1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author:   Steven Rostedt <srostedt@redhat.com>
8:License:  The GNU Free Documentation License, Version 1.2
9          (dual licensed under the GPL v2)
10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
11		      John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a frame work of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Through out the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69  Before 4.1, all ftrace tracing control files were within the debugfs
70  file system, which is typically located at /sys/kernel/debug/tracing.
71  For backward compatibility, when mounting the debugfs file system,
72  the tracefs file system will be automatically mounted at:
73
74  /sys/kernel/debug/tracing
75
76  All files located in the tracefs file system will be located in that
77  debugfs file system directory as well.
78
79.. attention::
80
81  Any selected ftrace option will also create the tracefs file system.
82  The rest of the document will assume that you are in the ftrace directory
83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
84  directory and not distract from the content with the extended
85  "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95  current_tracer:
96
97	This is used to set or display the current tracer
98	that is configured.
99
100  available_tracers:
101
102	This holds the different types of tracers that
103	have been compiled into the kernel. The
104	tracers listed here can be configured by
105	echoing their name into current_tracer.
106
107  tracing_on:
108
109	This sets or displays whether writing to the trace
110	ring buffer is enabled. Echo 0 into this file to disable
111	the tracer or 1 to enable it. Note, this only disables
112	writing to the ring buffer, the tracing overhead may
113	still be occurring.
114
115	The kernel function tracing_off() can be used within the
116	kernel to disable writing to the ring buffer, which will
117	set this file to "0". User space can re-enable tracing by
118	echoing "1" into the file.
119
120	Note, the function and event trigger "traceoff" will also
121	set this file to zero and stop tracing. Which can also
122	be re-enabled by user space using this file.
123
124  trace:
125
126	This file holds the output of the trace in a human
127	readable format (described below). Note, tracing is temporarily
128	disabled while this file is being read (opened).
129
130  trace_pipe:
131
132	The output is the same as the "trace" file but this
133	file is meant to be streamed with live tracing.
134	Reads from this file will block until new data is
135	retrieved.  Unlike the "trace" file, this file is a
136	consumer. This means reading from this file causes
137	sequential reads to display more current data. Once
138	data is read from this file, it is consumed, and
139	will not be read again with a sequential read. The
140	"trace" file is static, and if the tracer is not
141	adding more data, it will display the same
142	information every time it is read. This file will not
143	disable tracing while being read.
144
145  trace_options:
146
147	This file lets the user control the amount of data
148	that is displayed in one of the above output
149	files. Options also exist to modify how a tracer
150	or events work (stack traces, timestamps, etc).
151
152  options:
153
154	This is a directory that has a file for every available
155	trace option (also in trace_options). Options may also be set
156	or cleared by writing a "1" or "0" respectively into the
157	corresponding file with the option name.
158
159  tracing_max_latency:
160
161	Some of the tracers record the max latency.
162	For example, the maximum time that interrupts are disabled.
163	The maximum time is saved in this file. The max trace will also be
164	stored,	and displayed by "trace". A new max trace will only be
165	recorded if the latency is greater than the value in this file
166	(in microseconds).
167
168	By echoing in a time into this file, no latency will be recorded
169	unless it is greater than the time in this file.
170
171  tracing_thresh:
172
173	Some latency tracers will record a trace whenever the
174	latency is greater than the number in this file.
175	Only active when the file contains a number greater than 0.
176	(in microseconds)
177
178  buffer_size_kb:
179
180	This sets or displays the number of kilobytes each CPU
181	buffer holds. By default, the trace buffers are the same size
182	for each CPU. The displayed number is the size of the
183	CPU buffer and not total size of all buffers. The
184	trace buffers are allocated in pages (blocks of memory
185	that the kernel uses for allocation, usually 4 KB in size).
186	If the last page allocated has room for more bytes
187	than requested, the rest of the page will be used,
188	making the actual allocation bigger than requested or shown.
189	( Note, the size may not be a multiple of the page size
190	due to buffer management meta-data. )
191
192	Buffer sizes for individual CPUs may vary
193	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194	this file will show "X".
195
196  buffer_total_size_kb:
197
198	This displays the total combined size of all the trace buffers.
199
200  free_buffer:
201
202	If a process is performing tracing, and the ring buffer	should be
203	shrunk "freed" when the process is finished, even if it were to be
204	killed by a signal, this file can be used for that purpose. On close
205	of this file, the ring buffer will be resized to its minimum size.
206	Having a process that is tracing also open this file, when the process
207	exits its file descriptor for this file will be closed, and in doing so,
208	the ring buffer will be "freed".
209
210	It may also stop tracing if disable_on_free option is set.
211
212  tracing_cpumask:
213
214	This is a mask that lets the user only trace on specified CPUs.
215	The format is a hex string representing the CPUs.
216
217  set_ftrace_filter:
218
219	When dynamic ftrace is configured in (see the
220	section below "dynamic ftrace"), the code is dynamically
221	modified (code text rewrite) to disable calling of the
222	function profiler (mcount). This lets tracing be configured
223	in with practically no overhead in performance.  This also
224	has a side effect of enabling or disabling specific functions
225	to be traced. Echoing names of functions into this file
226	will limit the trace to only those functions.
227	This influences the tracers "function" and "function_graph"
228	and thus also function profiling (see "function_profile_enabled").
229
230	The functions listed in "available_filter_functions" are what
231	can be written into this file.
232
233	This interface also allows for commands to be used. See the
234	"Filter commands" section for more details.
235
236  set_ftrace_notrace:
237
238	This has an effect opposite to that of
239	set_ftrace_filter. Any function that is added here will not
240	be traced. If a function exists in both set_ftrace_filter
241	and set_ftrace_notrace,	the function will _not_ be traced.
242
243  set_ftrace_pid:
244
245	Have the function tracer only trace the threads whose PID are
246	listed in this file.
247
248	If the "function-fork" option is set, then when a task whose
249	PID is listed in this file forks, the child's PID will
250	automatically be added to this file, and the child will be
251	traced by the function tracer as well. This option will also
252	cause PIDs of tasks that exit to be removed from the file.
253
254  set_event_pid:
255
256	Have the events only trace a task with a PID listed in this file.
257	Note, sched_switch and sched_wake_up will also trace events
258	listed in this file.
259
260	To have the PIDs of children of tasks with their PID in this file
261	added on fork, enable the "event-fork" option. That option will also
262	cause the PIDs of tasks to be removed from this file when the task
263	exits.
264
265  set_graph_function:
266
267	Functions listed in this file will cause the function graph
268	tracer to only trace these functions and the functions that
269	they call. (See the section "dynamic ftrace" for more details).
270	Note, set_ftrace_filter and set_ftrace_notrace still affects
271	what functions are being traced.
272
273  set_graph_notrace:
274
275	Similar to set_graph_function, but will disable function graph
276	tracing when the function is hit until it exits the function.
277	This makes it possible to ignore tracing functions that are called
278	by a specific function.
279
280  available_filter_functions:
281
282	This lists the functions that ftrace has processed and can trace.
283	These are the function names that you can pass to
284	"set_ftrace_filter", "set_ftrace_notrace",
285	"set_graph_function", or "set_graph_notrace".
286	(See the section "dynamic ftrace" below for more details.)
287
288  dyn_ftrace_total_info:
289
290	This file is for debugging purposes. The number of functions that
291	have been converted to nops and are available to be traced.
292
293  enabled_functions:
294
295	This file is more for debugging ftrace, but can also be useful
296	in seeing if any function has a callback attached to it.
297	Not only does the trace infrastructure use ftrace function
298	trace utility, but other subsystems might too. This file
299	displays all functions that have a callback attached to them
300	as well as the number of callbacks that have been attached.
301	Note, a callback may also call multiple functions which will
302	not be listed in this count.
303
304	If the callback registered to be traced by a function with
305	the "save regs" attribute (thus even more overhead), a 'R'
306	will be displayed on the same line as the function that
307	is returning registers.
308
309	If the callback registered to be traced by a function with
310	the "ip modify" attribute (thus the regs->ip can be changed),
311	an 'I' will be displayed on the same line as the function that
312	can be overridden.
313
314	If the architecture supports it, it will also show what callback
315	is being directly called by the function. If the count is greater
316	than 1 it most likely will be ftrace_ops_list_func().
317
318	If the callback of the function jumps to a trampoline that is
319	specific to a the callback and not the standard trampoline,
320	its address will be printed as well as the function that the
321	trampoline calls.
322
323  function_profile_enabled:
324
325	When set it will enable all functions with either the function
326	tracer, or if configured, the function graph tracer. It will
327	keep a histogram of the number of functions that were called
328	and if the function graph tracer was configured, it will also keep
329	track of the time spent in those functions. The histogram
330	content can be displayed in the files:
331
332	trace_stat/function<cpu> ( function0, function1, etc).
333
334  trace_stat:
335
336	A directory that holds different tracing stats.
337
338  kprobe_events:
339
340	Enable dynamic trace points. See kprobetrace.txt.
341
342  kprobe_profile:
343
344	Dynamic trace points stats. See kprobetrace.txt.
345
346  max_graph_depth:
347
348	Used with the function graph tracer. This is the max depth
349	it will trace into a function. Setting this to a value of
350	one will show only the first kernel function that is called
351	from user space.
352
353  printk_formats:
354
355	This is for tools that read the raw format files. If an event in
356	the ring buffer references a string, only a pointer to the string
357	is recorded into the buffer and not the string itself. This prevents
358	tools from knowing what that string was. This file displays the string
359	and address for	the string allowing tools to map the pointers to what
360	the strings were.
361
362  saved_cmdlines:
363
364	Only the pid of the task is recorded in a trace event unless
365	the event specifically saves the task comm as well. Ftrace
366	makes a cache of pid mappings to comms to try to display
367	comms for events. If a pid for a comm is not listed, then
368	"<...>" is displayed in the output.
369
370	If the option "record-cmd" is set to "0", then comms of tasks
371	will not be saved during recording. By default, it is enabled.
372
373  saved_cmdlines_size:
374
375	By default, 128 comms are saved (see "saved_cmdlines" above). To
376	increase or decrease the amount of comms that are cached, echo
377	in a the number of comms to cache, into this file.
378
379  saved_tgids:
380
381	If the option "record-tgid" is set, on each scheduling context switch
382	the Task Group ID of a task is saved in a table mapping the PID of
383	the thread to its TGID. By default, the "record-tgid" option is
384	disabled.
385
386  snapshot:
387
388	This displays the "snapshot" buffer and also lets the user
389	take a snapshot of the current running trace.
390	See the "Snapshot" section below for more details.
391
392  stack_max_size:
393
394	When the stack tracer is activated, this will display the
395	maximum stack size it has encountered.
396	See the "Stack Trace" section below.
397
398  stack_trace:
399
400	This displays the stack back trace of the largest stack
401	that was encountered when the stack tracer is activated.
402	See the "Stack Trace" section below.
403
404  stack_trace_filter:
405
406	This is similar to "set_ftrace_filter" but it limits what
407	functions the stack tracer will check.
408
409  trace_clock:
410
411	Whenever an event is recorded into the ring buffer, a
412	"timestamp" is added. This stamp comes from a specified
413	clock. By default, ftrace uses the "local" clock. This
414	clock is very fast and strictly per cpu, but on some
415	systems it may not be monotonic with respect to other
416	CPUs. In other words, the local clocks may not be in sync
417	with local clocks on other CPUs.
418
419	Usual clocks for tracing::
420
421	  # cat trace_clock
422	  [local] global counter x86-tsc
423
424	The clock with the square brackets around it is the one in effect.
425
426	local:
427		Default clock, but may not be in sync across CPUs
428
429	global:
430		This clock is in sync with all CPUs but may
431		be a bit slower than the local clock.
432
433	counter:
434		This is not a clock at all, but literally an atomic
435		counter. It counts up one by one, but is in sync
436		with all CPUs. This is useful when you need to
437		know exactly the order events occurred with respect to
438		each other on different CPUs.
439
440	uptime:
441		This uses the jiffies counter and the time stamp
442		is relative to the time since boot up.
443
444	perf:
445		This makes ftrace use the same clock that perf uses.
446		Eventually perf will be able to read ftrace buffers
447		and this will help out in interleaving the data.
448
449	x86-tsc:
450		Architectures may define their own clocks. For
451		example, x86 uses its own TSC cycle clock here.
