xref: /openbmc/linux/Documentation/trace/coresight/coresight.rst (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1======================================
2Coresight - HW Assisted Tracing on ARM
3======================================
4
5   :Author:   Mathieu Poirier <mathieu.poirier@linaro.org>
6   :Date:     September 11th, 2014
7
8Introduction
9------------
10
11Coresight is an umbrella of technologies allowing for the debugging of ARM
12based SoC.  It includes solutions for JTAG and HW assisted tracing.  This
13document is concerned with the latter.
14
15HW assisted tracing is becoming increasingly useful when dealing with systems
16that have many SoCs and other components like GPU and DMA engines.  ARM has
17developed a HW assisted tracing solution by means of different components, each
18being added to a design at synthesis time to cater to specific tracing needs.
19Components are generally categorised as source, link and sinks and are
20(usually) discovered using the AMBA bus.
21
22"Sources" generate a compressed stream representing the processor instruction
23path based on tracing scenarios as configured by users.  From there the stream
24flows through the coresight system (via ATB bus) using links that are connecting
25the emanating source to a sink(s).  Sinks serve as endpoints to the coresight
26implementation, either storing the compressed stream in a memory buffer or
27creating an interface to the outside world where data can be transferred to a
28host without fear of filling up the onboard coresight memory buffer.
29
30At typical coresight system would look like this::
31
32  *****************************************************************
33 **************************** AMBA AXI  ****************************===||
34  *****************************************************************    ||
35        ^                    ^                            |            ||
36        |                    |                            *            **
37     0000000    :::::     0000000    :::::    :::::    @@@@@@@    ||||||||||||
38     0 CPU 0<-->: C :     0 CPU 0<-->: C :    : C :    @ STM @    || System ||
39  |->0000000    : T :  |->0000000    : T :    : T :<--->@@@@@     || Memory ||
40  |  #######<-->: I :  |  #######<-->: I :    : I :      @@@<-|   ||||||||||||
41  |  # ETM #    :::::  |  # PTM #    :::::    :::::       @   |
42  |   #####      ^ ^   |   #####      ^ !      ^ !        .   |   |||||||||
43  | |->###       | !   | |->###       | !      | !        .   |   || DAP ||
44  | |   #        | !   | |   #        | !      | !        .   |   |||||||||
45  | |   .        | !   | |   .        | !      | !        .   |      |  |
46  | |   .        | !   | |   .        | !      | !        .   |      |  *
47  | |   .        | !   | |   .        | !      | !        .   |      | SWD/
48  | |   .        | !   | |   .        | !      | !        .   |      | JTAG
49  *****************************************************************<-|
50 *************************** AMBA Debug APB ************************
51  *****************************************************************
52   |    .          !         .          !        !        .    |
53   |    .          *         .          *        *        .    |
54  *****************************************************************
55 ******************** Cross Trigger Matrix (CTM) *******************
56  *****************************************************************
57   |    .     ^              .                            .    |
58   |    *     !              *                            *    |
59  *****************************************************************
60 ****************** AMBA Advanced Trace Bus (ATB) ******************
61  *****************************************************************
62   |          !                        ===============         |
63   |          *                         ===== F =====<---------|
64   |   :::::::::                         ==== U ====
65   |-->:: CTI ::<!!                       === N ===
66   |   :::::::::  !                        == N ==
67   |    ^         *                        == E ==
68   |    !  &&&&&&&&&       IIIIIII         == L ==
69   |------>&& ETB &&<......II     I        =======
70   |    !  &&&&&&&&&       II     I           .
71   |    !                    I     I          .
72   |    !                    I REP I<..........
73   |    !                    I     I
74   |    !!>&&&&&&&&&       II     I           *Source: ARM ltd.
75   |------>& TPIU  &<......II    I            DAP = Debug Access Port
76           &&&&&&&&&       IIIIIII            ETM = Embedded Trace Macrocell
77               ;                              PTM = Program Trace Macrocell
78               ;                              CTI = Cross Trigger Interface
79               *                              ETB = Embedded Trace Buffer
80          To trace port                       TPIU= Trace Port Interface Unit
81                                              SWD = Serial Wire Debug
82
83While on target configuration of the components is done via the APB bus,
84all trace data are carried out-of-band on the ATB bus.  The CTM provides
85a way to aggregate and distribute signals between CoreSight components.
