff
1695tracer.
1696
1697Again, using this trace is much like the irqsoff and preemptoff
1698tracers.
1699::
1700
1701  # echo 0 > options/function-trace
1702  # echo preemptirqsoff > current_tracer
1703  # echo 1 > tracing_on
1704  # echo 0 > tracing_max_latency
1705  # ls -ltr
1706  [...]
1707  # echo 0 > tracing_on
1708  # cat trace
1709  # tracer: preemptirqsoff
1710  #
1711  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1712  # --------------------------------------------------------------------
1713  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1714  #    -----------------
1715  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1716  #    -----------------
1717  #  => started at: ata_scsi_queuecmd
1718  #  => ended at:   ata_scsi_queuecmd
1719  #
1720  #
1721  #                  _------=> CPU#
1722  #                 / _-----=> irqs-off
1723  #                | / _----=> need-resched
1724  #                || / _---=> hardirq/softirq
1725  #                ||| / _--=> preempt-depth
1726  #                |||| /     delay
1727  #  cmd     pid   ||||| time  |   caller
1728  #     \   /      |||||  \    |   /
1729        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1730        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1731        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1732        ls-2230    3...1  111us : <stack trace>
1733   => sub_preempt_count
1734   => _raw_spin_unlock_irqrestore
1735   => ata_scsi_queuecmd
1736   => scsi_dispatch_cmd
1737   => scsi_request_fn
1738   => __blk_run_queue_uncond
1739   => __blk_run_queue
1740   => blk_queue_bio
1741   => generic_make_request
1742   => submit_bio
1743   => submit_bh
1744   => ext3_bread
1745   => ext3_dir_bread
1746   => htree_dirblock_to_tree
1747   => ext3_htree_fill_tree
1748   => ext3_readdir
1749   => vfs_readdir
1750   => sys_getdents
1751   => system_call_fastpath
1752
1753
1754The trace_hardirqs_off_thunk is called from assembly on x86 when
1755interrupts are disabled in the assembly code. Without the
1756function tracing, we do not know if interrupts were enabled
1757within the preemption points. We do see that it started with
1758preemption enabled.
1759
1760Here is a trace with function-trace set::
1761
1762  # tracer: preemptirqsoff
1763  #
1764  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1765  # --------------------------------------------------------------------
1766  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1767  #    -----------------
1768  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1769  #    -----------------
1770  #  => started at: schedule
1771  #  => ended at:   mutex_unlock
1772  #
1773  #
1774  #                  _------=> CPU#
1775  #                 / _-----=> irqs-off
1776  #                | / _----=> need-resched
1777  #                || / _---=> hardirq/softirq
1778  #                ||| / _--=> preempt-depth
1779  #                |||| /     delay
1780  #  cmd     pid   ||||| time  |   caller
1781  #     \   /      |||||  \    |   /
1782  kworker/-59      3...1    0us : __schedule <-schedule
1783  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1784  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1785  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1786  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1787  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1788  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1789  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1790  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1791  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1792  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1793  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1794  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1795  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1796  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1797  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1798  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1799  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1800  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1801  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1802  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1803  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1804  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1805  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1806  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1807        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1808        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1809        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1810        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1811        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1812        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1813        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1814  [...]
1815        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1816        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1817        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1818        ls-2269    3d..3   21us : do_softirq <-irq_exit
1819        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1820        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1821        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1822        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1823        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1824        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1825        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1826  [...]
1827        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1828        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1829        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1830        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1831        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1832        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1833  [...]
1834        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1835        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1836        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1837        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1838        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1839        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1840        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1841        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1842        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1843        ls-2269    3d...  186us : <stack trace>
1844   => __mutex_unlock_slowpath
1845   => mutex_unlock
1846   => process_output
1847   => n_tty_write
1848   => tty_write
1849   => vfs_write
1850   => sys_write
1851   => system_call_fastpath
1852
1853This is an interesting trace. It started with kworker running and
1854scheduling out and ls taking over. But as soon as ls released the
1855rq lock and enabled interrupts (but not preemption) an interrupt
1856triggered. When the interrupt finished, it started running softirqs.
1857But while the softirq was running, another interrupt triggered.
1858When an interrupt is running inside a softirq, the annotation is 'H'.
1859
1860
1861wakeup
1862------
1863
1864One common case that people are interested in tracing is the
1865time it takes for a task that is woken to actually wake up.
1866Now for non Real-Time tasks, this can be arbitrary. But tracing
1867it none the less can be interesting.
1868
1869Without function tracing::
1870
1871  # echo 0 > options/function-trace
1872  # echo wakeup > current_tracer
1873  # echo 1 > tracing_on
1874  # echo 0 > tracing_max_latency
1875  # chrt -f 5 sleep 1
1876  # echo 0 > tracing_on
1877  # cat trace
1878  # tracer: wakeup
1879  #
1880  # wakeup latency trace v1.1.5 on 3.8.0-test+
1881  # --------------------------------------------------------------------
1882  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1883  #    -----------------
1884  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1885  #    -----------------
1886  #
1887  #                  _------=> CPU#
1888  #                 / _-----=> irqs-off
1889  #                | / _----=> need-resched
1890  #                || / _---=> hardirq/softirq
1891  #                ||| / _--=> preempt-depth
1892  #                |||| /     delay
1893  #  cmd     pid   ||||| time  |   caller
1894  #     \   /      |||||  \    |   /
1895    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1896    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1897    <idle>-0       3d..3   15us : __schedule <-schedule
1898    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1899
1900The tracer only traces the highest priority task in the system
1901to avoid tracing the normal circumstances. Here we see that
1902the kworker with a nice priority of -20 (not very nice), took
1903just 15 microseconds from the time it woke up, to the time it
1904ran.
1905
1906Non Real-Time tasks are not that interesting. A more interesting
1907trace is to concentrate only on Real-Time tasks.
1908
1909wakeup_rt
1910---------
1911
1912In a Real-Time environment it is very important to know the
1913wakeup time it takes for the highest priority task that is woken
1914up to the time that it executes. This is also known as "schedule
1915latency". I stress the point that this is about RT tasks. It is
1916also important to know the scheduling latency of non-RT tasks,
1917but the average schedule latency is better for non-RT tasks.
1918Tools like LatencyTop are more appropriate for such
1919measurements.
1920
1921Real-Time environments are interested in the worst case latency.
1922That is the longest latency it takes for something to happen,
1923and not the average. We can have a very fast scheduler that may
1924only have a large latency once in a while, but that would not
1925work well with Real-Time tasks.  The wakeup_rt tracer was designed
1926to record the worst case wakeups of RT tasks. Non-RT tasks are
1927not recorded because the tracer only records one worst case and
1928tracing non-RT tasks that are unpredictable will overwrite the
1929worst case latency of RT tasks (just run the normal wakeup
1930tracer for a while to see that effect).
1931
1932Since this tracer only deals with RT tasks, we will run this
1933slightly differently than we did with the previous tracers.
1934Instead of performing an 'ls', we will run 'sleep 1' under
1935'chrt' which changes the priority of the task.