452
453	ppc-tb:
454		This uses the powerpc timebase register value.
455		This is in sync across CPUs and can also be used
456		to correlate events across hypervisor/guest if
457		tb_offset is known.
458
459	mono:
460		This uses the fast monotonic clock (CLOCK_MONOTONIC)
461		which is monotonic and is subject to NTP rate adjustments.
462
463	mono_raw:
464		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
465		which is montonic but is not subject to any rate adjustments
466		and ticks at the same rate as the hardware clocksource.
467
468	boot:
469		This is the boot clock (CLOCK_BOOTTIME) and is based on the
470		fast monotonic clock, but also accounts for time spent in
471		suspend. Since the clock access is designed for use in
472		tracing in the suspend path, some side effects are possible
473		if clock is accessed after the suspend time is accounted before
474		the fast mono clock is updated. In this case, the clock update
475		appears to happen slightly sooner than it normally would have.
476		Also on 32-bit systems, it's possible that the 64-bit boot offset
477		sees a partial update. These effects are rare and post
478		processing should be able to handle them. See comments in the
479		ktime_get_boot_fast_ns() function for more information.
480
481	To set a clock, simply echo the clock name into this file::
482
483	  # echo global > trace_clock
484
485  trace_marker:
486
487	This is a very useful file for synchronizing user space
488	with events happening in the kernel. Writing strings into
489	this file will be written into the ftrace buffer.
490
491	It is useful in applications to open this file at the start
492	of the application and just reference the file descriptor
493	for the file::
494
495		void trace_write(const char *fmt, ...)
496		{
497			va_list ap;
498			char buf[256];
499			int n;
500
501			if (trace_fd < 0)
502				return;
503
504			va_start(ap, fmt);
505			n = vsnprintf(buf, 256, fmt, ap);
506			va_end(ap);
507
508			write(trace_fd, buf, n);
509		}
510
511	start::
512
513		trace_fd = open("trace_marker", WR_ONLY);
514
515	Note: Writing into the trace_marker file can also initiate triggers
516	      that are written into /sys/kernel/tracing/events/ftrace/print/trigger
517	      See "Event triggers" in Documentation/trace/events.rst and an
518              example in Documentation/trace/histogram.rst (Section 3.)
519
520  trace_marker_raw:
521
522	This is similar to trace_marker above, but is meant for for binary data
523	to be written to it, where a tool can be used to parse the data
524	from trace_pipe_raw.
525
526  uprobe_events:
527
528	Add dynamic tracepoints in programs.
529	See uprobetracer.txt
530
531  uprobe_profile:
532
533	Uprobe statistics. See uprobetrace.txt
534
535  instances:
536
537	This is a way to make multiple trace buffers where different
538	events can be recorded in different buffers.
539	See "Instances" section below.
540
541  events:
542
543	This is the trace event directory. It holds event tracepoints
544	(also known as static tracepoints) that have been compiled
545	into the kernel. It shows what event tracepoints exist
546	and how they are grouped by system. There are "enable"
547	files at various levels that can enable the tracepoints
548	when a "1" is written to them.
549
550	See events.txt for more information.
551
552  set_event:
553
554	By echoing in the event into this file, will enable that event.
555
556	See events.txt for more information.
557
558  available_events:
559
560	A list of events that can be enabled in tracing.
561
562	See events.txt for more information.
563
564  timestamp_mode:
565
566	Certain tracers may change the timestamp mode used when
567	logging trace events into the event buffer.  Events with
568	different modes can coexist within a buffer but the mode in
569	effect when an event is logged determines which timestamp mode
570	is used for that event.  The default timestamp mode is
571	'delta'.
572
573	Usual timestamp modes for tracing:
574
575	  # cat timestamp_mode
576	  [delta] absolute
577
578	  The timestamp mode with the square brackets around it is the
579	  one in effect.
580
581	  delta: Default timestamp mode - timestamp is a delta against
582	         a per-buffer timestamp.
583
584	  absolute: The timestamp is a full timestamp, not a delta
585                 against some other value.  As such it takes up more
586                 space and is less efficient.
587
588  hwlat_detector:
589
590	Directory for the Hardware Latency Detector.
591	See "Hardware Latency Detector" section below.
592
593  per_cpu:
594
595	This is a directory that contains the trace per_cpu information.
596
597  per_cpu/cpu0/buffer_size_kb:
598
599	The ftrace buffer is defined per_cpu. That is, there's a separate
600	buffer for each CPU to allow writes to be done atomically,
601	and free from cache bouncing. These buffers may have different
602	size buffers. This file is similar to the buffer_size_kb
603	file, but it only displays or sets the buffer size for the
604	specific CPU. (here cpu0).
605
606  per_cpu/cpu0/trace:
607
608	This is similar to the "trace" file, but it will only display
609	the data specific for the CPU. If written to, it only clears
610	the specific CPU buffer.
611
612  per_cpu/cpu0/trace_pipe
613
614	This is similar to the "trace_pipe" file, and is a consuming
615	read, but it will only display (and consume) the data specific
616	for the CPU.
617
618  per_cpu/cpu0/trace_pipe_raw
619
620	For tools that can parse the ftrace ring buffer binary format,
621	the trace_pipe_raw file can be used to extract the data
622	from the ring buffer directly. With the use of the splice()
623	system call, the buffer data can be quickly transferred to
624	a file or to the network where a server is collecting the
625	data.
626
627	Like trace_pipe, this is a consuming reader, where multiple
628	reads will always produce different data.
629
630  per_cpu/cpu0/snapshot:
631
632	This is similar to the main "snapshot" file, but will only
633	snapshot the current CPU (if supported). It only displays
634	the content of the snapshot for a given CPU, and if
635	written to, only clears this CPU buffer.
636
637  per_cpu/cpu0/snapshot_raw:
638
639	Similar to the trace_pipe_raw, but will read the binary format
640	from the snapshot buffer for the given CPU.
641
642  per_cpu/cpu0/stats:
643
644	This displays certain stats about the ring buffer:
645
646	entries:
647		The number of events that are still in the buffer.
648
649	overrun:
650		The number of lost events due to overwriting when
651		the buffer was full.
652
653	commit overrun:
654		Should always be zero.
655		This gets set if so many events happened within a nested
656		event (ring buffer is re-entrant), that it fills the
657		buffer and starts dropping events.
658
659	bytes:
660		Bytes actually read (not overwritten).
661
662	oldest event ts:
663		The oldest timestamp in the buffer
664
665	now ts:
666		The current timestamp
667
668	dropped events:
669		Events lost due to overwrite option being off.
670
671	read events:
672		The number of events read.
673
674The Tracers
675-----------
676
677Here is the list of current tracers that may be configured.
678
679  "function"
680
681	Function call tracer to trace all kernel functions.
682
683  "function_graph"
684
685	Similar to the function tracer except that the
686	function tracer probes the functions on their entry
687	whereas the function graph tracer traces on both entry
688	and exit of the functions. It then provides the ability
689	to draw a graph of function calls similar to C code
690	source.
691
692  "blk"
693
694	The block tracer. The tracer used by the blktrace user
695	application.
696
697  "hwlat"
698
699	The Hardware Latency tracer is used to detect if the hardware
700	produces any latency. See "Hardware Latency Detector" section
701	below.
702
703  "irqsoff"
704
705	Traces the areas that disable interrupts and saves
706	the trace with the longest max latency.
707	See tracing_max_latency. When a new max is recorded,
708	it replaces the old trace. It is best to view this
709	trace with the latency-format option enabled, which
710	happens automatically when the tracer is selected.
711
712  "preemptoff"
713
714	Similar to irqsoff but traces and records the amount of
715	time for which preemption is disabled.
716
717  "preemptirqsoff"
718
719	Similar to irqsoff and preemptoff, but traces and
720	records the largest time for which irqs and/or preemption
721	is disabled.
722
723  "wakeup"
724
725	Traces and records the max latency that it takes for
726	the highest priority task to get scheduled after
727	it has been woken up.
728        Traces all tasks as an average developer would expect.
729
730  "wakeup_rt"
731
732        Traces and records the max latency that it takes for just
733        RT tasks (as the current "wakeup" does). This is useful
734        for those interested in wake up timings of RT tasks.
735
736  "wakeup_dl"
737
738	Traces and records the max latency that it takes for
739	a SCHED_DEADLINE task to be woken (as the "wakeup" and
740	"wakeup_rt" does).
741
742  "mmiotrace"
743
744	A special tracer that is used to trace binary module.
745	It will trace all the calls that a module makes to the
746	hardware. Everything it writes and reads from the I/O
747	as well.
748
749  "branch"
750
751	This tracer can be configured when tracing likely/unlikely
752	calls within the kernel. It will trace when a likely and
753	unlikely branch is hit and if it was correct in its prediction
754	of being correct.
755
756  "nop"
757
758	This is the "trace nothing" tracer. To remove all
759	tracers from tracing simply echo "nop" into
760	current_tracer.
761
762
763Examples of using the tracer
764----------------------------
765
766Here are typical examples of using the tracers when controlling
767them only with the tracefs interface (without using any
768user-land utilities).
769
770Output format:
771--------------
772
773Here is an example of the output format of the file "trace"::
774
775  # tracer: function
776  #
777  # entries-in-buffer/entries-written: 140080/250280   #P:4
778  #
779  #                              _-----=> irqs-off
780  #                             / _----=> need-resched
781  #                            | / _---=> hardirq/softirq
782  #                            || / _--=> preempt-depth
783  #                            ||| /     delay
784  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
785  #              | |       |   ||||       |         |
786              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
787              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
788              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
789              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
790              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
791              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
792              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
793              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
794              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
795              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
796              ....
797
798A header is printed with the tracer name that is represented by
799the trace. In this case the tracer is "function". Then it shows the
800number of events in the buffer as well as the total number of entries
801that were written. The difference is the number of entries that were
802lost due to the buffer filling up (250280 - 140080 = 110200 events
803lost).
804
805The header explains the content of the events. Task name "bash", the task
806PID "1977", the CPU that it was running on "000", the latency format
807(explained below), the timestamp in <secs>.<usecs> format, the
808function name that was traced "sys_close" and the parent function that
809called this function "system_call_fastpath". The timestamp is the time
810at which the function was entered.
811
812Latency trace format
813--------------------
814
815When the latency-format option is enabled or when one of the latency
816tracers is set, the trace file gives somewhat more information to see
817why a latency happened. Here is a typical trace::
818
819  # tracer: irqsoff
820  #
821  # irqsoff latency trace v1.1.5 on 3.8.0-test+
822  # --------------------------------------------------------------------
823  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
824  #    -----------------
825  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
826  #    -----------------
827  #  => started at: __lock_task_sighand
828  #  => ended at:   _raw_spin_unlock_irqrestore
829  #
830  #
831  #                  _------=> CPU#
832  #                 / _-----=> irqs-off
833  #                | / _----=> need-resched
834  #                || / _---=> hardirq/softirq
835  #                ||| / _--=> preempt-depth
836  #                |||| /     delay
837  #  cmd     pid   ||||| time  |   caller
838  #     \   /      |||||  \    |   /
839        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
840        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
841        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
842        ps-6143    2d..1  306us : <stack trace>
843   => trace_hardirqs_on_caller
844   => trace_hardirqs_on
845   => _raw_spin_unlock_irqrestore
846   => do_task_stat
847   => proc_tgid_stat
848   => proc_single_show
849   => seq_read
850   => vfs_read
851   => sys_read
852   => system_call_fastpath
853
854
855This shows that the current tracer is "irqsoff" tracing the time
856for which interrupts were disabled. It gives the trace version (which
857never changes) and the version of the kernel upon which this was executed on
858(3.8). Then it displays the max latency in microseconds (259 us). The number
859of trace entries displayed and the total number (both are four: #4/4).
860VP, KP, SP, and HP are always zero and are reserved for later use.
861#P is the number of online CPUs (#P:4).
862
863The task is the process that was running when the latency
864occurred. (ps pid: 6143).
865
866The start and stop (the functions in which the interrupts were
867disabled and enabled respectively) that caused the latencies:
868
869  - __lock_task_sighand is where the interrupts were disabled.
870  - _raw_spin_unlock_irqrestore is where they were enabled again.
871
872The next lines after the header are the trace itself. The header
873explains which is which.
874
875  cmd: The name of the process in the trace.
876
877  pid: The PID of that process.
878
879  CPU#: The CPU which the process was running on.
880
881  irqs-off: 'd' interrupts are disabled. '.' otherwise.