86
87The coresight framework provides a central point to represent, configure and
88manage coresight devices on a platform.  This first implementation centers on
89the basic tracing functionality, enabling components such ETM/PTM, funnel,
90replicator, TMC, TPIU and ETB.  Future work will enable more
91intricate IP blocks such as STM and CTI.
92
93
94Acronyms and Classification
95---------------------------
96
97Acronyms:
98
99PTM:
100    Program Trace Macrocell
101ETM:
102    Embedded Trace Macrocell
103STM:
104    System trace Macrocell
105ETB:
106    Embedded Trace Buffer
107ITM:
108    Instrumentation Trace Macrocell
109TPIU:
110     Trace Port Interface Unit
111TMC-ETR:
112        Trace Memory Controller, configured as Embedded Trace Router
113TMC-ETF:
114        Trace Memory Controller, configured as Embedded Trace FIFO
115CTI:
116    Cross Trigger Interface
117
118Classification:
119
120Source:
121   ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
122Link:
123   Funnel, replicator (intelligent or not), TMC-ETR
124Sinks:
125   ETBv1.0, ETB1.1, TPIU, TMC-ETF
126Misc:
127   CTI
128
129
130Device Tree Bindings
131--------------------
132
133See Documentation/devicetree/bindings/arm/coresight.txt for details.
134
135As of this writing drivers for ITM, STMs and CTIs are not provided but are
136expected to be added as the solution matures.
137
138
139Framework and implementation
140----------------------------
141
142The coresight framework provides a central point to represent, configure and
143manage coresight devices on a platform.  Any coresight compliant device can
144register with the framework for as long as they use the right APIs:
145
146.. c:function:: struct coresight_device *coresight_register(struct coresight_desc *desc);
147.. c:function:: void coresight_unregister(struct coresight_device *csdev);
148
149The registering function is taking a ``struct coresight_desc *desc`` and
150register the device with the core framework. The unregister function takes
151a reference to a ``struct coresight_device *csdev`` obtained at registration time.
152
153If everything goes well during the registration process the new devices will
154show up under /sys/bus/coresight/devices, as showns here for a TC2 platform::
155
156    root:~# ls /sys/bus/coresight/devices/
157    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
158    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
159    root:~#
160
161The functions take a ``struct coresight_device``, which looks like this::
162
163    struct coresight_desc {
164            enum coresight_dev_type type;
165            struct coresight_dev_subtype subtype;
166            const struct coresight_ops *ops;
167            struct coresight_platform_data *pdata;
168            struct device *dev;
169            const struct attribute_group **groups;
170    };
171
172
173The "coresight_dev_type" identifies what the device is, i.e, source link or
174sink while the "coresight_dev_subtype" will characterise that type further.
175
176The ``struct coresight_ops`` is mandatory and will tell the framework how to
177perform base operations related to the components, each component having
178a different set of requirement. For that ``struct coresight_ops_sink``,
179``struct coresight_ops_link`` and ``struct coresight_ops_source`` have been
180provided.
181
182The next field ``struct coresight_platform_data *pdata`` is acquired by calling
183``of_get_coresight_platform_data()``, as part of the driver's _probe routine and
184``struct device *dev`` gets the device reference embedded in the ``amba_device``::
185
186    static int etm_probe(struct amba_device *adev, const struct amba_id *id)
187    {
188     ...
189     ...
190     drvdata->dev = &adev->dev;
191     ...
192    }
193
194Specific class of device (source, link, or sink) have generic operations
195that can be performed on them (see ``struct coresight_ops``). The ``**groups``
196is a list of sysfs entries pertaining to operations
197specific to that component only.  "Implementation defined" customisations are
198expected to be accessed and controlled using those entries.
199
200Device Naming scheme
201--------------------
202
203The devices that appear on the "coresight" bus were named the same as their
204parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
205Thus the names were based on the Linux Open Firmware layer naming convention,
206which follows the base physical address of the device followed by the device
207type. e.g::
208
209    root:~# ls /sys/bus/coresight/devices/
210     20010000.etf  20040000.funnel      20100000.stm     22040000.etm
211     22140000.etm  230c0000.funnel      23240000.etm     20030000.tpiu
212     20070000.etr  20120000.replicator  220c0000.funnel
213     23040000.etm  23140000.etm         23340000.etm
214
215However, with the introduction of ACPI support, the names of the real
216devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
217introduced to use more generic names based on the type of the device. The
218following rules apply::
219
220  1) Devices that are bound to CPUs, are named based on the CPU logical
221     number.