1936::
1937
1938  # echo 0 > options/function-trace
1939  # echo wakeup_rt > current_tracer
1940  # echo 1 > tracing_on
1941  # echo 0 > tracing_max_latency
1942  # chrt -f 5 sleep 1
1943  # echo 0 > tracing_on
1944  # cat trace
1945  # tracer: wakeup
1946  #
1947  # tracer: wakeup_rt
1948  #
1949  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1950  # --------------------------------------------------------------------
1951  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1952  #    -----------------
1953  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1954  #    -----------------
1955  #
1956  #                  _------=> CPU#
1957  #                 / _-----=> irqs-off
1958  #                | / _----=> need-resched
1959  #                || / _---=> hardirq/softirq
1960  #                ||| / _--=> preempt-depth
1961  #                |||| /     delay
1962  #  cmd     pid   ||||| time  |   caller
1963  #     \   /      |||||  \    |   /
1964    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1965    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1966    <idle>-0       3d..3    5us : __schedule <-schedule
1967    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1968
1969
1970Running this on an idle system, we see that it only took 5 microseconds
1971to perform the task switch.  Note, since the trace point in the schedule
1972is before the actual "switch", we stop the tracing when the recorded task
1973is about to schedule in. This may change if we add a new marker at the
1974end of the scheduler.
1975
1976Notice that the recorded task is 'sleep' with the PID of 2389
1977and it has an rt_prio of 5. This priority is user-space priority
1978and not the internal kernel priority. The policy is 1 for
1979SCHED_FIFO and 2 for SCHED_RR.
1980
1981Note, that the trace data shows the internal priority (99 - rtprio).
1982::
1983
1984  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1985
1986The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1987and in the running state 'R'. The sleep task was scheduled in with
19882389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1989and it too is in the running state.
1990
1991Doing the same with chrt -r 5 and function-trace set.
1992::
1993
1994  echo 1 > options/function-trace
1995
1996  # tracer: wakeup_rt
1997  #
1998  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1999  # --------------------------------------------------------------------
2000  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2001  #    -----------------
2002  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
2003  #    -----------------
2004  #
2005  #                  _------=> CPU#
2006  #                 / _-----=> irqs-off
2007  #                | / _----=> need-resched
2008  #                || / _---=> hardirq/softirq
2009  #                ||| / _--=> preempt-depth
2010  #                |||| /     delay
2011  #  cmd     pid   ||||| time  |   caller
2012  #     \   /      |||||  \    |   /
2013    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
2014    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2015    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
2016    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
2017    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
2018    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
2019    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
2020    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
2021    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
2022    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2023    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
2024    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
2025    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
2026    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
2027    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
2028    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
2029    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
2030    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
2031    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
2032    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
2033    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
2034    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
2035    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
2036    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
2037    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
2038    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
2039    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
2040    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
2041    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
2042    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
2043    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
2044    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
2045    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
2046    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
2047    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
2048    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
2049    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
2050    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
2051    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
2052    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
2053    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
2054    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
2055    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2056    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
2057    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
2058    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
2059    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
2060    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
2061    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
2062    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
2063    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
2064    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2065    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
2066    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
2067    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
2068    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2069    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
2070    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
2071    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2072    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
2073    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
2074    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
2075    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
2076    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
2077    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
2078    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
2079    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2080    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2081    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
2082    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
2083    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
2084    <idle>-0       3.N..   25us : schedule <-cpu_idle
2085    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
2086    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
2087    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
2088    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
2089    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
2090    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
2091    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
2092    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
2093    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
2094    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
2095    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
2096    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
2097    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
2098
2099This isn't that big of a trace, even with function tracing enabled,
2100so I included the entire trace.
2101
2102The interrupt went off while when the system was idle. Somewhere
2103before task_woken_rt() was called, the NEED_RESCHED flag was set,
2104this is indicated by the first occurrence of the 'N' flag.
2105
2106Latency tracing and events
2107--------------------------
2108As function tracing can induce a much larger latency, but without
2109seeing what happens within the latency it is hard to know what
2110caused it. There is a middle ground, and that is with enabling
2111events.
2112::
2113
2114  # echo 0 > options/function-trace
2115  # echo wakeup_rt > current_tracer
2116  # echo 1 > events/enable
2117  # echo 1 > tracing_on
2118  # echo 0 > tracing_max_latency
2119  # chrt -f 5 sleep 1
2120  # echo 0 > tracing_on
2121  # cat trace
2122  # tracer: wakeup_rt
2123  #
2124  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2125  # --------------------------------------------------------------------
2126  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2127  #    -----------------
2128  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2129  #    -----------------
2130  #
2131  #                  _------=> CPU#
2132  #                 / _-----=> irqs-off
2133  #                | / _----=> need-resched
2134  #                || / _---=> hardirq/softirq
2135  #                ||| / _--=> preempt-depth
2136  #                |||| /     delay
2137  #  cmd     pid   ||||| time  |   caller
2138  #     \   /      |||||  \    |   /
2139    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
2140    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2141    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2142    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2143    <idle>-0       2.N.2    2us : power_end: cpu_id=2
2144    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
2145    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2146    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2147    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
2148    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
2149    <idle>-0       2d..3    6us : __schedule <-schedule
2150    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
2151
2152
2153Hardware Latency Detector
2154-------------------------
2155
2156The hardware latency detector is executed by enabling the "hwlat" tracer.
2157
2158NOTE, this tracer will affect the performance of the system as it will
2159periodically make a CPU constantly busy with interrupts disabled.
2160::
2161
2162  # echo hwlat > current_tracer
2163  # sleep 100
2164  # cat trace
2165  # tracer: hwlat
2166  #
2167  # entries-in-buffer/entries-written: 13/13   #P:8
2168  #
2169  #                              _-----=> irqs-off
2170  #                             / _----=> need-resched
2171  #                            | / _---=> hardirq/softirq
2172  #                            || / _--=> preempt-depth
2173  #                            ||| /     delay
2174  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2175  #              | |       |   ||||       |         |
2176             <...>-1729  [001] d...   678.473449: #1     inner/outer(us):   11/12    ts:1581527483.343962693 count:6
2177             <...>-1729  [004] d...   689.556542: #2     inner/outer(us):   16/9     ts:1581527494.889008092 count:1
2178             <...>-1729  [005] d...   714.756290: #3     inner/outer(us):   16/16    ts:1581527519.678961629 count:5
2179             <...>-1729  [001] d...   718.788247: #4     inner/outer(us):    9/17    ts:1581527523.889012713 count:1
2180             <...>-1729  [002] d...   719.796341: #5     inner/outer(us):   13/9     ts:1581527524.912872606 count:1
2181             <...>-1729  [006] d...   844.787091: #6     inner/outer(us):    9/12    ts:1581527649.889048502 count:2
2182             <...>-1729  [003] d...   849.827033: #7     inner/outer(us):   18/9     ts:1581527654.889013793 count:1
2183             <...>-1729  [007] d...   853.859002: #8     inner/outer(us):    9/12    ts:1581527658.889065736 count:1
2184             <...>-1729  [001] d...   855.874978: #9     inner/outer(us):    9/11    ts:1581527660.861991877 count:1
2185             <...>-1729  [001] d...   863.938932: #10    inner/outer(us):    9/11    ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1
2186             <...>-1729  [007] d...   878.050780: #11    inner/outer(us):    9/12    ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1
2187             <...>-1729  [007] d...   886.114702: #12    inner/outer(us):    9/12    ts:1581527691.385001600 count:1
2188
2189
2190The above output is somewhat the same in the header. All events will have
2191interrupts disabled 'd'. Under the FUNCTION title there is:
2192
2193 #1
2194	This is the count of events recorded that were greater than the
2195	tracing_threshold (See below).