882	.. caution:: If the architecture does not support a way to
883		read the irq flags variable, an 'X' will always
884		be printed here.
885
886  need-resched:
887	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
888	- 'n' only TIF_NEED_RESCHED is set,
889	- 'p' only PREEMPT_NEED_RESCHED is set,
890	- '.' otherwise.
891
892  hardirq/softirq:
893	- 'Z' - NMI occurred inside a hardirq
894	- 'z' - NMI is running
895	- 'H' - hard irq occurred inside a softirq.
896	- 'h' - hard irq is running
897	- 's' - soft irq is running
898	- '.' - normal context.
899
900  preempt-depth: The level of preempt_disabled
901
902The above is mostly meaningful for kernel developers.
903
904  time:
905	When the latency-format option is enabled, the trace file
906	output includes a timestamp relative to the start of the
907	trace. This differs from the output when latency-format
908	is disabled, which includes an absolute timestamp.
909
910  delay:
911	This is just to help catch your eye a bit better. And
912	needs to be fixed to be only relative to the same CPU.
913	The marks are determined by the difference between this
914	current trace and the next trace.
915
916	  - '$' - greater than 1 second
917	  - '@' - greater than 100 milisecond
918	  - '*' - greater than 10 milisecond
919	  - '#' - greater than 1000 microsecond
920	  - '!' - greater than 100 microsecond
921	  - '+' - greater than 10 microsecond
922	  - ' ' - less than or equal to 10 microsecond.
923
924  The rest is the same as the 'trace' file.
925
926  Note, the latency tracers will usually end with a back trace
927  to easily find where the latency occurred.
928
929trace_options
930-------------
931
932The trace_options file (or the options directory) is used to control
933what gets printed in the trace output, or manipulate the tracers.
934To see what is available, simply cat the file::
935
936  cat trace_options
937	print-parent
938	nosym-offset
939	nosym-addr
940	noverbose
941	noraw
942	nohex
943	nobin
944	noblock
945	trace_printk
946	annotate
947	nouserstacktrace
948	nosym-userobj
949	noprintk-msg-only
950	context-info
951	nolatency-format
952	record-cmd
953	norecord-tgid
954	overwrite
955	nodisable_on_free
956	irq-info
957	markers
958	noevent-fork
959	function-trace
960	nofunction-fork
961	nodisplay-graph
962	nostacktrace
963	nobranch
964
965To disable one of the options, echo in the option prepended with
966"no"::
967
968  echo noprint-parent > trace_options
969
970To enable an option, leave off the "no"::
971
972  echo sym-offset > trace_options
973
974Here are the available options:
975
976  print-parent
977	On function traces, display the calling (parent)
978	function as well as the function being traced.
979	::
980
981	  print-parent:
982	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
983
984	  noprint-parent:
985	   bash-4000  [01]  1477.606694: simple_strtoul
986
987
988  sym-offset
989	Display not only the function name, but also the
990	offset in the function. For example, instead of
991	seeing just "ktime_get", you will see
992	"ktime_get+0xb/0x20".
993	::
994
995	  sym-offset:
996	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
997
998  sym-addr
999	This will also display the function address as well
1000	as the function name.
1001	::
1002
1003	  sym-addr:
1004	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
1005
1006  verbose
1007	This deals with the trace file when the
1008        latency-format option is enabled.
1009	::
1010
1011	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1012	    (+0.000ms): simple_strtoul (kstrtoul)
1013
1014  raw
1015	This will display raw numbers. This option is best for
1016	use with user applications that can translate the raw
1017	numbers better than having it done in the kernel.
1018
1019  hex
1020	Similar to raw, but the numbers will be in a hexadecimal format.
1021
1022  bin
1023	This will print out the formats in raw binary.
1024
1025  block
1026	When set, reading trace_pipe will not block when polled.
1027
1028  trace_printk
1029	Can disable trace_printk() from writing into the buffer.
1030
1031  annotate
1032	It is sometimes confusing when the CPU buffers are full
1033	and one CPU buffer had a lot of events recently, thus
1034	a shorter time frame, were another CPU may have only had
1035	a few events, which lets it have older events. When
1036	the trace is reported, it shows the oldest events first,
1037	and it may look like only one CPU ran (the one with the
1038	oldest events). When the annotate option is set, it will
1039	display when a new CPU buffer started::
1040
1041			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1042			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1043			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1044		##### CPU 2 buffer started ####
1045			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1046			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1047			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1048
1049  userstacktrace
1050	This option changes the trace. It records a
1051	stacktrace of the current user space thread after
1052	each trace event.
1053
1054  sym-userobj
1055	when user stacktrace are enabled, look up which
1056	object the address belongs to, and print a
1057	relative address. This is especially useful when
1058	ASLR is on, otherwise you don't get a chance to
1059	resolve the address to object/file/line after
1060	the app is no longer running
1061
1062	The lookup is performed when you read
1063	trace,trace_pipe. Example::
1064
1065		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1066		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1067
1068
1069  printk-msg-only
1070	When set, trace_printk()s will only show the format
1071	and not their parameters (if trace_bprintk() or
1072	trace_bputs() was used to save the trace_printk()).
1073
1074  context-info
1075	Show only the event data. Hides the comm, PID,
1076	timestamp, CPU, and other useful data.
1077
1078  latency-format
1079	This option changes the trace output. When it is enabled,
1080	the trace displays additional information about the
1081	latency, as described in "Latency trace format".
1082
1083  record-cmd
1084	When any event or tracer is enabled, a hook is enabled
1085	in the sched_switch trace point to fill comm cache
1086	with mapped pids and comms. But this may cause some
1087	overhead, and if you only care about pids, and not the
1088	name of the task, disabling this option can lower the
1089	impact of tracing. See "saved_cmdlines".
1090
1091  record-tgid
1092	When any event or tracer is enabled, a hook is enabled
1093	in the sched_switch trace point to fill the cache of
1094	mapped Thread Group IDs (TGID) mapping to pids. See
1095	"saved_tgids".
1096
1097  overwrite
1098	This controls what happens when the trace buffer is
1099	full. If "1" (default), the oldest events are
1100	discarded and overwritten. If "0", then the newest
1101	events are discarded.
1102	(see per_cpu/cpu0/stats for overrun and dropped)
1103
1104  disable_on_free
1105	When the free_buffer is closed, tracing will
1106	stop (tracing_on set to 0).
1107
1108  irq-info
1109	Shows the interrupt, preempt count, need resched data.
1110	When disabled, the trace looks like::
1111
1112		# tracer: function
1113		#
1114		# entries-in-buffer/entries-written: 144405/9452052   #P:4
1115		#
1116		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
1117		#              | |       |          |         |
1118			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1119			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
1120			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
1121
1122
1123  markers
1124	When set, the trace_marker is writable (only by root).
1125	When disabled, the trace_marker will error with EINVAL
1126	on write.
1127
1128  event-fork
1129	When set, tasks with PIDs listed in set_event_pid will have
1130	the PIDs of their children added to set_event_pid when those
1131	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1132	their PIDs will be removed from the file.
1133
1134  function-trace
1135	The latency tracers will enable function tracing
1136	if this option is enabled (default it is). When
1137	it is disabled, the latency tracers do not trace
1138	functions. This keeps the overhead of the tracer down
1139	when performing latency tests.
1140
1141  function-fork
1142	When set, tasks with PIDs listed in set_ftrace_pid will
1143	have the PIDs of their children added to set_ftrace_pid
1144	when those tasks fork. Also, when tasks with PIDs in
1145	set_ftrace_pid exit, their PIDs will be removed from the
1146	file.
1147
1148  display-graph
1149	When set, the latency tracers (irqsoff, wakeup, etc) will
1150	use function graph tracing instead of function tracing.
1151
1152  stacktrace
1153	When set, a stack trace is recorded after any trace event
1154	is recorded.
1155
1156  branch
1157	Enable branch tracing with the tracer. This enables branch
1158	tracer along with the currently set tracer. Enabling this
1159	with the "nop" tracer is the same as just enabling the
1160	"branch" tracer.
1161
1162.. tip:: Some tracers have their own options. They only appear in this
1163       file when the tracer is active. They always appear in the
1164       options directory.
1165
1166
1167Here are the per tracer options:
1168
1169Options for function tracer:
1170
1171  func_stack_trace
1172	When set, a stack trace is recorded after every
1173	function that is recorded. NOTE! Limit the functions
1174	that are recorded before enabling this, with
1175	"set_ftrace_filter" otherwise the system performance
1176	will be critically degraded. Remember to disable
1177	this option before clearing the function filter.
1178
1179Options for function_graph tracer:
1180
1181 Since the function_graph tracer has a slightly different output
1182 it has its own options to control what is displayed.
1183
1184  funcgraph-overrun
1185	When set, the "overrun" of the graph stack is
1186	displayed after each function traced. The
1187	overrun, is when the stack depth of the calls
1188	is greater than what is reserved for each task.
1189	Each task has a fixed array of functions to
1190	trace in the call graph. If the depth of the
1191	calls exceeds that, the function is not traced.
1192	The overrun is the number of functions missed
1193	due to exceeding this array.
1194
1195  funcgraph-cpu
1196	When set, the CPU number of the CPU where the trace
1197	occurred is displayed.
1198
1199  funcgraph-overhead
1200	When set, if the function takes longer than
1201	A certain amount, then a delay marker is
1202	displayed. See "delay" above, under the
1203	header description.
1204
1205  funcgraph-proc
1206	Unlike other tracers, the process' command line
1207	is not displayed by default, but instead only
1208	when a task is traced in and out during a context
1209	switch. Enabling this options has the command
1210	of each process displayed at every line.
1211
1212  funcgraph-duration
1213	At the end of each function (the return)
1214	the duration of the amount of time in the
1215	function is displayed in microseconds.
1216
1217  funcgraph-abstime
1218	When set, the timestamp is displayed at each line.
1219
1220  funcgraph-irqs
1221	When disabled, functions that happen inside an
1222	interrupt will not be traced.
1223
1224  funcgraph-tail
1225	When set, the return event will include the function
1226	that it represents. By default this is off, and
1227	only a closing curly bracket "}" is displayed for
1228	the return of a function.
1229
1230  sleep-time
1231	When running function graph tracer, to include
1232	the time a task schedules out in its function.
1233	When enabled, it will account time the task has been
1234	scheduled out as part of the function call.
1235
1236  graph-time
1237	When running function profiler with function graph tracer,
1238	to include the time to call nested functions. When this is
1239	not set, the time reported for the function will only
1240	include the time the function itself executed for, not the
1241	time for functions that it called.
1242
1243Options for blk tracer:
1244
1245  blk_classic
1246	Shows a more minimalistic output.
1247
1248
1249irqsoff
1250-------
1251
1252When interrupts are disabled, the CPU can not react to any other
1253external event (besides NMIs and SMIs). This prevents the timer
1254interrupt from triggering or the mouse interrupt from letting
1255the kernel know of a new mouse event. The result is a latency
1256with the reaction time.
1257
1258The irqsoff tracer tracks the time for which interrupts are
1259disabled. When a new maximum latency is hit, the tracer saves
1260the trace leading up to that latency point so that every time a
1261new maximum is reached, the old saved trace is discarded and the
1262new trace is saved.
1263
1264To reset the maximum, echo 0 into tracing_max_latency. Here is
1265an example::
1266
1267  # echo 0 > options/function-trace
1268  # echo irqsoff > current_tracer
1269  # echo 1 > tracing_on
1270  # echo 0 > tracing_max_latency
1271  # ls -ltr
1272  [...]
1273  # echo 0 > tracing_on
1274  # cat trace
1275  # tracer: irqsoff
1276  #
1277  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1278  # --------------------------------------------------------------------
1279  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1280  #    -----------------
1281  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1282  #    -----------------
1283  #  => started at: run_timer_softirq
1284  #  => ended at:   run_timer_softirq
1285  #
1286  #
1287  #                  _------=> CPU#
1288  #                 / _-----=> irqs-off
1289  #                | / _----=> need-resched
1290  #                || / _---=> hardirq/softirq
1291  #                ||| / _--=> preempt-depth
1292  #                |||| /     delay
1293  #  cmd     pid   ||||| time  |   caller
1294  #     \   /      |||||  \    |   /
1295    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
1296    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
1297    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
1298    <idle>-0       0dNs3   25us : <stack trace>
1299   => _raw_spin_unlock_irq
1300   => run_timer_softirq
1301   => __do_softirq
1302   => call_softirq
1303   => do_softirq
1304   => irq_exit
1305   => smp_apic_timer_interrupt
1306   => apic_timer_interrupt
1307   => rcu_idle_exit
1308   => cpu_idle
1309   => rest_init
1310   => start_kernel
1311   => x86_64_start_reservations
1312   => x86_64_start_kernel
1313
1314Here we see that that we had a latency of 16 microseconds (which is
1315very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1316interrupts. The difference between the 16 and the displayed
1317timestamp 25us occurred because the clock was incremented
1318between the time of recording the max latency and the time of
1319recording the function that had that latency.