222
223     e.g, ETM bound to CPU0 is named "etm0"
224
225  2) All other devices follow a pattern, "<device_type_prefix>N", where :
226
227	<device_type_prefix> 	- A prefix specific to the type of the device
228	N			- a sequential number assigned based on the order
229				  of probing.
230
231	e.g, tmc_etf0, tmc_etr0, funnel0, funnel1
232
233Thus, with the new scheme the devices could appear as ::
234
235    root:~# ls /sys/bus/coresight/devices/
236     etm0     etm1     etm2         etm3  etm4      etm5      funnel0
237     funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
238
239Some of the examples below might refer to old naming scheme and some
240to the newer scheme, to give a confirmation that what you see on your
241system is not unexpected. One must use the "names" as they appear on
242the system under specified locations.
243
244Topology Representation
245-----------------------
246
247Each CoreSight component has a ``connections`` directory which will contain
248links to other CoreSight components. This allows the user to explore the trace
249topology and for larger systems, determine the most appropriate sink for a
250given source. The connection information can also be used to establish
251which CTI devices are connected to a given component. This directory contains a
252``nr_links`` attribute detailing the number of links in the directory.
253
254For an ETM source, in this case ``etm0`` on a Juno platform, a typical
255arrangement will be::
256
257  linaro-developer:~# ls - l /sys/bus/coresight/devices/etm0/connections
258  <file details>  cti_cpu0 -> ../../../23020000.cti/cti_cpu0
259  <file details>  nr_links
260  <file details>  out:0 -> ../../../230c0000.funnel/funnel2
261
262Following the out port to ``funnel2``::
263
264  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel2/connections
265  <file details> in:0 -> ../../../23040000.etm/etm0
266  <file details> in:1 -> ../../../23140000.etm/etm3
267  <file details> in:2 -> ../../../23240000.etm/etm4
268  <file details> in:3 -> ../../../23340000.etm/etm5
269  <file details> nr_links
270  <file details> out:0 -> ../../../20040000.funnel/funnel0
271
272And again to ``funnel0``::
273
274  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel0/connections
275  <file details> in:0 -> ../../../220c0000.funnel/funnel1
276  <file details> in:1 -> ../../../230c0000.funnel/funnel2
277  <file details> nr_links
278  <file details> out:0 -> ../../../20010000.etf/tmc_etf0
279
280Finding the first sink ``tmc_etf0``. This can be used to collect data
281as a sink, or as a link to propagate further along the chain::
282
283  linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etf0/connections
284  <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
285  <file details> in:0 -> ../../../20040000.funnel/funnel0
286  <file details> nr_links
287  <file details> out:0 -> ../../../20150000.funnel/funnel4
288
289via ``funnel4``::
290
291  linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel4/connections
292  <file details> in:0 -> ../../../20010000.etf/tmc_etf0
293  <file details> in:1 -> ../../../20140000.etf/tmc_etf1
294  <file details> nr_links
295  <file details> out:0 -> ../../../20120000.replicator/replicator0
296
297and a ``replicator0``::
298
299  linaro-developer:~# ls -l /sys/bus/coresight/devices/replicator0/connections
300  <file details> in:0 -> ../../../20150000.funnel/funnel4
301  <file details> nr_links
302  <file details> out:0 -> ../../../20030000.tpiu/tpiu0
303  <file details> out:1 -> ../../../20070000.etr/tmc_etr0
304
305Arriving at the final sink in the chain, ``tmc_etr0``::
306
307  linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etr0/connections
308  <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
309  <file details> in:0 -> ../../../20120000.replicator/replicator0
310  <file details> nr_links
311
312As described below, when using sysfs it is sufficient to enable a sink and
313a source for successful trace. The framework will correctly enable all
314intermediate links as required.
315
316Note: ``cti_sys0`` appears in two of the connections lists above.
317CTIs can connect to multiple devices and are arranged in a star topology
318via the CTM. See (:doc:`coresight-ect`) [#fourth]_ for further details.
319Looking at this device we see 4 connections::
320
321  linaro-developer:~# ls -l /sys/bus/coresight/devices/cti_sys0/connections
322  <file details> nr_links
323  <file details> stm0 -> ../../../20100000.stm/stm0
324  <file details> tmc_etf0 -> ../../../20010000.etf/tmc_etf0
325  <file details> tmc_etr0 -> ../../../20070000.etr/tmc_etr0
326  <file details> tpiu0 -> ../../../20030000.tpiu/tpiu0
327
328
329How to use the tracer modules
330-----------------------------
331
332There are two ways to use the Coresight framework:
333
3341. using the perf cmd line tools.