2196
2197 inner/outer(us):   11/11
2198
2199      This shows two numbers as "inner latency" and "outer latency". The test
2200      runs in a loop checking a timestamp twice. The latency detected within
2201      the two timestamps is the "inner latency" and the latency detected
2202      after the previous timestamp and the next timestamp in the loop is
2203      the "outer latency".
2204
2205 ts:1581527483.343962693
2206
2207      The absolute timestamp that the first latency was recorded in the window.
2208
2209 count:6
2210
2211      The number of times a latency was detected during the window.
2212
2213 nmi-total:7 nmi-count:1
2214
2215      On architectures that support it, if an NMI comes in during the
2216      test, the time spent in NMI is reported in "nmi-total" (in
2217      microseconds).
2218
2219      All architectures that have NMIs will show the "nmi-count" if an
2220      NMI comes in during the test.
2221
2222hwlat files:
2223
2224  tracing_threshold
2225	This gets automatically set to "10" to represent 10
2226	microseconds. This is the threshold of latency that
2227	needs to be detected before the trace will be recorded.
2228
2229	Note, when hwlat tracer is finished (another tracer is
2230	written into "current_tracer"), the original value for
2231	tracing_threshold is placed back into this file.
2232
2233  hwlat_detector/width
2234	The length of time the test runs with interrupts disabled.
2235
2236  hwlat_detector/window
2237	The length of time of the window which the test
2238	runs. That is, the test will run for "width"
2239	microseconds per "window" microseconds
2240
2241  tracing_cpumask
2242	When the test is started. A kernel thread is created that
2243	runs the test. This thread will alternate between CPUs
2244	listed in the tracing_cpumask between each period
2245	(one "window"). To limit the test to specific CPUs
2246	set the mask in this file to only the CPUs that the test
2247	should run on.
2248
2249function
2250--------
2251
2252This tracer is the function tracer. Enabling the function tracer
2253can be done from the debug file system. Make sure the
2254ftrace_enabled is set; otherwise this tracer is a nop.
2255See the "ftrace_enabled" section below.
2256::
2257
2258  # sysctl kernel.ftrace_enabled=1
2259  # echo function > current_tracer
2260  # echo 1 > tracing_on
2261  # usleep 1
2262  # echo 0 > tracing_on
2263  # cat trace
2264  # tracer: function
2265  #
2266  # entries-in-buffer/entries-written: 24799/24799   #P:4
2267  #
2268  #                              _-----=> irqs-off
2269  #                             / _----=> need-resched
2270  #                            | / _---=> hardirq/softirq
2271  #                            || / _--=> preempt-depth
2272  #                            ||| /     delay
2273  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2274  #              | |       |   ||||       |         |
2275              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2276              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2277              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2278              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2279              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2280              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2281              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2282              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2283  [...]
2284
2285
2286Note: function tracer uses ring buffers to store the above
2287entries. The newest data may overwrite the oldest data.
2288Sometimes using echo to stop the trace is not sufficient because
2289the tracing could have overwritten the data that you wanted to
2290record. For this reason, it is sometimes better to disable
2291tracing directly from a program. This allows you to stop the
2292tracing at the point that you hit the part that you are
2293interested in. To disable the tracing directly from a C program,
2294something like following code snippet can be used::
2295
2296	int trace_fd;
2297	[...]
2298	int main(int argc, char *argv[]) {
2299		[...]
2300		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2301		[...]
2302		if (condition_hit()) {
2303			write(trace_fd, "0", 1);
2304		}
2305		[...]
2306	}
2307
2308
2309Single thread tracing
2310---------------------
2311
2312By writing into set_ftrace_pid you can trace a
2313single thread. For example::
2314
2315  # cat set_ftrace_pid
2316  no pid
2317  # echo 3111 > set_ftrace_pid
2318  # cat set_ftrace_pid
2319  3111
2320  # echo function > current_tracer
2321  # cat trace | head
2322  # tracer: function
2323  #
2324  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2325  #              | |       |          |         |
2326      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2327      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2328      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2329      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2330      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2331      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2332  # echo > set_ftrace_pid
2333  # cat trace |head
2334  # tracer: function
2335  #
2336  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2337  #              | |       |          |         |
2338  ##### CPU 3 buffer started ####
2339      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2340      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2341      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2342      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2343      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2344
2345If you want to trace a function when executing, you could use
2346something like this simple program.
2347::
2348
2349	#include <stdio.h>
2350	#include <stdlib.h>
2351	#include <sys/types.h>
2352	#include <sys/stat.h>
2353	#include <fcntl.h>
2354	#include <unistd.h>
2355	#include <string.h>
2356
2357	#define _STR(x) #x
2358	#define STR(x) _STR(x)
2359	#define MAX_PATH 256
2360
2361	const char *find_tracefs(void)
2362	{
2363	       static char tracefs[MAX_PATH+1];
2364	       static int tracefs_found;
2365	       char type[100];
2366	       FILE *fp;
2367
2368	       if (tracefs_found)
2369		       return tracefs;
2370
2371	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2372		       perror("/proc/mounts");
2373		       return NULL;
2374	       }
2375
2376	       while (fscanf(fp, "%*s %"
2377		             STR(MAX_PATH)
2378		             "s %99s %*s %*d %*d\n",
2379		             tracefs, type) == 2) {
2380		       if (strcmp(type, "tracefs") == 0)
2381		               break;
2382	       }
2383	       fclose(fp);
2384
2385	       if (strcmp(type, "tracefs") != 0) {
2386		       fprintf(stderr, "tracefs not mounted");
2387		       return NULL;
2388	       }
2389
2390	       strcat(tracefs, "/tracing/");
2391	       tracefs_found = 1;
2392
2393	       return tracefs;
2394	}
2395
2396	const char *tracing_file(const char *file_name)
2397	{
2398	       static char trace_file[MAX_PATH+1];
2399	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2400	       return trace_file;
2401	}
2402
2403	int main (int argc, char **argv)
2404	{
2405		if (argc < 1)
2406		        exit(-1);
2407
2408		if (fork() > 0) {
2409		        int fd, ffd;
2410		        char line[64];
2411		        int s;
2412
2413		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2414		        if (ffd < 0)
2415		                exit(-1);
2416		        write(ffd, "nop", 3);
2417
2418		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2419		        s = sprintf(line, "%d\n", getpid());
2420		        write(fd, line, s);
2421
2422		        write(ffd, "function", 8);
2423
2424		        close(fd);
2425		        close(ffd);
2426
2427		        execvp(argv[1], argv+1);
2428		}
2429
2430		return 0;
2431	}
2432
2433Or this simple script!