1320
1321Note the above example had function-trace not set. If we set
1322function-trace, we get a much larger output::
1323
1324 with echo 1 > options/function-trace
1325
1326  # tracer: irqsoff
1327  #
1328  # irqsoff latency trace v1.1.5 on 3.8.0-test+
1329  # --------------------------------------------------------------------
1330  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1331  #    -----------------
1332  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1333  #    -----------------
1334  #  => started at: ata_scsi_queuecmd
1335  #  => ended at:   ata_scsi_queuecmd
1336  #
1337  #
1338  #                  _------=> CPU#
1339  #                 / _-----=> irqs-off
1340  #                | / _----=> need-resched
1341  #                || / _---=> hardirq/softirq
1342  #                ||| / _--=> preempt-depth
1343  #                |||| /     delay
1344  #  cmd     pid   ||||| time  |   caller
1345  #     \   /      |||||  \    |   /
1346      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1347      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1348      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1349      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1350      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1351      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1352      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1353      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1354      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1355  [...]
1356      bash-2042    3d..1   67us : delay_tsc <-__delay
1357      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1358      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1359      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1360      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1361      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1362      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1363      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1364      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1365      bash-2042    3d..1  120us : <stack trace>
1366   => _raw_spin_unlock_irqrestore
1367   => ata_scsi_queuecmd
1368   => scsi_dispatch_cmd
1369   => scsi_request_fn
1370   => __blk_run_queue_uncond
1371   => __blk_run_queue
1372   => blk_queue_bio
1373   => generic_make_request
1374   => submit_bio
1375   => submit_bh
1376   => __ext3_get_inode_loc
1377   => ext3_iget
1378   => ext3_lookup
1379   => lookup_real
1380   => __lookup_hash
1381   => walk_component
1382   => lookup_last
1383   => path_lookupat
1384   => filename_lookup
1385   => user_path_at_empty
1386   => user_path_at
1387   => vfs_fstatat
1388   => vfs_stat
1389   => sys_newstat
1390   => system_call_fastpath
1391
1392
1393Here we traced a 71 microsecond latency. But we also see all the
1394functions that were called during that time. Note that by
1395enabling function tracing, we incur an added overhead. This
1396overhead may extend the latency times. But nevertheless, this
1397trace has provided some very helpful debugging information.
1398
1399
1400preemptoff
1401----------
1402
1403When preemption is disabled, we may be able to receive
1404interrupts but the task cannot be preempted and a higher
1405priority task must wait for preemption to be enabled again
1406before it can preempt a lower priority task.
1407
1408The preemptoff tracer traces the places that disable preemption.
1409Like the irqsoff tracer, it records the maximum latency for
1410which preemption was disabled. The control of preemptoff tracer
1411is much like the irqsoff tracer.
1412::
1413
1414  # echo 0 > options/function-trace
1415  # echo preemptoff > current_tracer
1416  # echo 1 > tracing_on
1417  # echo 0 > tracing_max_latency
1418  # ls -ltr
1419  [...]
1420  # echo 0 > tracing_on
1421  # cat trace
1422  # tracer: preemptoff
1423  #
1424  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1425  # --------------------------------------------------------------------
1426  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1427  #    -----------------
1428  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1429  #    -----------------
1430  #  => started at: do_IRQ
1431  #  => ended at:   do_IRQ
1432  #
1433  #
1434  #                  _------=> CPU#
1435  #                 / _-----=> irqs-off
1436  #                | / _----=> need-resched
1437  #                || / _---=> hardirq/softirq
1438  #                ||| / _--=> preempt-depth
1439  #                |||| /     delay
1440  #  cmd     pid   ||||| time  |   caller
1441  #     \   /      |||||  \    |   /
1442      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1443      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1444      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1445      sshd-1991    1d..1   52us : <stack trace>
1446   => sub_preempt_count
1447   => irq_exit
1448   => do_IRQ
1449   => ret_from_intr
1450
1451
1452This has some more changes. Preemption was disabled when an
1453interrupt came in (notice the 'h'), and was enabled on exit.
1454But we also see that interrupts have been disabled when entering
1455the preempt off section and leaving it (the 'd'). We do not know if
1456interrupts were enabled in the mean time or shortly after this
1457was over.
1458::
1459
1460  # tracer: preemptoff
1461  #
1462  # preemptoff latency trace v1.1.5 on 3.8.0-test+
1463  # --------------------------------------------------------------------
1464  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1465  #    -----------------
1466  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1467  #    -----------------
1468  #  => started at: wake_up_new_task
1469  #  => ended at:   task_rq_unlock
1470  #
1471  #
1472  #                  _------=> CPU#
1473  #                 / _-----=> irqs-off
1474  #                | / _----=> need-resched
1475  #                || / _---=> hardirq/softirq
1476  #                ||| / _--=> preempt-depth
1477  #                |||| /     delay
1478  #  cmd     pid   ||||| time  |   caller
1479  #     \   /      |||||  \    |   /
1480      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1481      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1482      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1483      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1484      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1485  [...]
1486      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1487      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1488      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1489      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1490      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1491      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1492      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1493      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1494  [...]
1495      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1496      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1497      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1498      bash-1994    1d..2   36us : do_softirq <-irq_exit
1499      bash-1994    1d..2   36us : __do_softirq <-call_softirq
1500      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1501      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1502      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1503      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1504      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1505  [...]
1506      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1507      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1508      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1509      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1510      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1511      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1512      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1513      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1514      bash-1994    1.N.1  104us : <stack trace>
1515   => sub_preempt_count
1516   => _raw_spin_unlock_irqrestore
1517   => task_rq_unlock
1518   => wake_up_new_task
1519   => do_fork
1520   => sys_clone
1521   => stub_clone
1522
1523
1524The above is an example of the preemptoff trace with
1525function-trace set. Here we see that interrupts were not disabled
1526the entire time. The irq_enter code lets us know that we entered
1527an interrupt 'h'. Before that, the functions being traced still
1528show that it is not in an interrupt, but we can see from the
1529functions themselves that this is not the case.
1530
1531preemptirqsoff
1532--------------
1533
1534Knowing the locations that have interrupts disabled or
1535preemption disabled for the longest times is helpful. But
1536sometimes we would like to know when either preemption and/or
1537interrupts are disabled.
1538
1539Consider the following code::
1540
1541    local_irq_disable();
1542    call_function_with_irqs_off();
1543    preempt_disable();
1544    call_function_with_irqs_and_preemption_off();
1545    local_irq_enable();
1546    call_function_with_preemption_off();
1547    preempt_enable();
1548
1549The irqsoff tracer will record the total length of
1550call_function_with_irqs_off() and
1551call_function_with_irqs_and_preemption_off().
1552
1553The preemptoff tracer will record the total length of
1554call_function_with_irqs_and_preemption_off() and
1555call_function_with_preemption_off().
1556
1557But neither will trace the time that interrupts and/or
1558preemption is disabled. This total time is the time that we can
1559not schedule. To record this time, use the preemptirqsoff
1560tracer.
1561
1562Again, using this trace is much like the irqsoff and preemptoff
1563tracers.
1564::
1565
1566  # echo 0 > options/function-trace
1567  # echo preemptirqsoff > current_tracer
1568  # echo 1 > tracing_on
1569  # echo 0 > tracing_max_latency
1570  # ls -ltr
1571  [...]
1572  # echo 0 > tracing_on
1573  # cat trace
1574  # tracer: preemptirqsoff
1575  #
1576  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1577  # --------------------------------------------------------------------
1578  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1579  #    -----------------
1580  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1581  #    -----------------
1582  #  => started at: ata_scsi_queuecmd
1583  #  => ended at:   ata_scsi_queuecmd
1584  #
1585  #
1586  #                  _------=> CPU#
1587  #                 / _-----=> irqs-off
1588  #                | / _----=> need-resched
1589  #                || / _---=> hardirq/softirq
1590  #                ||| / _--=> preempt-depth
1591  #                |||| /     delay
1592  #  cmd     pid   ||||| time  |   caller
1593  #     \   /      |||||  \    |   /
1594        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1595        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1596        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1597        ls-2230    3...1  111us : <stack trace>
1598   => sub_preempt_count
1599   => _raw_spin_unlock_irqrestore
1600   => ata_scsi_queuecmd
1601   => scsi_dispatch_cmd
1602   => scsi_request_fn
1603   => __blk_run_queue_uncond
1604   => __blk_run_queue
1605   => blk_queue_bio
1606   => generic_make_request
1607   => submit_bio
1608   => submit_bh
1609   => ext3_bread
1610   => ext3_dir_bread
1611   => htree_dirblock_to_tree
1612   => ext3_htree_fill_tree
1613   => ext3_readdir
1614   => vfs_readdir
1615   => sys_getdents
1616   => system_call_fastpath
1617
1618
1619The trace_hardirqs_off_thunk is called from assembly on x86 when
1620interrupts are disabled in the assembly code. Without the
1621function tracing, we do not know if interrupts were enabled
1622within the preemption points. We do see that it started with
1623preemption enabled.
1624
1625Here is a trace with function-trace set::
1626
1627  # tracer: preemptirqsoff
1628  #
1629  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1630  # --------------------------------------------------------------------
1631  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1632  #    -----------------
1633  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1634  #    -----------------
1635  #  => started at: schedule
1636  #  => ended at:   mutex_unlock
1637  #
1638  #
1639  #                  _------=> CPU#
1640  #                 / _-----=> irqs-off
1641  #                | / _----=> need-resched
1642  #                || / _---=> hardirq/softirq
1643  #                ||| / _--=> preempt-depth
1644  #                |||| /     delay
1645  #  cmd     pid   ||||| time  |   caller
1646  #     \   /      |||||  \    |   /
1647  kworker/-59      3...1    0us : __schedule <-schedule
1648  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1649  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1650  kworker/-59      3d..2    1us : deactivate_task <-__schedule
1651  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1652  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1653  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1654  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1655  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1656  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1657  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1658  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1659  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1660  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1661  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1662  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1663  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1664  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1665  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1666  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1667  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1668  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1669  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1670  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1671  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1672        ls-2269    3d..2    7us : finish_task_switch <-__schedule
1673        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1674        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1675        ls-2269    3d..2    8us : irq_enter <-do_IRQ
1676        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1677        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1678        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1679  [...]
1680        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1681        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1682        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1683        ls-2269    3d..3   21us : do_softirq <-irq_exit
1684        ls-2269    3d..3   21us : __do_softirq <-call_softirq
1685        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1686        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1687        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1688        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1689        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1690        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1691  [...]
1692        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1693        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1694        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1695        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1696        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1697        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1698  [...]
1699        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1700        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1701        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1702        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1703        ls-2269    3d..3  159us : idle_cpu <-irq_exit
1704        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1705        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1706        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1707        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1708        ls-2269    3d...  186us : <stack trace>
1709   => __mutex_unlock_slowpath
1710   => mutex_unlock
1711   => process_output
1712   => n_tty_write
1713   => tty_write
1714   => vfs_write
1715   => sys_write
1716   => system_call_fastpath
1717
1718This is an interesting trace. It started with kworker running and
1719scheduling out and ls taking over. But as soon as ls released the
1720rq lock and enabled interrupts (but not preemption) an interrupt
1721triggered. When the interrupt finished, it started running softirqs.
1722But while the softirq was running, another interrupt triggered.
1723When an interrupt is running inside a softirq, the annotation is 'H'.
1724
1725
1726wakeup
1727------
1728
1729One common case that people are interested in tracing is the
1730time it takes for a task that is woken to actually wake up.
1731Now for non Real-Time tasks, this can be arbitrary. But tracing
1732it none the less can be interesting.
