1======================================
2Coresight - HW Assisted Tracing on ARM
3======================================
4
5   :Author:   Mathieu Poirier <mathieu.poirier@linaro.org>
6   :Date:     September 11th, 2014
7
8Introduction
9------------
10
11Coresight is an umbrella of technologies allowing for the debugging of ARM
12based SoC.  It includes solutions for JTAG and HW assisted tracing.  This
13document is concerned with the latter.
14
15HW assisted tracing is becoming increasingly useful when dealing with systems
16that have many SoCs and other components like GPU and DMA engines.  ARM has
17developed a HW assisted tracing solution by means of different components, each
18being added to a design at synthesis time to cater to specific tracing needs.
19Components are generally categorised as source, link and sinks and are
20(usually) discovered using the AMBA bus.
21
22"Sources" generate a compressed stream representing the processor instruction
23path based on tracing scenarios as configured by users.  From there the stream
24flows through the coresight system (via ATB bus) using links that are connecting
25the emanating source to a sink(s).  Sinks serve as endpoints to the coresight
26implementation, either storing the compressed stream in a memory buffer or
27creating an interface to the outside world where data can be transferred to a
28host without fear of filling up the onboard coresight memory buffer.
29
30At typical coresight system would look like this::
31
32  *****************************************************************
33 **************************** AMBA AXI  ****************************===||
34  *****************************************************************    ||
35        ^                    ^                            |            ||
36        |                    |                            *            **
37     0000000    :::::     0000000    :::::    :::::    @@@@@@@    ||||||||||||
38     0 CPU 0<-->: C :     0 CPU 0<-->: C :    : C :    @ STM @    || System ||
39  |->0000000    : T :  |->0000000    : T :    : T :<--->@@@@@     || Memory ||
40  |  #######<-->: I :  |  #######<-->: I :    : I :      @@@<-|   ||||||||||||
41  |  # ETM #    :::::  |  # PTM #    :::::    :::::       @   |
42  |   #####      ^ ^   |   #####      ^ !      ^ !        .   |   |||||||||
43  | |->###       | !   | |->###       | !      | !        .   |   || DAP ||
44  | |   #        | !   | |   #        | !      | !        .   |   |||||||||
45  | |   .        | !   | |   .        | !      | !        .   |      |  |
46  | |   .        | !   | |   .        | !      | !        .   |      |  *
47  | |   .        | !   | |   .        | !      | !        .   |      | SWD/
48  | |   .        | !   | |   .        | !      | !        .   |      | JTAG
49  *****************************************************************<-|
50 *************************** AMBA Debug APB ************************
51  *****************************************************************
52   |    .          !         .          !        !        .    |
53   |    .          *         .          *        *        .    |
54  *****************************************************************
55 ******************** Cross Trigger Matrix (CTM) *******************
56  *****************************************************************
57   |    .     ^              .                            .    |
58   |    *     !              *                            *    |
59  *****************************************************************
60 ****************** AMBA Advanced Trace Bus (ATB) ******************
61  *****************************************************************
62   |          !                        ===============         |
63   |          *                         ===== F =====<---------|
64   |   :::::::::                         ==== U ====
65   |-->:: CTI ::<!!                       === N ===
66   |   :::::::::  !                        == N ==
67   |    ^         *                        == E ==
68   |    !  &&&&&&&&&       IIIIIII         == L ==
69   |------>&& ETB &&<......II     I        =======
70   |    !  &&&&&&&&&       II     I           .
71   |    !                    I     I          .
72   |    !                    I REP I<..........
73   |    !                    I     I
74   |    !!>&&&&&&&&&       II     I           *Source: ARM ltd.
75   |------>& TPIU  &<......II    I            DAP = Debug Access Port
76           &&&&&&&&&       IIIIIII            ETM = Embedded Trace Macrocell
77               ;                              PTM = Program Trace Macrocell
78               ;                              CTI = Cross Trigger Interface
79               *                              ETB = Embedded Trace Buffer
80          To trace port                       TPIU= Trace Port Interface Unit
81                                              SWD = Serial Wire Debug
82
83While on target configuration of the components is done via the APB bus,
84all trace data are carried out-of-band on the ATB bus.  The CTM provides
85a way to aggregate and distribute signals between CoreSight components.