2434::
2435
2436  #!/bin/bash
2437
2438  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2439  echo nop > $tracefs/tracing/current_tracer
2440  echo 0 > $tracefs/tracing/tracing_on
2441  echo $$ > $tracefs/tracing/set_ftrace_pid
2442  echo function > $tracefs/tracing/current_tracer
2443  echo 1 > $tracefs/tracing/tracing_on
2444  exec "$@"
2445
2446
2447function graph tracer
2448---------------------------
2449
2450This tracer is similar to the function tracer except that it
2451probes a function on its entry and its exit. This is done by
2452using a dynamically allocated stack of return addresses in each
2453task_struct. On function entry the tracer overwrites the return
2454address of each function traced to set a custom probe. Thus the
2455original return address is stored on the stack of return address
2456in the task_struct.
2457
2458Probing on both ends of a function leads to special features
2459such as:
2460
2461- measure of a function's time execution
2462- having a reliable call stack to draw function calls graph
2463
2464This tracer is useful in several situations:
2465
2466- you want to find the reason of a strange kernel behavior and
2467  need to see what happens in detail on any areas (or specific
2468  ones).
2469
2470- you are experiencing weird latencies but it's difficult to
2471  find its origin.
2472
2473- you want to find quickly which path is taken by a specific
2474  function
2475
2476- you just want to peek inside a working kernel and want to see
2477  what happens there.
2478
2479::
2480
2481  # tracer: function_graph
2482  #
2483  # CPU  DURATION                  FUNCTION CALLS
2484  # |     |   |                     |   |   |   |
2485
2486   0)               |  sys_open() {
2487   0)               |    do_sys_open() {
2488   0)               |      getname() {
2489   0)               |        kmem_cache_alloc() {
2490   0)   1.382 us    |          __might_sleep();
2491   0)   2.478 us    |        }
2492   0)               |        strncpy_from_user() {
2493   0)               |          might_fault() {
2494   0)   1.389 us    |            __might_sleep();
2495   0)   2.553 us    |          }
2496   0)   3.807 us    |        }
2497   0)   7.876 us    |      }
2498   0)               |      alloc_fd() {
2499   0)   0.668 us    |        _spin_lock();
2500   0)   0.570 us    |        expand_files();
2501   0)   0.586 us    |        _spin_unlock();
2502
2503
2504There are several columns that can be dynamically
2505enabled/disabled. You can use every combination of options you
2506want, depending on your needs.
2507
2508- The cpu number on which the function executed is default
2509  enabled.  It is sometimes better to only trace one cpu (see
2510  tracing_cpu_mask file) or you might sometimes see unordered
2511  function calls while cpu tracing switch.
2512
2513	- hide: echo nofuncgraph-cpu > trace_options
2514	- show: echo funcgraph-cpu > trace_options
2515
2516- The duration (function's time of execution) is displayed on
2517  the closing bracket line of a function or on the same line
2518  than the current function in case of a leaf one. It is default
2519  enabled.
2520
2521	- hide: echo nofuncgraph-duration > trace_options
2522	- show: echo funcgraph-duration > trace_options
2523
2524- The overhead field precedes the duration field in case of
2525  reached duration thresholds.
2526
2527	- hide: echo nofuncgraph-overhead > trace_options
2528	- show: echo funcgraph-overhead > trace_options
2529	- depends on: funcgraph-duration
2530
2531  ie::
2532
2533    3) # 1837.709 us |          } /* __switch_to */
2534    3)               |          finish_task_switch() {
2535    3)   0.313 us    |            _raw_spin_unlock_irq();
2536    3)   3.177 us    |          }
2537    3) # 1889.063 us |        } /* __schedule */
2538    3) ! 140.417 us  |      } /* __schedule */
2539    3) # 2034.948 us |    } /* schedule */
2540    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2541
2542    [...]
2543
2544    1)   0.260 us    |              msecs_to_jiffies();
2545    1)   0.313 us    |              __rcu_read_unlock();
2546    1) + 61.770 us   |            }
2547    1) + 64.479 us   |          }
2548    1)   0.313 us    |          rcu_bh_qs();
2549    1)   0.313 us    |          __local_bh_enable();
2550    1) ! 217.240 us  |        }
2551    1)   0.365 us    |        idle_cpu();
2552    1)               |        rcu_irq_exit() {
2553    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2554    1)   3.125 us    |        }
2555    1) ! 227.812 us  |      }
2556    1) ! 457.395 us  |    }
2557    1) @ 119760.2 us |  }
2558
2559    [...]
2560
2561    2)               |    handle_IPI() {
2562    1)   6.979 us    |                  }
2563    2)   0.417 us    |      scheduler_ipi();
2564    1)   9.791 us    |                }
2565    1) + 12.917 us   |              }
2566    2)   3.490 us    |    }
2567    1) + 15.729 us   |            }
2568    1) + 18.542 us   |          }
2569    2) $ 3594274 us  |  }
2570
2571Flags::
2572
2573  + means that the function exceeded 10 usecs.
2574  ! means that the function exceeded 100 usecs.
2575  # means that the function exceeded 1000 usecs.
2576  * means that the function exceeded 10 msecs.
2577  @ means that the function exceeded 100 msecs.
2578  $ means that the function exceeded 1 sec.
2579
2580
2581- The task/pid field displays the thread cmdline and pid which
2582  executed the function. It is default disabled.
2583
2584	- hide: echo nofuncgraph-proc > trace_options
2585	- show: echo funcgraph-proc > trace_options
2586
2587  ie::
2588
2589    # tracer: function_graph
2590    #
2591    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2592    # |    |    |           |   |                     |   |   |   |
2593    0)    sh-4802     |               |                  d_free() {
2594    0)    sh-4802     |               |                    call_rcu() {
2595    0)    sh-4802     |               |                      __call_rcu() {
2596    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2597    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2598    0)    sh-4802     |   2.899 us    |                      }
2599    0)    sh-4802     |   4.040 us    |                    }
2600    0)    sh-4802     |   5.151 us    |                  }
2601    0)    sh-4802     | + 49.370 us   |                }
2602
2603
2604- The absolute time field is an absolute timestamp given by the
2605  system clock since it started. A snapshot of this time is
2606  given on each entry/exit of functions
2607
2608	- hide: echo nofuncgraph-abstime > trace_options
2609	- show: echo funcgraph-abstime > trace_options
2610
2611  ie::
2612
2613    #
2614    #      TIME       CPU  DURATION                  FUNCTION CALLS
2615    #       |         |     |   |                     |   |   |   |
2616    360.774522 |   1)   0.541 us    |                                          }
2617    360.774522 |   1)   4.663 us    |                                        }
2618    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2619    360.774524 |   1)   6.796 us    |                                      }
2620    360.774524 |   1)   7.952 us    |                                    }
2621    360.774525 |   1)   9.063 us    |                                  }
2622    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2623    360.774527 |   1)   0.578 us    |                                  __brelse();
2624    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2625    360.774528 |   1)               |                                    unlock_buffer() {
2626    360.774529 |   1)               |                                      wake_up_bit() {
2627    360.774529 |   1)               |                                        bit_waitqueue() {
2628    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2629
2630
2631The function name is always displayed after the closing bracket
2632for a function if the start of that function is not in the
2633trace buffer.