1733
1734Without function tracing::
1735
1736  # echo 0 > options/function-trace
1737  # echo wakeup > current_tracer
1738  # echo 1 > tracing_on
1739  # echo 0 > tracing_max_latency
1740  # chrt -f 5 sleep 1
1741  # echo 0 > tracing_on
1742  # cat trace
1743  # tracer: wakeup
1744  #
1745  # wakeup latency trace v1.1.5 on 3.8.0-test+
1746  # --------------------------------------------------------------------
1747  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1748  #    -----------------
1749  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1750  #    -----------------
1751  #
1752  #                  _------=> CPU#
1753  #                 / _-----=> irqs-off
1754  #                | / _----=> need-resched
1755  #                || / _---=> hardirq/softirq
1756  #                ||| / _--=> preempt-depth
1757  #                |||| /     delay
1758  #  cmd     pid   ||||| time  |   caller
1759  #     \   /      |||||  \    |   /
1760    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1761    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1762    <idle>-0       3d..3   15us : __schedule <-schedule
1763    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1764
1765The tracer only traces the highest priority task in the system
1766to avoid tracing the normal circumstances. Here we see that
1767the kworker with a nice priority of -20 (not very nice), took
1768just 15 microseconds from the time it woke up, to the time it
1769ran.
1770
1771Non Real-Time tasks are not that interesting. A more interesting
1772trace is to concentrate only on Real-Time tasks.
1773
1774wakeup_rt
1775---------
1776
1777In a Real-Time environment it is very important to know the
1778wakeup time it takes for the highest priority task that is woken
1779up to the time that it executes. This is also known as "schedule
1780latency". I stress the point that this is about RT tasks. It is
1781also important to know the scheduling latency of non-RT tasks,
1782but the average schedule latency is better for non-RT tasks.
1783Tools like LatencyTop are more appropriate for such
1784measurements.
1785
1786Real-Time environments are interested in the worst case latency.
1787That is the longest latency it takes for something to happen,
1788and not the average. We can have a very fast scheduler that may
1789only have a large latency once in a while, but that would not
1790work well with Real-Time tasks.  The wakeup_rt tracer was designed
1791to record the worst case wakeups of RT tasks. Non-RT tasks are
1792not recorded because the tracer only records one worst case and
1793tracing non-RT tasks that are unpredictable will overwrite the
1794worst case latency of RT tasks (just run the normal wakeup
1795tracer for a while to see that effect).
1796
1797Since this tracer only deals with RT tasks, we will run this
1798slightly differently than we did with the previous tracers.
1799Instead of performing an 'ls', we will run 'sleep 1' under
1800'chrt' which changes the priority of the task.
1801::
1802
1803  # echo 0 > options/function-trace
1804  # echo wakeup_rt > current_tracer
1805  # echo 1 > tracing_on
1806  # echo 0 > tracing_max_latency
1807  # chrt -f 5 sleep 1
1808  # echo 0 > tracing_on
1809  # cat trace
1810  # tracer: wakeup
1811  #
1812  # tracer: wakeup_rt
1813  #
1814  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1815  # --------------------------------------------------------------------
1816  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1817  #    -----------------
1818  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1819  #    -----------------
1820  #
1821  #                  _------=> CPU#
1822  #                 / _-----=> irqs-off
1823  #                | / _----=> need-resched
1824  #                || / _---=> hardirq/softirq
1825  #                ||| / _--=> preempt-depth
1826  #                |||| /     delay
1827  #  cmd     pid   ||||| time  |   caller
1828  #     \   /      |||||  \    |   /
1829    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1830    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1831    <idle>-0       3d..3    5us : __schedule <-schedule
1832    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1833
1834
1835Running this on an idle system, we see that it only took 5 microseconds
1836to perform the task switch.  Note, since the trace point in the schedule
1837is before the actual "switch", we stop the tracing when the recorded task
1838is about to schedule in. This may change if we add a new marker at the
1839end of the scheduler.
1840
1841Notice that the recorded task is 'sleep' with the PID of 2389
1842and it has an rt_prio of 5. This priority is user-space priority
1843and not the internal kernel priority. The policy is 1 for
1844SCHED_FIFO and 2 for SCHED_RR.
1845
1846Note, that the trace data shows the internal priority (99 - rtprio).
1847::
1848
1849  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1850
1851The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1852and in the running state 'R'. The sleep task was scheduled in with
18532389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1854and it too is in the running state.
1855
1856Doing the same with chrt -r 5 and function-trace set.
1857::
1858
1859  echo 1 > options/function-trace
1860
1861  # tracer: wakeup_rt
1862  #
1863  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1864  # --------------------------------------------------------------------
1865  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1866  #    -----------------
1867  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1868  #    -----------------
1869  #
1870  #                  _------=> CPU#
1871  #                 / _-----=> irqs-off
1872  #                | / _----=> need-resched
1873  #                || / _---=> hardirq/softirq
1874  #                ||| / _--=> preempt-depth
1875  #                |||| /     delay
1876  #  cmd     pid   ||||| time  |   caller
1877  #     \   /      |||||  \    |   /
1878    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1879    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1880    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1881    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1882    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1883    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1884    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1885    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1886    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1887    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1888    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1889    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1890    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1891    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1892    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1893    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1894    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1895    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1896    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1897    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1898    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1899    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1900    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1901    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1902    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1903    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1904    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1905    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1906    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1907    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1908    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1909    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
1910    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1911    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
1912    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
1913    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
1914    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1915    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1916    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1917    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1918    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1919    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1920    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1921    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1922    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1923    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1924    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1925    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1926    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1927    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1928    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1929    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1930    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1931    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1932    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1933    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1934    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1935    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1936    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1937    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1938    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1939    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1940    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1941    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1942    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1943    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1944    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1945    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1946    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1947    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1948    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1949    <idle>-0       3.N..   25us : schedule <-cpu_idle
1950    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1951    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1952    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1953    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1954    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1955    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1956    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1957    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1958    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1959    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1960    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1961    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1962    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1963
1964This isn't that big of a trace, even with function tracing enabled,
1965so I included the entire trace.
1966
1967The interrupt went off while when the system was idle. Somewhere
1968before task_woken_rt() was called, the NEED_RESCHED flag was set,
1969this is indicated by the first occurrence of the 'N' flag.
1970
1971Latency tracing and events
1972--------------------------
1973As function tracing can induce a much larger latency, but without
1974seeing what happens within the latency it is hard to know what
1975caused it. There is a middle ground, and that is with enabling
1976events.
1977::
1978
1979  # echo 0 > options/function-trace
1980  # echo wakeup_rt > current_tracer
1981  # echo 1 > events/enable
1982  # echo 1 > tracing_on
1983  # echo 0 > tracing_max_latency
1984  # chrt -f 5 sleep 1
1985  # echo 0 > tracing_on
1986  # cat trace
1987  # tracer: wakeup_rt
1988  #
1989  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1990  # --------------------------------------------------------------------
1991  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1992  #    -----------------
1993  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1994  #    -----------------
1995  #
1996  #                  _------=> CPU#
1997  #                 / _-----=> irqs-off
1998  #                | / _----=> need-resched
1999  #                || / _---=> hardirq/softirq
2000  #                ||| / _--=> preempt-depth
2001  #                |||| /     delay
2002  #  cmd     pid   ||||| time  |   caller
2003  #     \   /      |||||  \    |   /
2004    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
2005    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2006    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2007    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2008    <idle>-0       2.N.2    2us : power_end: cpu_id=2
2009    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
2010    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2011    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2012    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
2013    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
2014    <idle>-0       2d..3    6us : __schedule <-schedule
2015    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
2016
2017
2018Hardware Latency Detector
2019-------------------------
2020
2021The hardware latency detector is executed by enabling the "hwlat" tracer.
2022
2023NOTE, this tracer will affect the performance of the system as it will
2024periodically make a CPU constantly busy with interrupts disabled.
2025::
2026
2027  # echo hwlat > current_tracer
2028  # sleep 100
2029  # cat trace
2030  # tracer: hwlat
2031  #
2032  #                              _-----=> irqs-off
2033  #                             / _----=> need-resched
2034  #                            | / _---=> hardirq/softirq
2035  #                            || / _--=> preempt-depth
2036  #                            ||| /     delay
2037  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2038  #              | |       |   ||||       |         |
2039             <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
2040             <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
2041             <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
2042             <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
2043             <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
2044             <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1
2045
2046
2047The above output is somewhat the same in the header. All events will have
2048interrupts disabled 'd'. Under the FUNCTION title there is:
2049
2050 #1
2051	This is the count of events recorded that were greater than the
2052	tracing_threshold (See below).
2053
2054 inner/outer(us):   12/14
2055
2056      This shows two numbers as "inner latency" and "outer latency". The test
2057      runs in a loop checking a timestamp twice. The latency detected within
2058      the two timestamps is the "inner latency" and the latency detected
2059      after the previous timestamp and the next timestamp in the loop is
2060      the "outer latency".
2061
2062 ts:1499801089.066141940
2063
2064      The absolute timestamp that the event happened.
2065
2066 nmi-total:4 nmi-count:1
2067
2068      On architectures that support it, if an NMI comes in during the
2069      test, the time spent in NMI is reported in "nmi-total" (in
2070      microseconds).
2071
2072      All architectures that have NMIs will show the "nmi-count" if an
2073      NMI comes in during the test.
2074
2075hwlat files:
2076
2077  tracing_threshold
2078	This gets automatically set to "10" to represent 10
2079	microseconds. This is the threshold of latency that
2080	needs to be detected before the trace will be recorded.
2081
2082	Note, when hwlat tracer is finished (another tracer is
2083	written into "current_tracer"), the original value for
2084	tracing_threshold is placed back into this file.
2085
2086  hwlat_detector/width
2087	The length of time the test runs with interrupts disabled.
2088
2089  hwlat_detector/window
2090	The length of time of the window which the test
2091	runs. That is, the test will run for "width"
2092	microseconds per "window" microseconds
2093
2094  tracing_cpumask
2095	When the test is started. A kernel thread is created that
2096	runs the test. This thread will alternate between CPUs
2097	listed in the tracing_cpumask between each period
2098	(one "window"). To limit the test to specific CPUs
2099	set the mask in this file to only the CPUs that the test
2100	should run on.
2101
2102function
2103--------
2104
2105This tracer is the function tracer. Enabling the function tracer
2106can be done from the debug file system. Make sure the
2107ftrace_enabled is set; otherwise this tracer is a nop.
2108See the "ftrace_enabled" section below.
2109::
2110
2111  # sysctl kernel.ftrace_enabled=1
2112  # echo function > current_tracer
2113  # echo 1 > tracing_on
2114  # usleep 1
2115  # echo 0 > tracing_on
2116  # cat trace
2117  # tracer: function
2118  #
2119  # entries-in-buffer/entries-written: 24799/24799   #P:4
2120  #
2121  #                              _-----=> irqs-off
2122  #                             / _----=> need-resched
2123  #                            | / _---=> hardirq/softirq
2124  #                            || / _--=> preempt-depth
2125  #                            ||| /     delay
2126  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2127  #              | |       |   ||||       |         |
2128              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
2129              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2130              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
2131              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
2132              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
2133              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
2134              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
2135              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
2136  [...]
2137
2138
2139Note: function tracer uses ring buffers to store the above
2140entries. The newest data may overwrite the oldest data.
2141Sometimes using echo to stop the trace is not sufficient because
2142the tracing could have overwritten the data that you wanted to
2143record. For this reason, it is sometimes better to disable
2144tracing directly from a program. This allows you to stop the
2145tracing at the point that you hit the part that you are
2146interested in. To disable the tracing directly from a C program,
2147something like following code snippet can be used::
2148
2149	int trace_fd;
2150	[...]
2151	int main(int argc, char *argv[]) {
2152		[...]
2153		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2154		[...]
2155		if (condition_hit()) {
2156			write(trace_fd, "0", 1);
2157		}
2158		[...]
2159	}
2160
2161
2162Single thread tracing
2163---------------------
2164
2165By writing into set_ftrace_pid you can trace a
2166single thread. For example::
2167
2168  # cat set_ftrace_pid
2169  no pid
2170  # echo 3111 > set_ftrace_pid
2171  # cat set_ftrace_pid
2172  3111
2173  # echo function > current_tracer
2174  # cat trace | head
2175  # tracer: function
2176  #
2177  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2178  #              | |       |          |         |
2179      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
2180      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2181      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2182      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2183      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
2184      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
2185  # echo > set_ftrace_pid
2186  # cat trace |head
2187  # tracer: function
2188  #
2189  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
2190  #              | |       |          |         |
2191  ##### CPU 3 buffer started ####
2192      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
2193      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
2194      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
2195      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
2196      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
2197
2198If you want to trace a function when executing, you could use
2199something like this simple program.