86
87The coresight framework provides a central point to represent, configure and
88manage coresight devices on a platform.  This first implementation centers on
89the basic tracing functionality, enabling components such ETM/PTM, funnel,
90replicator, TMC, TPIU and ETB.  Future work will enable more
91intricate IP blocks such as STM and CTI.
92
93
94Acronyms and Classification
95---------------------------
96
97Acronyms:
98
99PTM:
100    Program Trace Macrocell
101ETM:
102    Embedded Trace Macrocell
103STM:
104    System trace Macrocell
105ETB:
106    Embedded Trace Buffer
107ITM:
108    Instrumentation Trace Macrocell
109TPIU:
110     Trace Port Interface Unit
111TMC-ETR:
112        Trace Memory Controller, configured as Embedded Trace Router
113TMC-ETF:
114        Trace Memory Controller, configured as Embedded Trace FIFO
115CTI:
116    Cross Trigger Interface
117
118Classification:
119
120Source:
121   ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
122Link:
123   Funnel, replicator (intelligent or not), TMC-ETR
124Sinks:
125   ETBv1.0, ETB1.1, TPIU, TMC-ETF
126Misc:
127   CTI
128
129
130Device Tree Bindings
131--------------------
132
133See Documentation/devicetree/bindings/arm/coresight.txt for details.
134
135As of this writing drivers for ITM, STMs and CTIs are not provided but are
136expected to be added as the solution matures.
137
138
139Framework and implementation
140----------------------------
141
142The coresight framework provides a central point to represent, configure and
143manage coresight devices on a platform.  Any coresight compliant device can
144register with the framework for as long as they use the right APIs:
145
146.. c:function:: struct coresight_device *coresight_register(struct coresight_desc *desc);
147.. c:function:: void coresight_unregister(struct coresight_device *csdev);
148
149The registering function is taking a ``struct coresight_desc *desc`` and
150register the device with the core framework. The unregister function takes
151a reference to a ``struct coresight_device *csdev`` obtained at registration time.
152
153If everything goes well during the registration process the new devices will
154show up under /sys/bus/coresight/devices, as showns here for a TC2 platform::
155
156    root:~# ls /sys/bus/coresight/devices/
157    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
158    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
159    root:~#
160
161The functions take a ``struct coresight_device``, which looks like this::
162
163    struct coresight_desc {
164            enum coresight_dev_type type;
165            struct coresight_dev_subtype subtype;
166            const struct coresight_ops *ops;
167            struct coresight_platform_data *pdata;
168            struct device *dev;
169            const struct attribute_group **groups;
170    };
171
172
173The "coresight_dev_type" identifies what the device is, i.e, source link or
174sink while the "coresight_dev_subtype" will characterise that type further.
175
176The ``struct coresight_ops`` is mandatory and will tell the framework how to
177perform base operations related to the components, each component having
178a different set of requirement. For that ``struct coresight_ops_sink``,
179``struct coresight_ops_link`` and ``struct coresight_ops_source`` have been
180provided.
181
182The next field ``struct coresight_platform_data *pdata`` is acquired by calling
183``of_get_coresight_platform_data()``, as part of the driver's _probe routine and
184``struct device *dev`` gets the device reference embedded in the ``amba_device``::
185
186    static int etm_probe(struct amba_device *adev, const struct amba_id *id)
187    {
188     ...
189     ...
190     drvdata->dev = &adev->dev;
191     ...
192    }
193
194Specific class of device (source, link, or sink) have generic operations
195that can be performed on them (see ``struct coresight_ops``). The ``**groups``
196is a list of sysfs entries pertaining to operations
197specific to that component only.  "Implementation defined" customisations are
198expected to be accessed and controlled using those entries.