2634
2635Display of the function name after the closing bracket may be
2636enabled for functions whose start is in the trace buffer,
2637allowing easier searching with grep for function durations.
2638It is default disabled.
2639
2640	- hide: echo nofuncgraph-tail > trace_options
2641	- show: echo funcgraph-tail > trace_options
2642
2643  Example with nofuncgraph-tail (default)::
2644
2645    0)               |      putname() {
2646    0)               |        kmem_cache_free() {
2647    0)   0.518 us    |          __phys_addr();
2648    0)   1.757 us    |        }
2649    0)   2.861 us    |      }
2650
2651  Example with funcgraph-tail::
2652
2653    0)               |      putname() {
2654    0)               |        kmem_cache_free() {
2655    0)   0.518 us    |          __phys_addr();
2656    0)   1.757 us    |        } /* kmem_cache_free() */
2657    0)   2.861 us    |      } /* putname() */
2658
2659You can put some comments on specific functions by using
2660trace_printk() For example, if you want to put a comment inside
2661the __might_sleep() function, you just have to include
2662<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2663
2664	trace_printk("I'm a comment!\n")
2665
2666will produce::
2667
2668   1)               |             __might_sleep() {
2669   1)               |                /* I'm a comment! */
2670   1)   1.449 us    |             }
2671
2672
2673You might find other useful features for this tracer in the
2674following "dynamic ftrace" section such as tracing only specific
2675functions or tasks.
2676
2677dynamic ftrace
2678--------------
2679
2680If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2681virtually no overhead when function tracing is disabled. The way
2682this works is the mcount function call (placed at the start of
2683every kernel function, produced by the -pg switch in gcc),
2684starts of pointing to a simple return. (Enabling FTRACE will
2685include the -pg switch in the compiling of the kernel.)
2686
2687At compile time every C file object is run through the
2688recordmcount program (located in the scripts directory). This
2689program will parse the ELF headers in the C object to find all
2690the locations in the .text section that call mcount. Starting
2691with gcc version 4.6, the -mfentry has been added for x86, which
2692calls "__fentry__" instead of "mcount". Which is called before
2693the creation of the stack frame.
2694
2695Note, not all sections are traced. They may be prevented by either
2696a notrace, or blocked another way and all inline functions are not
2697traced. Check the "available_filter_functions" file to see what functions
2698can be traced.
2699
2700A section called "__mcount_loc" is created that holds
2701references to all the mcount/fentry call sites in the .text section.
2702The recordmcount program re-links this section back into the
2703original object. The final linking stage of the kernel will add all these
2704references into a single table.
2705
2706On boot up, before SMP is initialized, the dynamic ftrace code
2707scans this table and updates all the locations into nops. It
2708also records the locations, which are added to the
2709available_filter_functions list.  Modules are processed as they
2710are loaded and before they are executed.  When a module is
2711unloaded, it also removes its functions from the ftrace function
2712list. This is automatic in the module unload code, and the
2713module author does not need to worry about it.
2714
2715When tracing is enabled, the process of modifying the function
2716tracepoints is dependent on architecture. The old method is to use
2717kstop_machine to prevent races with the CPUs executing code being
2718modified (which can cause the CPU to do undesirable things, especially
2719if the modified code crosses cache (or page) boundaries), and the nops are
2720patched back to calls. But this time, they do not call mcount
2721(which is just a function stub). They now call into the ftrace
2722infrastructure.
2723
2724The new method of modifying the function tracepoints is to place
2725a breakpoint at the location to be modified, sync all CPUs, modify
2726the rest of the instruction not covered by the breakpoint. Sync
2727all CPUs again, and then remove the breakpoint with the finished
2728version to the ftrace call site.
2729
2730Some archs do not even need to monkey around with the synchronization,
2731and can just slap the new code on top of the old without any
2732problems with other CPUs executing it at the same time.
2733
2734One special side-effect to the recording of the functions being
2735traced is that we can now selectively choose which functions we
2736wish to trace and which ones we want the mcount calls to remain
2737as nops.
2738
2739Two files are used, one for enabling and one for disabling the
2740tracing of specified functions. They are:
2741
2742  set_ftrace_filter
2743
2744and
2745
2746  set_ftrace_notrace
2747
2748A list of available functions that you can add to these files is
2749listed in:
2750
2751   available_filter_functions
2752
2753::
2754
2755  # cat available_filter_functions
2756  put_prev_task_idle
2757  kmem_cache_create
2758  pick_next_task_rt
2759  get_online_cpus
2760  pick_next_task_fair
2761  mutex_lock
2762  [...]
2763
2764If I am only interested in sys_nanosleep and hrtimer_interrupt::
2765
2766  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2767  # echo function > current_tracer
2768  # echo 1 > tracing_on
2769  # usleep 1
2770  # echo 0 > tracing_on
2771  # cat trace
2772  # tracer: function
2773  #
2774  # entries-in-buffer/entries-written: 5/5   #P:4
2775  #
2776  #                              _-----=> irqs-off
2777  #                             / _----=> need-resched
2778  #                            | / _---=> hardirq/softirq
2779  #                            || / _--=> preempt-depth
2780  #                            ||| /     delay
2781  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2782  #              | |       |   ||||       |         |
2783            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2784            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2785            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2786            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2787            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2788
2789To see which functions are being traced, you can cat the file:
2790::
2791
2792  # cat set_ftrace_filter
2793  hrtimer_interrupt
2794  sys_nanosleep
2795
2796
2797Perhaps this is not enough. The filters also allow glob(7) matching.
2798
2799  ``<match>*``
2800	will match functions that begin with <match>
2801  ``*<match>``
2802	will match functions that end with <match>
2803  ``*<match>*``
2804	will match functions that have <match> in it
2805  ``<match1>*<match2>``
2806	will match functions that begin with <match1> and end with <match2>
2807
2808.. note::
2809      It is better to use quotes to enclose the wild cards,
2810      otherwise the shell may expand the parameters into names
2811      of files in the local directory.
2812
2813::
2814
2815  # echo 'hrtimer_*' > set_ftrace_filter
2816
2817Produces::
2818
2819  # tracer: function
2820  #
2821  # entries-in-buffer/entries-written: 897/897   #P:4
2822  #
2823  #                              _-----=> irqs-off
2824  #                             / _----=> need-resched
2825  #                            | / _---=> hardirq/softirq
2826  #                            || / _--=> preempt-depth
2827  #                            ||| /     delay
2828  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2829  #              | |       |   ||||       |         |
2830            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2831            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2832            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2833            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2834            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2835            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2836            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2837            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2838
2839Notice that we lost the sys_nanosleep.
2840::
2841
2842  # cat set_ftrace_filter
2843  hrtimer_run_queues
2844  hrtimer_run_pending
2845  hrtimer_init
2846  hrtimer_cancel
2847  hrtimer_try_to_cancel
2848  hrtimer_forward
2849  hrtimer_start
2850  hrtimer_reprogram
2851  hrtimer_force_reprogram
2852  hrtimer_get_next_event
2853  hrtimer_interrupt
2854  hrtimer_nanosleep
2855  hrtimer_wakeup
2856  hrtimer_get_remaining
2857  hrtimer_get_res
2858  hrtimer_init_sleeper
2859
2860
2861This is because the '>' and '>>' act just like they do in bash.