2200::
2201
2202	#include <stdio.h>
2203	#include <stdlib.h>
2204	#include <sys/types.h>
2205	#include <sys/stat.h>
2206	#include <fcntl.h>
2207	#include <unistd.h>
2208	#include <string.h>
2209
2210	#define _STR(x) #x
2211	#define STR(x) _STR(x)
2212	#define MAX_PATH 256
2213
2214	const char *find_tracefs(void)
2215	{
2216	       static char tracefs[MAX_PATH+1];
2217	       static int tracefs_found;
2218	       char type[100];
2219	       FILE *fp;
2220
2221	       if (tracefs_found)
2222		       return tracefs;
2223
2224	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
2225		       perror("/proc/mounts");
2226		       return NULL;
2227	       }
2228
2229	       while (fscanf(fp, "%*s %"
2230		             STR(MAX_PATH)
2231		             "s %99s %*s %*d %*d\n",
2232		             tracefs, type) == 2) {
2233		       if (strcmp(type, "tracefs") == 0)
2234		               break;
2235	       }
2236	       fclose(fp);
2237
2238	       if (strcmp(type, "tracefs") != 0) {
2239		       fprintf(stderr, "tracefs not mounted");
2240		       return NULL;
2241	       }
2242
2243	       strcat(tracefs, "/tracing/");
2244	       tracefs_found = 1;
2245
2246	       return tracefs;
2247	}
2248
2249	const char *tracing_file(const char *file_name)
2250	{
2251	       static char trace_file[MAX_PATH+1];
2252	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2253	       return trace_file;
2254	}
2255
2256	int main (int argc, char **argv)
2257	{
2258		if (argc < 1)
2259		        exit(-1);
2260
2261		if (fork() > 0) {
2262		        int fd, ffd;
2263		        char line[64];
2264		        int s;
2265
2266		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
2267		        if (ffd < 0)
2268		                exit(-1);
2269		        write(ffd, "nop", 3);
2270
2271		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2272		        s = sprintf(line, "%d\n", getpid());
2273		        write(fd, line, s);
2274
2275		        write(ffd, "function", 8);
2276
2277		        close(fd);
2278		        close(ffd);
2279
2280		        execvp(argv[1], argv+1);
2281		}
2282
2283		return 0;
2284	}
2285
2286Or this simple script!
2287::
2288
2289  #!/bin/bash
2290
2291  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2292  echo nop > $tracefs/tracing/current_tracer
2293  echo 0 > $tracefs/tracing/tracing_on
2294  echo $$ > $tracefs/tracing/set_ftrace_pid
2295  echo function > $tracefs/tracing/current_tracer
2296  echo 1 > $tracefs/tracing/tracing_on
2297  exec "$@"
2298
2299
2300function graph tracer
2301---------------------------
2302
2303This tracer is similar to the function tracer except that it
2304probes a function on its entry and its exit. This is done by
2305using a dynamically allocated stack of return addresses in each
2306task_struct. On function entry the tracer overwrites the return
2307address of each function traced to set a custom probe. Thus the
2308original return address is stored on the stack of return address
2309in the task_struct.
2310
2311Probing on both ends of a function leads to special features
2312such as:
2313
2314- measure of a function's time execution
2315- having a reliable call stack to draw function calls graph
2316
2317This tracer is useful in several situations:
2318
2319- you want to find the reason of a strange kernel behavior and
2320  need to see what happens in detail on any areas (or specific
2321  ones).
2322
2323- you are experiencing weird latencies but it's difficult to
2324  find its origin.
2325
2326- you want to find quickly which path is taken by a specific
2327  function
2328
2329- you just want to peek inside a working kernel and want to see
2330  what happens there.
2331
2332::
2333
2334  # tracer: function_graph
2335  #
2336  # CPU  DURATION                  FUNCTION CALLS
2337  # |     |   |                     |   |   |   |
2338
2339   0)               |  sys_open() {
2340   0)               |    do_sys_open() {
2341   0)               |      getname() {
2342   0)               |        kmem_cache_alloc() {
2343   0)   1.382 us    |          __might_sleep();
2344   0)   2.478 us    |        }
2345   0)               |        strncpy_from_user() {
2346   0)               |          might_fault() {
2347   0)   1.389 us    |            __might_sleep();
2348   0)   2.553 us    |          }
2349   0)   3.807 us    |        }
2350   0)   7.876 us    |      }
2351   0)               |      alloc_fd() {
2352   0)   0.668 us    |        _spin_lock();
2353   0)   0.570 us    |        expand_files();
2354   0)   0.586 us    |        _spin_unlock();
2355
2356
2357There are several columns that can be dynamically
2358enabled/disabled. You can use every combination of options you
2359want, depending on your needs.
2360
2361- The cpu number on which the function executed is default
2362  enabled.  It is sometimes better to only trace one cpu (see
2363  tracing_cpu_mask file) or you might sometimes see unordered
2364  function calls while cpu tracing switch.
2365
2366	- hide: echo nofuncgraph-cpu > trace_options
2367	- show: echo funcgraph-cpu > trace_options
2368
2369- The duration (function's time of execution) is displayed on
2370  the closing bracket line of a function or on the same line
2371  than the current function in case of a leaf one. It is default
2372  enabled.
2373
2374	- hide: echo nofuncgraph-duration > trace_options
2375	- show: echo funcgraph-duration > trace_options
2376
2377- The overhead field precedes the duration field in case of
2378  reached duration thresholds.
2379
2380	- hide: echo nofuncgraph-overhead > trace_options
2381	- show: echo funcgraph-overhead > trace_options
2382	- depends on: funcgraph-duration
2383
2384  ie::
2385
2386    3) # 1837.709 us |          } /* __switch_to */
2387    3)               |          finish_task_switch() {
2388    3)   0.313 us    |            _raw_spin_unlock_irq();
2389    3)   3.177 us    |          }
2390    3) # 1889.063 us |        } /* __schedule */
2391    3) ! 140.417 us  |      } /* __schedule */
2392    3) # 2034.948 us |    } /* schedule */
2393    3) * 33998.59 us |  } /* schedule_preempt_disabled */
2394
2395    [...]
2396
2397    1)   0.260 us    |              msecs_to_jiffies();
2398    1)   0.313 us    |              __rcu_read_unlock();
2399    1) + 61.770 us   |            }
2400    1) + 64.479 us   |          }
2401    1)   0.313 us    |          rcu_bh_qs();
2402    1)   0.313 us    |          __local_bh_enable();
2403    1) ! 217.240 us  |        }
2404    1)   0.365 us    |        idle_cpu();
2405    1)               |        rcu_irq_exit() {
2406    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
2407    1)   3.125 us    |        }
2408    1) ! 227.812 us  |      }
2409    1) ! 457.395 us  |    }
2410    1) @ 119760.2 us |  }
2411
2412    [...]
2413
2414    2)               |    handle_IPI() {
2415    1)   6.979 us    |                  }
2416    2)   0.417 us    |      scheduler_ipi();
2417    1)   9.791 us    |                }
2418    1) + 12.917 us   |              }
2419    2)   3.490 us    |    }
2420    1) + 15.729 us   |            }
2421    1) + 18.542 us   |          }
2422    2) $ 3594274 us  |  }
2423
2424Flags::
2425
2426  + means that the function exceeded 10 usecs.
2427  ! means that the function exceeded 100 usecs.
2428  # means that the function exceeded 1000 usecs.
2429  * means that the function exceeded 10 msecs.
2430  @ means that the function exceeded 100 msecs.
2431  $ means that the function exceeded 1 sec.
2432
2433
2434- The task/pid field displays the thread cmdline and pid which
2435  executed the function. It is default disabled.
2436
2437	- hide: echo nofuncgraph-proc > trace_options
2438	- show: echo funcgraph-proc > trace_options
2439
2440  ie::
2441
2442    # tracer: function_graph
2443    #
2444    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2445    # |    |    |           |   |                     |   |   |   |
2446    0)    sh-4802     |               |                  d_free() {
2447    0)    sh-4802     |               |                    call_rcu() {
2448    0)    sh-4802     |               |                      __call_rcu() {
2449    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2450    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2451    0)    sh-4802     |   2.899 us    |                      }
2452    0)    sh-4802     |   4.040 us    |                    }
2453    0)    sh-4802     |   5.151 us    |                  }
2454    0)    sh-4802     | + 49.370 us   |                }
2455
2456
2457- The absolute time field is an absolute timestamp given by the
2458  system clock since it started. A snapshot of this time is
2459  given on each entry/exit of functions
2460
2461	- hide: echo nofuncgraph-abstime > trace_options
2462	- show: echo funcgraph-abstime > trace_options
2463
2464  ie::
2465
2466    #
2467    #      TIME       CPU  DURATION                  FUNCTION CALLS
2468    #       |         |     |   |                     |   |   |   |
2469    360.774522 |   1)   0.541 us    |                                          }
2470    360.774522 |   1)   4.663 us    |                                        }
2471    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2472    360.774524 |   1)   6.796 us    |                                      }
2473    360.774524 |   1)   7.952 us    |                                    }
2474    360.774525 |   1)   9.063 us    |                                  }
2475    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2476    360.774527 |   1)   0.578 us    |                                  __brelse();
2477    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2478    360.774528 |   1)               |                                    unlock_buffer() {
2479    360.774529 |   1)               |                                      wake_up_bit() {
2480    360.774529 |   1)               |                                        bit_waitqueue() {
2481    360.774530 |   1)   0.594 us    |                                          __phys_addr();
2482
2483
2484The function name is always displayed after the closing bracket
2485for a function if the start of that function is not in the
2486trace buffer.
2487
2488Display of the function name after the closing bracket may be
2489enabled for functions whose start is in the trace buffer,
2490allowing easier searching with grep for function durations.
2491It is default disabled.
2492
2493	- hide: echo nofuncgraph-tail > trace_options
2494	- show: echo funcgraph-tail > trace_options
2495
2496  Example with nofuncgraph-tail (default)::
2497
2498    0)               |      putname() {
2499    0)               |        kmem_cache_free() {
2500    0)   0.518 us    |          __phys_addr();
2501    0)   1.757 us    |        }
2502    0)   2.861 us    |      }
2503
2504  Example with funcgraph-tail::
2505
2506    0)               |      putname() {
2507    0)               |        kmem_cache_free() {
2508    0)   0.518 us    |          __phys_addr();
2509    0)   1.757 us    |        } /* kmem_cache_free() */
2510    0)   2.861 us    |      } /* putname() */
2511
2512You can put some comments on specific functions by using
2513trace_printk() For example, if you want to put a comment inside
2514the __might_sleep() function, you just have to include
2515<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2516
2517	trace_printk("I'm a comment!\n")
2518
2519will produce::
2520
2521   1)               |             __might_sleep() {
2522   1)               |                /* I'm a comment! */
2523   1)   1.449 us    |             }
2524
2525
2526You might find other useful features for this tracer in the
2527following "dynamic ftrace" section such as tracing only specific
2528functions or tasks.
2529
2530dynamic ftrace
2531--------------
2532
2533If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2534virtually no overhead when function tracing is disabled. The way
2535this works is the mcount function call (placed at the start of
2536every kernel function, produced by the -pg switch in gcc),
2537starts of pointing to a simple return. (Enabling FTRACE will
2538include the -pg switch in the compiling of the kernel.)
2539
2540At compile time every C file object is run through the
2541recordmcount program (located in the scripts directory). This
2542program will parse the ELF headers in the C object to find all
2543the locations in the .text section that call mcount. Starting
2544with gcc verson 4.6, the -mfentry has been added for x86, which
2545calls "__fentry__" instead of "mcount". Which is called before
2546the creation of the stack frame.
2547
2548Note, not all sections are traced. They may be prevented by either
2549a notrace, or blocked another way and all inline functions are not
2550traced. Check the "available_filter_functions" file to see what functions
2551can be traced.
2552
2553A section called "__mcount_loc" is created that holds
2554references to all the mcount/fentry call sites in the .text section.
2555The recordmcount program re-links this section back into the
2556original object. The final linking stage of the kernel will add all these
2557references into a single table.