199
200Device Naming scheme
201--------------------
202
203The devices that appear on the "coresight" bus were named the same as their
204parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
205Thus the names were based on the Linux Open Firmware layer naming convention,
206which follows the base physical address of the device followed by the device
207type. e.g::
208
209    root:~# ls /sys/bus/coresight/devices/
210     20010000.etf  20040000.funnel      20100000.stm     22040000.etm
211     22140000.etm  230c0000.funnel      23240000.etm     20030000.tpiu
212     20070000.etr  20120000.replicator  220c0000.funnel
213     23040000.etm  23140000.etm         23340000.etm
214
215However, with the introduction of ACPI support, the names of the real
216devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
217introduced to use more generic names based on the type of the device. The
218following rules apply::
219
220  1) Devices that are bound to CPUs, are named based on the CPU logical
221     number.
222
223     e.g, ETM bound to CPU0 is named "etm0"
224
225  2) All other devices follow a pattern, "<device_type_prefix>N", where :
226
227	<device_type_prefix> 	- A prefix specific to the type of the device
228	N			- a sequential number assigned based on the order
229				  of probing.
230
231	e.g, tmc_etf0, tmc_etr0, funnel0, funnel1
232
233Thus, with the new scheme the devices could appear as ::
234
235    root:~# ls /sys/bus/coresight/devices/
236     etm0     etm1     etm2         etm3  etm4      etm5      funnel0
237     funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
238
239Some of the examples below might refer to old naming scheme and some
240to the newer scheme, to give a confirmation that what you see on your
241system is not unexpected. One must use the "names" as they appear on
242the system under specified locations.
243
244Topology Representation
245-----------------------
246
247Each CoreSight component has a ``connections`` directory which will contain
248links to other CoreSight components. This allows the user to explore the trace
249topology and for larger systems, determine the most appropriate sink for a
250given source. The connection information can also be used to establish
251which CTI devices are connected to a given component. This directory contains a
252``nr_links`` attribute detailing the number of links in the directory.
253
254For an ETM source, in this case ``etm0`` on a Juno platform, a typical
255arrangement will be::
256
257  linaro-developer:~# ls - l /sys/bus/coresight/devices/etm0/connections
258  <file details>  cti_cpu0 -> ../../../23020000.cti/cti_cpu0
259  <file details>  nr_links
260  <file details>  out:0 -> ../../../230c0000.funnel/funnel2
261
262Following the out port to ``funnel2``::
263
264  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel2/connections
265  <file details> in:0 -> ../../../23040000.etm/etm0
266  <file details> in:1 -> ../../../23140000.etm/etm3
267  <file details> in:2 -> ../../../23240000.etm/etm4
268  <file details> in:3 -> ../../../23340000.etm/etm5
269  <file details> nr_links
270  <file details> out:0 -> ../../../20040000.funnel/funnel0
271
272And again to ``funnel0``::
273
274  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel0/connections
275  <file details> in:0 -> ../../../220c0000.funnel/funnel1
276  <file details> in:1 -> ../../../230c0000.funnel/funnel2
277  <file details> nr_links
278  <file details> out:0 -> ../../../20010000.etf/tmc_etf0
279
280Finding the first sink ``tmc_etf0``. This can be used to collect data
281as a sink, or as a link to propagate further along the chain::
282
283  linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etf0/connections
284  <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
285  <file details> in:0 -> ../../../20040000.funnel/funnel0
286  <file details> nr_links
287  <file details> out:0 -> ../../../20150000.funnel/funnel4
288
289via ``funnel4``::
290
291  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel4/connections
292  <file details> in:0 -> ../../../20010000.etf/tmc_etf0
293  <file details> in:1 -> ../../../20140000.etf/tmc_etf1
294  <file details> nr_links
295  <file details> out:0 -> ../../../20120000.replicator/replicator0
296
297and a ``replicator0``::
298
299  linaro-developer:~# ls -l /sys/bus/coresight/devices/replicator0/connections
300  <file details> in:0 -> ../../../20150000.funnel/funnel4
301  <file details> nr_links
302  <file details> out:0 -> ../../../20030000.tpiu/tpiu0
303  <file details> out:1 -> ../../../20070000.etr/tmc_etr0
304
305Arriving at the final sink in the chain, ``tmc_etr0``::
306
307  linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etr0/connections
308  <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
309  <file details> in:0 -> ../../../20120000.replicator/replicator0
310  <file details> nr_links
311
312As described below, when using sysfs it is sufficient to enable a sink and
313a source for successful trace. The framework will correctly enable all
314intermediate links as required.