2862To rewrite the filters, use '>'
2863To append to the filters, use '>>'
2864
2865To clear out a filter so that all functions will be recorded
2866again::
2867
2868 # echo > set_ftrace_filter
2869 # cat set_ftrace_filter
2870 #
2871
2872Again, now we want to append.
2873
2874::
2875
2876  # echo sys_nanosleep > set_ftrace_filter
2877  # cat set_ftrace_filter
2878  sys_nanosleep
2879  # echo 'hrtimer_*' >> set_ftrace_filter
2880  # cat set_ftrace_filter
2881  hrtimer_run_queues
2882  hrtimer_run_pending
2883  hrtimer_init
2884  hrtimer_cancel
2885  hrtimer_try_to_cancel
2886  hrtimer_forward
2887  hrtimer_start
2888  hrtimer_reprogram
2889  hrtimer_force_reprogram
2890  hrtimer_get_next_event
2891  hrtimer_interrupt
2892  sys_nanosleep
2893  hrtimer_nanosleep
2894  hrtimer_wakeup
2895  hrtimer_get_remaining
2896  hrtimer_get_res
2897  hrtimer_init_sleeper
2898
2899
2900The set_ftrace_notrace prevents those functions from being
2901traced.
2902::
2903
2904  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2905
2906Produces::
2907
2908  # tracer: function
2909  #
2910  # entries-in-buffer/entries-written: 39608/39608   #P:4
2911  #
2912  #                              _-----=> irqs-off
2913  #                             / _----=> need-resched
2914  #                            | / _---=> hardirq/softirq
2915  #                            || / _--=> preempt-depth
2916  #                            ||| /     delay
2917  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2918  #              | |       |   ||||       |         |
2919              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2920              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2921              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2922              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2923              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2924              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2925              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2926              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2927              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2928              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2929              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2930              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2931
2932We can see that there's no more lock or preempt tracing.
2933
2934Selecting function filters via index
2935------------------------------------
2936
2937Because processing of strings is expensive (the address of the function
2938needs to be looked up before comparing to the string being passed in),
2939an index can be used as well to enable functions. This is useful in the
2940case of setting thousands of specific functions at a time. By passing
2941in a list of numbers, no string processing will occur. Instead, the function
2942at the specific location in the internal array (which corresponds to the
2943functions in the "available_filter_functions" file), is selected.
2944
2945::
2946
2947  # echo 1 > set_ftrace_filter
2948
2949Will select the first function listed in "available_filter_functions"
2950
2951::
2952
2953  # head -1 available_filter_functions
2954  trace_initcall_finish_cb
2955
2956  # cat set_ftrace_filter
2957  trace_initcall_finish_cb
2958
2959  # head -50 available_filter_functions | tail -1
2960  x86_pmu_commit_txn
2961
2962  # echo 1 50 > set_ftrace_filter
2963  # cat set_ftrace_filter
2964  trace_initcall_finish_cb
2965  x86_pmu_commit_txn
2966
2967Dynamic ftrace with the function graph tracer
2968---------------------------------------------
2969
2970Although what has been explained above concerns both the
2971function tracer and the function-graph-tracer, there are some
2972special features only available in the function-graph tracer.
2973
2974If you want to trace only one function and all of its children,
2975you just have to echo its name into set_graph_function::
2976
2977 echo __do_fault > set_graph_function
2978
2979will produce the following "expanded" trace of the __do_fault()
2980function::
2981
2982   0)               |  __do_fault() {
2983   0)               |    filemap_fault() {
2984   0)               |      find_lock_page() {
2985   0)   0.804 us    |        find_get_page();
2986   0)               |        __might_sleep() {
2987   0)   1.329 us    |        }
2988   0)   3.904 us    |      }
2989   0)   4.979 us    |    }
2990   0)   0.653 us    |    _spin_lock();
2991   0)   0.578 us    |    page_add_file_rmap();
2992   0)   0.525 us    |    native_set_pte_at();
2993   0)   0.585 us    |    _spin_unlock();
2994   0)               |    unlock_page() {
2995   0)   0.541 us    |      page_waitqueue();
2996   0)   0.639 us    |      __wake_up_bit();
2997   0)   2.786 us    |    }
2998   0) + 14.237 us   |  }
2999   0)               |  __do_fault() {
3000   0)               |    filemap_fault() {
3001   0)               |      find_lock_page() {
3002   0)   0.698 us    |        find_get_page();
3003   0)               |        __might_sleep() {
3004   0)   1.412 us    |        }
3005   0)   3.950 us    |      }
3006   0)   5.098 us    |    }
3007   0)   0.631 us    |    _spin_lock();
3008   0)   0.571 us    |    page_add_file_rmap();
3009   0)   0.526 us    |    native_set_pte_at();
3010   0)   0.586 us    |    _spin_unlock();
3011   0)               |    unlock_page() {
3012   0)   0.533 us    |      page_waitqueue();
3013   0)   0.638 us    |      __wake_up_bit();
3014   0)   2.793 us    |    }
3015   0) + 14.012 us   |  }
3016
3017You can also expand several functions at once::
3018
3019 echo sys_open > set_graph_function
3020 echo sys_close >> set_graph_function
3021
3022Now if you want to go back to trace all functions you can clear
3023this special filter via::
3024
3025 echo > set_graph_function
3026
3027
3028ftrace_enabled
3029--------------
3030
3031Note, the proc sysctl ftrace_enable is a big on/off switch for the
3032function tracer. By default it is enabled (when function tracing is
3033enabled in the kernel). If it is disabled, all function tracing is
3034disabled. This includes not only the function tracers for ftrace, but
3035also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
3036cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
3037registered.
3038
3039Please disable this with care.
3040
3041This can be disable (and enabled) with::
3042
3043  sysctl kernel.ftrace_enabled=0
3044  sysctl kernel.ftrace_enabled=1
3045
3046 or
3047
3048  echo 0 > /proc/sys/kernel/ftrace_enabled
3049  echo 1 > /proc/sys/kernel/ftrace_enabled
3050
3051
3052Filter commands
3053---------------
3054
3055A few commands are supported by the set_ftrace_filter interface.