2558
2559On boot up, before SMP is initialized, the dynamic ftrace code
2560scans this table and updates all the locations into nops. It
2561also records the locations, which are added to the
2562available_filter_functions list.  Modules are processed as they
2563are loaded and before they are executed.  When a module is
2564unloaded, it also removes its functions from the ftrace function
2565list. This is automatic in the module unload code, and the
2566module author does not need to worry about it.
2567
2568When tracing is enabled, the process of modifying the function
2569tracepoints is dependent on architecture. The old method is to use
2570kstop_machine to prevent races with the CPUs executing code being
2571modified (which can cause the CPU to do undesirable things, especially
2572if the modified code crosses cache (or page) boundaries), and the nops are
2573patched back to calls. But this time, they do not call mcount
2574(which is just a function stub). They now call into the ftrace
2575infrastructure.
2576
2577The new method of modifying the function tracepoints is to place
2578a breakpoint at the location to be modified, sync all CPUs, modify
2579the rest of the instruction not covered by the breakpoint. Sync
2580all CPUs again, and then remove the breakpoint with the finished
2581version to the ftrace call site.
2582
2583Some archs do not even need to monkey around with the synchronization,
2584and can just slap the new code on top of the old without any
2585problems with other CPUs executing it at the same time.
2586
2587One special side-effect to the recording of the functions being
2588traced is that we can now selectively choose which functions we
2589wish to trace and which ones we want the mcount calls to remain
2590as nops.
2591
2592Two files are used, one for enabling and one for disabling the
2593tracing of specified functions. They are:
2594
2595  set_ftrace_filter
2596
2597and
2598
2599  set_ftrace_notrace
2600
2601A list of available functions that you can add to these files is
2602listed in:
2603
2604   available_filter_functions
2605
2606::
2607
2608  # cat available_filter_functions
2609  put_prev_task_idle
2610  kmem_cache_create
2611  pick_next_task_rt
2612  get_online_cpus
2613  pick_next_task_fair
2614  mutex_lock
2615  [...]
2616
2617If I am only interested in sys_nanosleep and hrtimer_interrupt::
2618
2619  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2620  # echo function > current_tracer
2621  # echo 1 > tracing_on
2622  # usleep 1
2623  # echo 0 > tracing_on
2624  # cat trace
2625  # tracer: function
2626  #
2627  # entries-in-buffer/entries-written: 5/5   #P:4
2628  #
2629  #                              _-----=> irqs-off
2630  #                             / _----=> need-resched
2631  #                            | / _---=> hardirq/softirq
2632  #                            || / _--=> preempt-depth
2633  #                            ||| /     delay
2634  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2635  #              | |       |   ||||       |         |
2636            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2637            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2638            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2639            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2640            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2641
2642To see which functions are being traced, you can cat the file:
2643::
2644
2645  # cat set_ftrace_filter
2646  hrtimer_interrupt
2647  sys_nanosleep
2648
2649
2650Perhaps this is not enough. The filters also allow glob(7) matching.
2651
2652  ``<match>*``
2653	will match functions that begin with <match>
2654  ``*<match>``
2655	will match functions that end with <match>
2656  ``*<match>*``
2657	will match functions that have <match> in it
2658  ``<match1>*<match2>``
2659	will match functions that begin with <match1> and end with <match2>
2660
2661.. note::
2662      It is better to use quotes to enclose the wild cards,
2663      otherwise the shell may expand the parameters into names
2664      of files in the local directory.
2665
2666::
2667
2668  # echo 'hrtimer_*' > set_ftrace_filter
2669
2670Produces::
2671
2672  # tracer: function
2673  #
2674  # entries-in-buffer/entries-written: 897/897   #P:4
2675  #
2676  #                              _-----=> irqs-off
2677  #                             / _----=> need-resched
2678  #                            | / _---=> hardirq/softirq
2679  #                            || / _--=> preempt-depth
2680  #                            ||| /     delay
2681  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2682  #              | |       |   ||||       |         |
2683            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2684            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2685            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2686            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2687            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2688            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2689            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2690            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2691
2692Notice that we lost the sys_nanosleep.
2693::
2694
2695  # cat set_ftrace_filter
2696  hrtimer_run_queues
2697  hrtimer_run_pending
2698  hrtimer_init
2699  hrtimer_cancel
2700  hrtimer_try_to_cancel
2701  hrtimer_forward
2702  hrtimer_start
2703  hrtimer_reprogram
2704  hrtimer_force_reprogram
2705  hrtimer_get_next_event
2706  hrtimer_interrupt
2707  hrtimer_nanosleep
2708  hrtimer_wakeup
2709  hrtimer_get_remaining
2710  hrtimer_get_res
2711  hrtimer_init_sleeper
2712
2713
2714This is because the '>' and '>>' act just like they do in bash.
2715To rewrite the filters, use '>'
2716To append to the filters, use '>>'
2717
2718To clear out a filter so that all functions will be recorded
2719again::
2720
2721 # echo > set_ftrace_filter
2722 # cat set_ftrace_filter
2723 #
2724
2725Again, now we want to append.
2726
2727::
2728
2729  # echo sys_nanosleep > set_ftrace_filter
2730  # cat set_ftrace_filter
2731  sys_nanosleep
2732  # echo 'hrtimer_*' >> set_ftrace_filter
2733  # cat set_ftrace_filter
2734  hrtimer_run_queues
2735  hrtimer_run_pending
2736  hrtimer_init
2737  hrtimer_cancel
2738  hrtimer_try_to_cancel
2739  hrtimer_forward
2740  hrtimer_start
2741  hrtimer_reprogram
2742  hrtimer_force_reprogram
2743  hrtimer_get_next_event
2744  hrtimer_interrupt
2745  sys_nanosleep
2746  hrtimer_nanosleep
2747  hrtimer_wakeup
2748  hrtimer_get_remaining
2749  hrtimer_get_res
2750  hrtimer_init_sleeper
2751
2752
2753The set_ftrace_notrace prevents those functions from being
2754traced.
2755::
2756
2757  # echo '*preempt*' '*lock*' > set_ftrace_notrace
2758
2759Produces::
2760
2761  # tracer: function
2762  #
2763  # entries-in-buffer/entries-written: 39608/39608   #P:4
2764  #
2765  #                              _-----=> irqs-off
2766  #                             / _----=> need-resched
2767  #                            | / _---=> hardirq/softirq
2768  #                            || / _--=> preempt-depth
2769  #                            ||| /     delay
2770  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2771  #              | |       |   ||||       |         |
2772              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2773              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2774              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2775              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2776              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2777              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2778              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2779              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2780              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2781              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2782              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2783              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2784
2785We can see that there's no more lock or preempt tracing.
2786
2787
2788Dynamic ftrace with the function graph tracer
2789---------------------------------------------
2790
2791Although what has been explained above concerns both the
2792function tracer and the function-graph-tracer, there are some
2793special features only available in the function-graph tracer.
2794
2795If you want to trace only one function and all of its children,
2796you just have to echo its name into set_graph_function::
2797
2798 echo __do_fault > set_graph_function
2799
2800will produce the following "expanded" trace of the __do_fault()
2801function::
2802
2803   0)               |  __do_fault() {
2804   0)               |    filemap_fault() {
2805   0)               |      find_lock_page() {
2806   0)   0.804 us    |        find_get_page();
2807   0)               |        __might_sleep() {
2808   0)   1.329 us    |        }
2809   0)   3.904 us    |      }
2810   0)   4.979 us    |    }
2811   0)   0.653 us    |    _spin_lock();
2812   0)   0.578 us    |    page_add_file_rmap();
2813   0)   0.525 us    |    native_set_pte_at();
2814   0)   0.585 us    |    _spin_unlock();
2815   0)               |    unlock_page() {
2816   0)   0.541 us    |      page_waitqueue();
2817   0)   0.639 us    |      __wake_up_bit();
2818   0)   2.786 us    |    }
2819   0) + 14.237 us   |  }
2820   0)               |  __do_fault() {
2821   0)               |    filemap_fault() {
2822   0)               |      find_lock_page() {
2823   0)   0.698 us    |        find_get_page();
2824   0)               |        __might_sleep() {
2825   0)   1.412 us    |        }
2826   0)   3.950 us    |      }
2827   0)   5.098 us    |    }
2828   0)   0.631 us    |    _spin_lock();
2829   0)   0.571 us    |    page_add_file_rmap();
2830   0)   0.526 us    |    native_set_pte_at();
2831   0)   0.586 us    |    _spin_unlock();
2832   0)               |    unlock_page() {
2833   0)   0.533 us    |      page_waitqueue();
2834   0)   0.638 us    |      __wake_up_bit();
2835   0)   2.793 us    |    }
2836   0) + 14.012 us   |  }
2837
2838You can also expand several functions at once::
2839
2840 echo sys_open > set_graph_function
2841 echo sys_close >> set_graph_function
2842
2843Now if you want to go back to trace all functions you can clear
2844this special filter via::
2845
2846 echo > set_graph_function
2847
2848
2849ftrace_enabled
2850--------------
2851
2852Note, the proc sysctl ftrace_enable is a big on/off switch for the
2853function tracer. By default it is enabled (when function tracing is
2854enabled in the kernel). If it is disabled, all function tracing is
2855disabled. This includes not only the function tracers for ftrace, but
2856also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2857
2858Please disable this with care.
2859
2860This can be disable (and enabled) with::
2861
2862  sysctl kernel.ftrace_enabled=0
2863  sysctl kernel.ftrace_enabled=1
2864
2865 or
2866
2867  echo 0 > /proc/sys/kernel/ftrace_enabled
2868  echo 1 > /proc/sys/kernel/ftrace_enabled
2869
2870
2871Filter commands
2872---------------
2873
2874A few commands are supported by the set_ftrace_filter interface.
2875Trace commands have the following format::
2876
2877  <function>:<command>:<parameter>
2878
2879The following commands are supported:
2880
2881- mod:
2882  This command enables function filtering per module. The
2883  parameter defines the module. For example, if only the write*
2884  functions in the ext3 module are desired, run:
2885
2886   echo 'write*:mod:ext3' > set_ftrace_filter
2887
2888  This command interacts with the filter in the same way as
2889  filtering based on function names. Thus, adding more functions
2890  in a different module is accomplished by appending (>>) to the
2891  filter file. Remove specific module functions by prepending
2892  '!'::
2893
2894   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2895
2896  Mod command supports module globbing. Disable tracing for all
2897  functions except a specific module::
2898
2899   echo '!*:mod:!ext3' >> set_ftrace_filter
2900
2901  Disable tracing for all modules, but still trace kernel::
2902
2903   echo '!*:mod:*' >> set_ftrace_filter
2904
2905  Enable filter only for kernel::
2906
2907   echo '*write*:mod:!*' >> set_ftrace_filter
2908
2909  Enable filter for module globbing::
2910
2911   echo '*write*:mod:*snd*' >> set_ftrace_filter
2912
2913- traceon/traceoff:
2914  These commands turn tracing on and off when the specified
2915  functions are hit. The parameter determines how many times the
2916  tracing system is turned on and off. If unspecified, there is
2917  no limit. For example, to disable tracing when a schedule bug
2918  is hit the first 5 times, run::
2919
2920   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2921
2922  To always disable tracing when __schedule_bug is hit::
2923
2924   echo '__schedule_bug:traceoff' > set_ftrace_filter
2925
2926  These commands are cumulative whether or not they are appended
2927  to set_ftrace_filter. To remove a command, prepend it by '!'
2928  and drop the parameter::
2929
2930   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2931
2932  The above removes the traceoff command for __schedule_bug
2933  that have a counter. To remove commands without counters::
2934
2935   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2936
2937- snapshot:
2938  Will cause a snapshot to be triggered when the function is hit.
2939  ::
2940
2941   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2942
2943  To only snapshot once:
2944  ::
2945
2946   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2947
2948  To remove the above commands::
2949
2950   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2951   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2952
2953- enable_event/disable_event:
2954  These commands can enable or disable a trace event. Note, because
2955  function tracing callbacks are very sensitive, when these commands
2956  are registered, the trace point is activated, but disabled in
2957  a "soft" mode. That is, the tracepoint will be called, but
2958  just will not be traced. The event tracepoint stays in this mode
2959  as long as there's a command that triggers it.