315
316Note: ``cti_sys0`` appears in two of the connections lists above.
317CTIs can connect to multiple devices and are arranged in a star topology
318via the CTM. See (Documentation/trace/coresight/coresight-ect.rst)
319[#fourth]_ for further details.
320Looking at this device we see 4 connections::
321
322  linaro-developer:~# ls -l /sys/bus/coresight/devices/cti_sys0/connections
323  <file details> nr_links
324  <file details> stm0 -> ../../../20100000.stm/stm0
325  <file details> tmc_etf0 -> ../../../20010000.etf/tmc_etf0
326  <file details> tmc_etr0 -> ../../../20070000.etr/tmc_etr0
327  <file details> tpiu0 -> ../../../20030000.tpiu/tpiu0
328
329
330How to use the tracer modules
331-----------------------------
332
333There are two ways to use the Coresight framework:
334
3351. using the perf cmd line tools.
3362. interacting directly with the Coresight devices using the sysFS interface.
337
338Preference is given to the former as using the sysFS interface
339requires a deep understanding of the Coresight HW.  The following sections
340provide details on using both methods.
341
3421) Using the sysFS interface:
343
344Before trace collection can start, a coresight sink needs to be identified.
345There is no limit on the amount of sinks (nor sources) that can be enabled at
346any given moment.  As a generic operation, all device pertaining to the sink
347class will have an "active" entry in sysfs::
348
349    root:/sys/bus/coresight/devices# ls
350    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
351    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
352    root:/sys/bus/coresight/devices# ls 20010000.etb
353    enable_sink  status  trigger_cntr
354    root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
355    root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
356    1
357    root:/sys/bus/coresight/devices#
358
359At boot time the current etm3x driver will configure the first address
360comparator with "_stext" and "_etext", essentially tracing any instruction
361that falls within that range.  As such "enabling" a source will immediately
362trigger a trace capture::
363
364    root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
365    root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
366    1
367    root:/sys/bus/coresight/devices# cat 20010000.etb/status
368    Depth:          0x2000
369    Status:         0x1
370    RAM read ptr:   0x0
371    RAM wrt ptr:    0x19d3   <----- The write pointer is moving
372    Trigger cnt:    0x0
373    Control:        0x1
374    Flush status:   0x0
375    Flush ctrl:     0x2001
376    root:/sys/bus/coresight/devices#
377
378Trace collection is stopped the same way::
379
380    root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
381    root:/sys/bus/coresight/devices#
382
383The content of the ETB buffer can be harvested directly from /dev::
384
385    root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
386    of=~/cstrace.bin
387    64+0 records in
388    64+0 records out
389    32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
390    root:/sys/bus/coresight/devices#
391
392The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
393
394Following is a DS-5 output of an experimental loop that increments a variable up
395to a certain value.  The example is simple and yet provides a glimpse of the
396wealth of possibilities that coresight provides.