3056Trace commands have the following format::
3057
3058  <function>:<command>:<parameter>
3059
3060The following commands are supported:
3061
3062- mod:
3063  This command enables function filtering per module. The
3064  parameter defines the module. For example, if only the write*
3065  functions in the ext3 module are desired, run:
3066
3067   echo 'write*:mod:ext3' > set_ftrace_filter
3068
3069  This command interacts with the filter in the same way as
3070  filtering based on function names. Thus, adding more functions
3071  in a different module is accomplished by appending (>>) to the
3072  filter file. Remove specific module functions by prepending
3073  '!'::
3074
3075   echo '!writeback*:mod:ext3' >> set_ftrace_filter
3076
3077  Mod command supports module globbing. Disable tracing for all
3078  functions except a specific module::
3079
3080   echo '!*:mod:!ext3' >> set_ftrace_filter
3081
3082  Disable tracing for all modules, but still trace kernel::
3083
3084   echo '!*:mod:*' >> set_ftrace_filter
3085
3086  Enable filter only for kernel::
3087
3088   echo '*write*:mod:!*' >> set_ftrace_filter
3089
3090  Enable filter for module globbing::
3091
3092   echo '*write*:mod:*snd*' >> set_ftrace_filter
3093
3094- traceon/traceoff:
3095  These commands turn tracing on and off when the specified
3096  functions are hit. The parameter determines how many times the
3097  tracing system is turned on and off. If unspecified, there is
3098  no limit. For example, to disable tracing when a schedule bug
3099  is hit the first 5 times, run::
3100
3101   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3102
3103  To always disable tracing when __schedule_bug is hit::
3104
3105   echo '__schedule_bug:traceoff' > set_ftrace_filter
3106
3107  These commands are cumulative whether or not they are appended
3108  to set_ftrace_filter. To remove a command, prepend it by '!'
3109  and drop the parameter::
3110
3111   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3112
3113  The above removes the traceoff command for __schedule_bug
3114  that have a counter. To remove commands without counters::
3115
3116   echo '!__schedule_bug:traceoff' > set_ftrace_filter
3117
3118- snapshot:
3119  Will cause a snapshot to be triggered when the function is hit.
3120  ::
3121
3122   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3123
3124  To only snapshot once:
3125  ::
3126
3127   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3128
3129  To remove the above commands::
3130
3131   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3132   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3133
3134- enable_event/disable_event:
3135  These commands can enable or disable a trace event. Note, because
3136  function tracing callbacks are very sensitive, when these commands
3137  are registered, the trace point is activated, but disabled in
3138  a "soft" mode. That is, the tracepoint will be called, but
3139  just will not be traced. The event tracepoint stays in this mode
3140  as long as there's a command that triggers it.
3141  ::
3142
3143   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3144   	 set_ftrace_filter
3145
3146  The format is::
3147
3148    <function>:enable_event:<system>:<event>[:count]
3149    <function>:disable_event:<system>:<event>[:count]
3150
3151  To remove the events commands::
3152
3153   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3154   	 set_ftrace_filter
3155   echo '!schedule:disable_event:sched:sched_switch' > \
3156   	 set_ftrace_filter
3157
3158- dump:
3159  When the function is hit, it will dump the contents of the ftrace
3160  ring buffer to the console. This is useful if you need to debug
3161  something, and want to dump the trace when a certain function
3162  is hit. Perhaps it's a function that is called before a triple
3163  fault happens and does not allow you to get a regular dump.
3164
3165- cpudump:
3166  When the function is hit, it will dump the contents of the ftrace
3167  ring buffer for the current CPU to the console. Unlike the "dump"
3168  command, it only prints out the contents of the ring buffer for the
3169  CPU that executed the function that triggered the dump.
3170
3171- stacktrace:
3172  When the function is hit, a stack trace is recorded.
3173
3174trace_pipe
3175----------
3176
3177The trace_pipe outputs the same content as the trace file, but
3178the effect on the tracing is different. Every read from
3179trace_pipe is consumed. This means that subsequent reads will be
3180different. The trace is live.
3181::
3182
3183  # echo function > current_tracer
3184  # cat trace_pipe > /tmp/trace.out &
3185  [1] 4153
3186  # echo 1 > tracing_on
3187  # usleep 1
3188  # echo 0 > tracing_on
3189  # cat trace
3190  # tracer: function
3191  #
3192  # entries-in-buffer/entries-written: 0/0   #P:4
3193  #
3194  #                              _-----=> irqs-off
3195  #                             / _----=> need-resched
3196  #                            | / _---=> hardirq/softirq
3197  #                            || / _--=> preempt-depth
3198  #                            ||| /     delay
3199  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3200  #              | |       |   ||||       |         |
3201
3202  #
3203  # cat /tmp/trace.out
3204             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3205             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3206             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3207             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3208             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3209             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3210             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3211             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3212             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3213
3214
3215Note, reading the trace_pipe file will block until more input is
3216added. This is contrary to the trace file. If any process opened
3217the trace file for reading, it will actually disable tracing and
3218prevent new entries from being added. The trace_pipe file does
3219not have this limitation.
3220
3221trace entries
3222-------------
3223
3224Having too much or not enough data can be troublesome in
3225diagnosing an issue in the kernel. The file buffer_size_kb is
3226used to modify the size of the internal trace buffers. The
3227number listed is the number of entries that can be recorded per
3228CPU. To know the full size, multiply the number of possible CPUs
3229with the number of entries.
3230::
3231
3232  # cat buffer_size_kb
3233  1408 (units kilobytes)
3234
3235Or simply read buffer_total_size_kb
3236::
3237
3238  # cat buffer_total_size_kb
3239  5632
3240
3241To modify the buffer, simple echo in a number (in 1024 byte segments).
3242::
3243
3244  # echo 10000 > buffer_size_kb
3245  # cat buffer_size_kb
3246  10000 (units kilobytes)
3247
3248It will try to allocate as much as possible. If you allocate too
3249much, it can cause Out-Of-Memory to trigger.
3250::
3251
3252  # echo 1000000000000 > buffer_size_kb
3253  -bash: echo: write error: Cannot allocate memory
3254  # cat buffer_size_kb
3255  85
3256
3257The per_cpu buffers can be changed individually as well:
3258::
3259
3260  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3261  # echo 100 > per_cpu/cpu1/buffer_size_kb
3262
3263When the per_cpu buffers are not the same, the buffer_size_kb
3264at the top level will just show an X
3265::
3266
3267  # cat buffer_size_kb
3268  X
3269
3270This is where the buffer_total_size_kb is useful:
3271::
3272
3273  # cat buffer_total_size_kb
3274  12916
3275
3276Writing to the top level buffer_size_kb will reset all the buffers
3277to be the same again.
3278
3279Snapshot
3280--------
3281CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3282available to all non latency tracers. (Latency tracers which
3283record max latency, such as "irqsoff" or "wakeup", can't use
3284this feature, since those are already using the snapshot
3285mechanism internally.)
3286
3287Snapshot preserves a current trace buffer at a particular point
3288in time without stopping tracing. Ftrace swaps the current
3289buffer with a spare buffer, and tracing continues in the new
3290current (=previous spare) buffer.
3291
3292The following tracefs files in "tracing" are related to this
3293feature:
3294
3295  snapshot:
3296
3297	This is used to take a snapshot and to read the output
3298	of the snapshot. Echo 1 into this file to allocate a
3299	spare buffer and to take a snapshot (swap), then read
3300	the snapshot from this file in the same format as
3301	"trace" (described above in the section "The File
3302	System"). Both reads snapshot and tracing are executable
3303	in parallel. When the spare buffer is allocated, echoing
3304	0 frees it, and echoing else (positive) values clear the
3305	snapshot contents.