2960  ::
2961
2962   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2963   	 set_ftrace_filter
2964
2965  The format is::
2966
2967    <function>:enable_event:<system>:<event>[:count]
2968    <function>:disable_event:<system>:<event>[:count]
2969
2970  To remove the events commands::
2971
2972   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2973   	 set_ftrace_filter
2974   echo '!schedule:disable_event:sched:sched_switch' > \
2975   	 set_ftrace_filter
2976
2977- dump:
2978  When the function is hit, it will dump the contents of the ftrace
2979  ring buffer to the console. This is useful if you need to debug
2980  something, and want to dump the trace when a certain function
2981  is hit. Perhaps its a function that is called before a tripple
2982  fault happens and does not allow you to get a regular dump.
2983
2984- cpudump:
2985  When the function is hit, it will dump the contents of the ftrace
2986  ring buffer for the current CPU to the console. Unlike the "dump"
2987  command, it only prints out the contents of the ring buffer for the
2988  CPU that executed the function that triggered the dump.
2989
2990- stacktrace:
2991  When the function is hit, a stack trace is recorded.
2992
2993trace_pipe
2994----------
2995
2996The trace_pipe outputs the same content as the trace file, but
2997the effect on the tracing is different. Every read from
2998trace_pipe is consumed. This means that subsequent reads will be
2999different. The trace is live.
3000::
3001
3002  # echo function > current_tracer
3003  # cat trace_pipe > /tmp/trace.out &
3004  [1] 4153
3005  # echo 1 > tracing_on
3006  # usleep 1
3007  # echo 0 > tracing_on
3008  # cat trace
3009  # tracer: function
3010  #
3011  # entries-in-buffer/entries-written: 0/0   #P:4
3012  #
3013  #                              _-----=> irqs-off
3014  #                             / _----=> need-resched
3015  #                            | / _---=> hardirq/softirq
3016  #                            || / _--=> preempt-depth
3017  #                            ||| /     delay
3018  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3019  #              | |       |   ||||       |         |
3020
3021  #
3022  # cat /tmp/trace.out
3023             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
3024             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3025             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
3026             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
3027             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
3028             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
3029             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
3030             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
3031             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
3032
3033
3034Note, reading the trace_pipe file will block until more input is
3035added.
3036
3037trace entries
3038-------------
3039
3040Having too much or not enough data can be troublesome in
3041diagnosing an issue in the kernel. The file buffer_size_kb is
3042used to modify the size of the internal trace buffers. The
3043number listed is the number of entries that can be recorded per
3044CPU. To know the full size, multiply the number of possible CPUs
3045with the number of entries.
3046::
3047
3048  # cat buffer_size_kb
3049  1408 (units kilobytes)
3050
3051Or simply read buffer_total_size_kb
3052::
3053
3054  # cat buffer_total_size_kb
3055  5632
3056
3057To modify the buffer, simple echo in a number (in 1024 byte segments).
3058::
3059
3060  # echo 10000 > buffer_size_kb
3061  # cat buffer_size_kb
3062  10000 (units kilobytes)
3063
3064It will try to allocate as much as possible. If you allocate too
3065much, it can cause Out-Of-Memory to trigger.
3066::
3067
3068  # echo 1000000000000 > buffer_size_kb
3069  -bash: echo: write error: Cannot allocate memory
3070  # cat buffer_size_kb
3071  85
3072
3073The per_cpu buffers can be changed individually as well:
3074::
3075
3076  # echo 10000 > per_cpu/cpu0/buffer_size_kb
3077  # echo 100 > per_cpu/cpu1/buffer_size_kb
3078
3079When the per_cpu buffers are not the same, the buffer_size_kb
3080at the top level will just show an X
3081::
3082
3083  # cat buffer_size_kb
3084  X
3085
3086This is where the buffer_total_size_kb is useful:
3087::
3088
3089  # cat buffer_total_size_kb
3090  12916
3091
3092Writing to the top level buffer_size_kb will reset all the buffers
3093to be the same again.
3094
3095Snapshot
3096--------
3097CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3098available to all non latency tracers. (Latency tracers which
3099record max latency, such as "irqsoff" or "wakeup", can't use
3100this feature, since those are already using the snapshot
3101mechanism internally.)
3102
3103Snapshot preserves a current trace buffer at a particular point
3104in time without stopping tracing. Ftrace swaps the current
3105buffer with a spare buffer, and tracing continues in the new
3106current (=previous spare) buffer.
3107
3108The following tracefs files in "tracing" are related to this
3109feature:
3110
3111  snapshot:
3112
3113	This is used to take a snapshot and to read the output
3114	of the snapshot. Echo 1 into this file to allocate a
3115	spare buffer and to take a snapshot (swap), then read
3116	the snapshot from this file in the same format as
3117	"trace" (described above in the section "The File
3118	System"). Both reads snapshot and tracing are executable
3119	in parallel. When the spare buffer is allocated, echoing
3120	0 frees it, and echoing else (positive) values clear the
3121	snapshot contents.
3122	More details are shown in the table below.
3123
3124	+--------------+------------+------------+------------+
3125	|status\\input |     0      |     1      |    else    |
3126	+==============+============+============+============+
3127	|not allocated |(do nothing)| alloc+swap |(do nothing)|
3128	+--------------+------------+------------+------------+
3129	|allocated     |    free    |    swap    |   clear    |
3130	+--------------+------------+------------+------------+
3131
3132Here is an example of using the snapshot feature.
3133::
3134
3135  # echo 1 > events/sched/enable
3136  # echo 1 > snapshot
3137  # cat snapshot
3138  # tracer: nop
3139  #
3140  # entries-in-buffer/entries-written: 71/71   #P:8
3141  #
3142  #                              _-----=> irqs-off
3143  #                             / _----=> need-resched
3144  #                            | / _---=> hardirq/softirq
3145  #                            || / _--=> preempt-depth
3146  #                            ||| /     delay
3147  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3148  #              | |       |   ||||       |         |
3149            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3150             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3151  [...]
3152          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3153
3154  # cat trace
3155  # tracer: nop
3156  #
3157  # entries-in-buffer/entries-written: 77/77   #P:8
3158  #
3159  #                              _-----=> irqs-off
3160  #                             / _----=> need-resched
3161  #                            | / _---=> hardirq/softirq
3162  #                            || / _--=> preempt-depth
3163  #                            ||| /     delay
3164  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3165  #              | |       |   ||||       |         |
3166            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3167   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3168  [...]
3169
3170
3171If you try to use this snapshot feature when current tracer is
3172one of the latency tracers, you will get the following results.
3173::
3174
3175  # echo wakeup > current_tracer
3176  # echo 1 > snapshot
3177  bash: echo: write error: Device or resource busy
3178  # cat snapshot
3179  cat: snapshot: Device or resource busy
3180
3181
3182Instances
3183---------
3184In the tracefs tracing directory is a directory called "instances".
3185This directory can have new directories created inside of it using
3186mkdir, and removing directories with rmdir. The directory created
3187with mkdir in this directory will already contain files and other
3188directories after it is created.
3189::
3190
3191  # mkdir instances/foo
3192  # ls instances/foo
3193  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
3194  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
3195  trace_pipe  tracing_on
3196
3197As you can see, the new directory looks similar to the tracing directory
3198itself. In fact, it is very similar, except that the buffer and
3199events are agnostic from the main director, or from any other
3200instances that are created.
3201
3202The files in the new directory work just like the files with the
3203same name in the tracing directory except the buffer that is used
3204is a separate and new buffer. The files affect that buffer but do not
3205affect the main buffer with the exception of trace_options. Currently,
3206the trace_options affect all instances and the top level buffer
3207the same, but this may change in future releases. That is, options
3208may become specific to the instance they reside in.
3209
3210Notice that none of the function tracer files are there, nor is
3211current_tracer and available_tracers. This is because the buffers
3212can currently only have events enabled for them.
3213::
3214
3215  # mkdir instances/foo
3216  # mkdir instances/bar
3217  # mkdir instances/zoot
3218  # echo 100000 > buffer_size_kb
3219  # echo 1000 > instances/foo/buffer_size_kb
3220  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3221  # echo function > current_trace
3222  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3223  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3224  # echo 1 > instances/foo/events/sched/sched_switch/enable
3225  # echo 1 > instances/bar/events/irq/enable
3226  # echo 1 > instances/zoot/events/syscalls/enable
3227  # cat trace_pipe
3228  CPU:2 [LOST 11745 EVENTS]
3229              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3230              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3231              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3232              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3233              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3234              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3235              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3236              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3237              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3238              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3239              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3240  [...]
3241
3242  # cat instances/foo/trace_pipe
3243              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3244              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3245            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3246            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3247       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3248              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3249              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3250              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3251       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3252       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3253  [...]
3254
3255  # cat instances/bar/trace_pipe
3256       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
3257            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
3258              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
3259              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
3260              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
3261              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
3262              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
3263              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
3264              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3265              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
3266              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
3267              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
3268  [...]
3269
3270  # cat instances/zoot/trace
3271  # tracer: nop
3272  #
3273  # entries-in-buffer/entries-written: 18996/18996   #P:4
3274  #
3275  #                              _-----=> irqs-off
3276  #                             / _----=> need-resched
3277  #                            | / _---=> hardirq/softirq
3278  #                            || / _--=> preempt-depth
3279  #                            ||| /     delay
3280  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
3281  #              | |       |   ||||       |         |
3282              bash-1998  [000] d...   140.733501: sys_write -> 0x2
3283              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
3284              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
3285              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3286              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
3287              bash-1998  [000] d...   140.733510: sys_close(fd: a)
3288              bash-1998  [000] d...   140.733510: sys_close -> 0x0
3289              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3290              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
3291              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3292              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
3293
3294You can see that the trace of the top most trace buffer shows only
3295the function tracing. The foo instance displays wakeups and task
3296switches.
3297
3298To remove the instances, simply delete their directories:
3299::
3300
3301  # rmdir instances/foo
3302  # rmdir instances/bar
3303  # rmdir instances/zoot
3304
3305Note, if a process has a trace file open in one of the instance
3306directories, the rmdir will fail with EBUSY.
3307
3308
3309Stack trace
3310-----------
3311Since the kernel has a fixed sized stack, it is important not to
3312waste it in functions. A kernel developer must be conscience of
3313what they allocate on the stack. If they add too much, the system
3314can be in danger of a stack overflow, and corruption will occur,
3315usually leading to a system panic.
3316
3317There are some tools that check this, usually with interrupts
3318periodically checking usage. But if you can perform a check
3319at every function call that will become very useful. As ftrace provides
3320a function tracer, it makes it convenient to check the stack size
3321at every function call. This is enabled via the stack tracer.
3322
3323CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3324To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3325::
3326
3327 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3328
3329You can also enable it from the kernel command line to trace
3330the stack size of the kernel during boot up, by adding "stacktrace"
3331to the kernel command line parameter.
3332
3333After running it for a few minutes, the output looks like:
3334::
3335
3336  # cat stack_max_size
3337  2928
3338
3339  # cat stack_trace
3340          Depth    Size   Location    (18 entries)
3341          -----    ----   --------
3342    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
3343    1)     2704     160   find_busiest_group+0x31/0x1f1
3344    2)     2544     256   load_balance+0xd9/0x662
3345    3)     2288      80   idle_balance+0xbb/0x130
3346    4)     2208     128   __schedule+0x26e/0x5b9
3347    5)     2080      16   schedule+0x64/0x66
3348    6)     2064     128   schedule_timeout+0x34/0xe0
3349    7)     1936     112   wait_for_common+0x97/0xf1
3350    8)     1824      16   wait_for_completion+0x1d/0x1f
3351    9)     1808     128   flush_work+0xfe/0x119
3352   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
3353   11)     1664      48   input_available_p+0x1d/0x5c
3354   12)     1616      48   n_tty_poll+0x6d/0x134
3355   13)     1568      64   tty_poll+0x64/0x7f
3356   14)     1504     880   do_select+0x31e/0x511
3357   15)      624     400   core_sys_select+0x177/0x216
3358   16)      224      96   sys_select+0x91/0xb9
3359   17)      128     128   system_call_fastpath+0x16/0x1b
3360
3361Note, if -mfentry is being used by gcc, functions get traced before
3362they set up the stack frame. This means that leaf level functions
3363are not tested by the stack tracer when -mfentry is used.
3364
3365Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3366
3367More
3368----
3369More details can be found in the source code, in the `kernel/trace/*.c` files.
3370