397::
398
399    Info                                    Tracing enabled
400    Instruction     106378866       0x8026B53C      E52DE004        false   PUSH     {lr}
401    Instruction     0       0x8026B540      E24DD00C        false   SUB      sp,sp,#0xc
402    Instruction     0       0x8026B544      E3A03000        false   MOV      r3,#0
403    Instruction     0       0x8026B548      E58D3004        false   STR      r3,[sp,#4]
404    Instruction     0       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
405    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
406    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
407    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
408    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
409    Timestamp                                       Timestamp: 17106715833
410    Instruction     319     0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
411    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
412    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
413    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
414    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
415    Instruction     9       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
416    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
417    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
418    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
419    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
420    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
421    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
422    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
423    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
424    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
425    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
426    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
427    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
428    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
429    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
430    Instruction     10      0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
431    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
432    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
433    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
434    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
435    Instruction     6       0x8026B560      EE1D3F30        false   MRC      p15,#0x0,r3,c13,c0,#1
436    Instruction     0       0x8026B564      E1A0100D        false   MOV      r1,sp
437    Instruction     0       0x8026B568      E3C12D7F        false   BIC      r2,r1,#0x1fc0
438    Instruction     0       0x8026B56C      E3C2203F        false   BIC      r2,r2,#0x3f
439    Instruction     0       0x8026B570      E59D1004        false   LDR      r1,[sp,#4]
440    Instruction     0       0x8026B574      E59F0010        false   LDR      r0,[pc,#16] ; [0x8026B58C] = 0x80550368
441    Instruction     0       0x8026B578      E592200C        false   LDR      r2,[r2,#0xc]
442    Instruction     0       0x8026B57C      E59221D0        false   LDR      r2,[r2,#0x1d0]
443    Instruction     0       0x8026B580      EB07A4CF        true    BL       {pc}+0x1e9344 ; 0x804548c4
444    Info                                    Tracing enabled
445    Instruction     13570831        0x8026B584      E28DD00C        false   ADD      sp,sp,#0xc
446    Instruction     0       0x8026B588      E8BD8000        true    LDM      sp!,{pc}
447    Timestamp                                       Timestamp: 17107041535
448
4492) Using perf framework:
450
451Coresight tracers are represented using the Perf framework's Performance
452Monitoring Unit (PMU) abstraction.  As such the perf framework takes charge of
453controlling when tracing gets enabled based on when the process of interest is
454scheduled.  When configured in a system, Coresight PMUs will be listed when
455queried by the perf command line tool:
456
457	linaro@linaro-nano:~$ ./perf list pmu
458
459		List of pre-defined events (to be used in -e):
460
461		cs_etm//                                    [Kernel PMU event]
462
463	linaro@linaro-nano:~$
464
465Regardless of the number of tracers available in a system (usually equal to the
466amount of processor cores), the "cs_etm" PMU will be listed only once.
467
468A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
469listed along with configuration options within forward slashes '/'.  Since a
470Coresight system will typically have more than one sink, the name of the sink to
471work with needs to be specified as an event option.
472On newer kernels the available sinks are listed in sysFS under
473($SYSFS)/bus/event_source/devices/cs_etm/sinks/::
474
475	root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
476	tmc_etf0  tmc_etr0  tpiu0
477
478On older kernels, this may need to be found from the list of coresight devices,
479available under ($SYSFS)/bus/coresight/devices/::
480
481	root:~# ls /sys/bus/coresight/devices/
482	 etm0     etm1     etm2         etm3  etm4      etm5      funnel0
483	 funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
484	root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program
485
486As mentioned above in section "Device Naming scheme", the names of the devices could
487look different from what is used in the example above. One must use the device names
488as it appears under the sysFS.
489
490The syntax within the forward slashes '/' is important.  The '@' character
491tells the parser that a sink is about to be specified and that this is the sink
492to use for the trace session.
493
494More information on the above and other example on how to use Coresight with
495the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
496repository [#third]_.
497
4982.1) AutoFDO analysis using the perf tools:
499
500perf can be used to record and analyze trace of programs.
501
502Execution can be recorded using 'perf record' with the cs_etm event,
503specifying the name of the sink to record to, e.g::
504
505    perf record -e cs_etm/@tmc_etr0/u --per-thread
506
507The 'perf report' and 'perf script' commands can be used to analyze execution,
508synthesizing instruction and branch events from the instruction trace.
509'perf inject' can be used to replace the trace data with the synthesized events.
510The --itrace option controls the type and frequency of synthesized events
511(see perf documentation).
512
513Note that only 64-bit programs are currently supported - further work is
514required to support instruction decode of 32-bit Arm programs.
515
5162.2) Tracing PID
517
518The kernel can be built to write the PID value into the PE ContextID registers.
519For a kernel running at EL1, the PID is stored in CONTEXTIDR_EL1.  A PE may
520implement Arm Virtualization Host Extensions (VHE), which the kernel can
521run at EL2 as a virtualisation host; in this case, the PID value is stored in
522CONTEXTIDR_EL2.
523
524perf provides PMU formats that program the ETM to insert these values into the
525trace data; the PMU formats are defined as below:
526
527  "contextid1": Available on both EL1 kernel and EL2 kernel.  When the
528                kernel is running at EL1, "contextid1" enables the PID
529                tracing; when the kernel is running at EL2, this enables
530                tracing the PID of guest applications.