3306	More details are shown in the table below.
3307
3308	+--------------+------------+------------+------------+
3309	|status\\input |     0      |     1      |    else    |
3310	+==============+============+============+============+
3311	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3312	+--------------+------------+------------+------------+
3313	|allocated     |    free    |    swap    |   clear    |
3314	+--------------+------------+------------+------------+
3315
3316Here is an example of using the snapshot feature.
3317::
3318
3319  # echo 1 > events/sched/enable
3320  # echo 1 > snapshot
3321  # cat snapshot
3322  # tracer: nop
3323  #
3324  # entries-in-buffer/entries-written: 71/71   #P:8
3325  #
3326  #                              _-----=> irqs-off
3327  #                             / _----=> need-resched
3328  #                            | / _---=> hardirq/softirq
3329  #                            || / _--=> preempt-depth
3330  #                            ||| /     delay
3331  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3332  #              | |       |   ||||       |         |
3333            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3334             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3335  [...]
3336          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3337
3338  # cat trace
3339  # tracer: nop
3340  #
3341  # entries-in-buffer/entries-written: 77/77   #P:8
3342  #
3343  #                              _-----=> irqs-off
3344  #                             / _----=> need-resched
3345  #                            | / _---=> hardirq/softirq
3346  #                            || / _--=> preempt-depth
3347  #                            ||| /     delay
3348  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3349  #              | |       |   ||||       |         |
3350            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3351   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3352  [...]
3353
3354
3355If you try to use this snapshot feature when current tracer is
3356one of the latency tracers, you will get the following results.
3357::
3358
3359  # echo wakeup > current_tracer
3360  # echo 1 > snapshot
3361  bash: echo: write error: Device or resource busy
3362  # cat snapshot
3363  cat: snapshot: Device or resource busy
3364
3365
3366Instances
3367---------
3368In the tracefs tracing directory is a directory called "instances".
3369This directory can have new directories created inside of it using
3370mkdir, and removing directories with rmdir. The directory created
3371with mkdir in this directory will already contain files and other
3372directories after it is created.
3373::
3374
3375  # mkdir instances/foo
3376  # ls instances/foo
3377  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3378  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3379  trace_pipe  tracing_on
3380
3381As you can see, the new directory looks similar to the tracing directory
3382itself. In fact, it is very similar, except that the buffer and
3383events are agnostic from the main directory, or from any other
3384instances that are created.
3385
3386The files in the new directory work just like the files with the
3387same name in the tracing directory except the buffer that is used
3388is a separate and new buffer. The files affect that buffer but do not
3389affect the main buffer with the exception of trace_options. Currently,
3390the trace_options affect all instances and the top level buffer
3391the same, but this may change in future releases. That is, options
3392may become specific to the instance they reside in.
3393
3394Notice that none of the function tracer files are there, nor is
3395current_tracer and available_tracers. This is because the buffers
3396can currently only have events enabled for them.
3397::
3398
3399  # mkdir instances/foo
3400  # mkdir instances/bar
3401  # mkdir instances/zoot
3402  # echo 100000 > buffer_size_kb
3403  # echo 1000 > instances/foo/buffer_size_kb
3404  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3405  # echo function > current_trace
3406  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3407  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3408  # echo 1 > instances/foo/events/sched/sched_switch/enable
3409  # echo 1 > instances/bar/events/irq/enable
3410  # echo 1 > instances/zoot/events/syscalls/enable
3411  # cat trace_pipe
3412  CPU:2 [LOST 11745 EVENTS]
3413              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3414              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3415              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3416              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3417              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3418              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3419              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3420              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3421              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3422              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3423              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3424  [...]
3425
3426  # cat instances/foo/trace_pipe
3427              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3428              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3429            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3430            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3431       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3432              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3433              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3434              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3435       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3436       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3437  [...]
3438
3439  # cat instances/bar/trace_pipe
3440       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3441            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3442              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3443              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3444              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3445              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3446              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3447              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3448              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3449              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3450              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3451              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3452  [...]
3453
3454  # cat instances/zoot/trace
3455  # tracer: nop
3456  #
3457  # entries-in-buffer/entries-written: 18996/18996   #P:4
3458  #
3459  #                              _-----=> irqs-off
3460  #                             / _----=> need-resched
3461  #                            | / _---=> hardirq/softirq
3462  #                            || / _--=> preempt-depth
3463  #                            ||| /     delay
3464  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3465  #              | |       |   ||||       |         |
3466              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3467              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3468              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3469              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3470              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3471              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3472              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3473              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3474              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3475              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3476              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3477
3478You can see that the trace of the top most trace buffer shows only
3479the function tracing. The foo instance displays wakeups and task
3480switches.
3481
3482To remove the instances, simply delete their directories:
3483::
3484
3485  # rmdir instances/foo
3486  # rmdir instances/bar
3487  # rmdir instances/zoot
3488
3489Note, if a process has a trace file open in one of the instance
3490directories, the rmdir will fail with EBUSY.
3491
3492
3493Stack trace
3494-----------
3495Since the kernel has a fixed sized stack, it is important not to
3496waste it in functions. A kernel developer must be conscience of
3497what they allocate on the stack. If they add too much, the system
3498can be in danger of a stack overflow, and corruption will occur,
3499usually leading to a system panic.
3500
3501There are some tools that check this, usually with interrupts
3502periodically checking usage. But if you can perform a check
3503at every function call that will become very useful. As ftrace provides
3504a function tracer, it makes it convenient to check the stack size
3505at every function call. This is enabled via the stack tracer.
3506
3507CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3508To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3509::
3510
3511 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3512
3513You can also enable it from the kernel command line to trace
3514the stack size of the kernel during boot up, by adding "stacktrace"
3515to the kernel command line parameter.
3516
3517After running it for a few minutes, the output looks like:
3518::
3519
3520  # cat stack_max_size
3521  2928
3522
3523  # cat stack_trace
3524          Depth    Size   Location    (18 entries)
3525          -----    ----   --------
3526    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3527    1)     2704     160   find_busiest_group+0x31/0x1f1
3528    2)     2544     256   load_balance+0xd9/0x662
3529    3)     2288      80   idle_balance+0xbb/0x130
3530    4)     2208     128   __schedule+0x26e/0x5b9
3531    5)     2080      16   schedule+0x64/0x66
3532    6)     2064     128   schedule_timeout+0x34/0xe0
3533    7)     1936     112   wait_for_common+0x97/0xf1
3534    8)     1824      16   wait_for_completion+0x1d/0x1f
3535    9)     1808     128   flush_work+0xfe/0x119
3536   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3537   11)     1664      48   input_available_p+0x1d/0x5c
3538   12)     1616      48   n_tty_poll+0x6d/0x134
3539   13)     1568      64   tty_poll+0x64/0x7f
3540   14)     1504     880   do_select+0x31e/0x511
3541   15)      624     400   core_sys_select+0x177/0x216
3542   16)      224      96   sys_select+0x91/0xb9
3543   17)      128     128   system_call_fastpath+0x16/0x1b
3544
3545Note, if -mfentry is being used by gcc, functions get traced before
3546they set up the stack frame. This means that leaf level functions
3547are not tested by the stack tracer when -mfentry is used.
3548
3549Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3550
3551More
3552----
3553More details can be found in the source code, in the `kernel/trace/*.c` files.
3554