531
532  "contextid2": Only usable when the kernel is running at EL2.  When
533                selected, enables PID tracing on EL2 kernel.
534
535  "contextid":  Will be an alias for the option that enables PID
536                tracing.  I.e,
537                contextid == contextid1, on EL1 kernel.
538                contextid == contextid2, on EL2 kernel.
539
540perf will always enable PID tracing at the relevant EL, this is accomplished by
541automatically enable the "contextid" config - but for EL2 it is possible to make
542specific adjustments using configs "contextid1" and "contextid2", E.g. if a user
543wants to trace PIDs for both host and guest, the two configs "contextid1" and
544"contextid2" can be set at the same time:
545
546  perf record -e cs_etm/contextid1,contextid2/u -- vm
547
548
549Generating coverage files for Feedback Directed Optimization: AutoFDO
550---------------------------------------------------------------------
551
552'perf inject' accepts the --itrace option in which case tracing data is
553removed and replaced with the synthesized events. e.g.
554::
555
556	perf inject --itrace --strip -i perf.data -o perf.data.new
557
558Below is an example of using ARM ETM for autoFDO.  It requires autofdo
559(https://github.com/google/autofdo) and gcc version 5.  The bubble
560sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
561::
562
563	$ gcc-5 -O3 sort.c -o sort
564	$ taskset -c 2 ./sort
565	Bubble sorting array of 30000 elements
566	5910 ms
567
568	$ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
569	Bubble sorting array of 30000 elements
570	12543 ms
571	[ perf record: Woken up 35 times to write data ]
572	[ perf record: Captured and wrote 69.640 MB perf.data ]
573
574	$ perf inject -i perf.data -o inj.data --itrace=il64 --strip
575	$ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
576	$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
577	$ taskset -c 2 ./sort_autofdo
578	Bubble sorting array of 30000 elements
579	5806 ms
580
581
582How to use the STM module
583-------------------------
584
585Using the System Trace Macrocell module is the same as the tracers - the only
586difference is that clients are driving the trace capture rather
587than the program flow through the code.
588
589As with any other CoreSight component, specifics about the STM tracer can be
590found in sysfs with more information on each entry being found in [#first]_::
591
592    root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
593    enable_source   hwevent_select  port_enable     subsystem       uevent
594    hwevent_enable  mgmt            port_select     traceid
595    root@genericarmv8:~#
596
597Like any other source a sink needs to be identified and the STM enabled before
598being used::
599
600    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
601    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source
602
603From there user space applications can request and use channels using the devfs
604interface provided for that purpose by the generic STM API::
605
606    root@genericarmv8:~# ls -l /dev/stm0
607    crw-------    1 root     root       10,  61 Jan  3 18:11 /dev/stm0
608    root@genericarmv8:~#
609
610Details on how to use the generic STM API can be found here:
611- Documentation/trace/stm.rst [#second]_.
612
613The CTI & CTM Modules
614---------------------
615
616The CTI (Cross Trigger Interface) provides a set of trigger signals between
617individual CTIs and components, and can propagate these between all CTIs via
618channels on the CTM (Cross Trigger Matrix).
619
620A separate documentation file is provided to explain the use of these devices.
621(Documentation/trace/coresight/coresight-ect.rst) [#fourth]_.
622
623CoreSight System Configuration
624------------------------------
625
626CoreSight components can be complex devices with many programming options.
627Furthermore, components can be programmed to interact with each other across the
628complete system.
629
630A CoreSight System Configuration manager is provided to allow these complex programming
631configurations to be selected and used easily from perf and sysfs.
632
633See the separate document for further information.
634(Documentation/trace/coresight/coresight-config.rst) [#fifth]_.
635
636
637.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
638
639.. [#second] Documentation/trace/stm.rst
640
641.. [#third] https://github.com/Linaro/perf-opencsd
642
643.. [#fourth] Documentation/trace/coresight/coresight-ect.rst
644
645.. [#fifth] Documentation/trace/coresight/coresight-config.rst
646