3352. interacting directly with the Coresight devices using the sysFS interface.
336
337Preference is given to the former as using the sysFS interface
338requires a deep understanding of the Coresight HW.  The following sections
339provide details on using both methods.
340
3411) Using the sysFS interface:
342
343Before trace collection can start, a coresight sink needs to be identified.
344There is no limit on the amount of sinks (nor sources) that can be enabled at
345any given moment.  As a generic operation, all device pertaining to the sink
346class will have an "active" entry in sysfs::
347
348    root:/sys/bus/coresight/devices# ls
349    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
350    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
351    root:/sys/bus/coresight/devices# ls 20010000.etb
352    enable_sink  status  trigger_cntr
353    root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
354    root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
355    1
356    root:/sys/bus/coresight/devices#
357
358At boot time the current etm3x driver will configure the first address
359comparator with "_stext" and "_etext", essentially tracing any instruction
360that falls within that range.  As such "enabling" a source will immediately
361trigger a trace capture::
362
363    root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
364    root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
365    1
366    root:/sys/bus/coresight/devices# cat 20010000.etb/status
367    Depth:          0x2000
368    Status:         0x1
369    RAM read ptr:   0x0
370    RAM wrt ptr:    0x19d3   <----- The write pointer is moving
371    Trigger cnt:    0x0
372    Control:        0x1
373    Flush status:   0x0
374    Flush ctrl:     0x2001
375    root:/sys/bus/coresight/devices#
376
377Trace collection is stopped the same way::
378
379    root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
380    root:/sys/bus/coresight/devices#
381
382The content of the ETB buffer can be harvested directly from /dev::
383
384    root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
385    of=~/cstrace.bin
386    64+0 records in
387    64+0 records out
388    32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
389    root:/sys/bus/coresight/devices#
390
391The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
392
393Following is a DS-5 output of an experimental loop that increments a variable up
394to a certain value.  The example is simple and yet provides a glimpse of the
395wealth of possibilities that coresight provides.
396::
397
398    Info                                    Tracing enabled
399    Instruction     106378866       0x8026B53C      E52DE004        false   PUSH     {lr}
400    Instruction     0       0x8026B540      E24DD00C        false   SUB      sp,sp,#0xc
401    Instruction     0       0x8026B544      E3A03000        false   MOV      r3,#0
402    Instruction     0       0x8026B548      E58D3004        false   STR      r3,[sp,#4]
403    Instruction     0       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
404    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
405    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
406    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
407    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
408    Timestamp                                       Timestamp: 17106715833
409    Instruction     319     0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
410    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
411    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
412    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
413    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
414    Instruction     9       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
415    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
416    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
417    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
418    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
419    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
420    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
421    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
422    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
423    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
424    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
425    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
426    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
427    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
428    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
429    Instruction     10      0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
430    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
431    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
432    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
433    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
434    Instruction     6       0x8026B560      EE1D3F30        false   MRC      p15,#0x0,r3,c13,c0,#1
435    Instruction     0       0x8026B564      E1A0100D        false   MOV      r1,sp
436    Instruction     0       0x8026B568      E3C12D7F        false   BIC      r2,r1,#0x1fc0
437    Instruction     0       0x8026B56C      E3C2203F        false   BIC      r2,r2,#0x3f
438    Instruction     0       0x8026B570      E59D1004        false   LDR      r1,[sp,#4]
439    Instruction     0       0x8026B574      E59F0010        false   LDR      r0,[pc,#16] ; [0x8026B58C] = 0x80550368
440    Instruction     0       0x8026B578      E592200C        false   LDR      r2,[r2,#0xc]
441    Instruction     0       0x8026B57C      E59221D0        false   LDR      r2,[r2,#0x1d0]
442    Instruction     0       0x8026B580      EB07A4CF        true    BL       {pc}+0x1e9344 ; 0x804548c4
443    Info                                    Tracing enabled
444    Instruction     13570831        0x8026B584      E28DD00C        false   ADD      sp,sp,#0xc
445    Instruction     0       0x8026B588      E8BD8000        true    LDM      sp!,{pc}
446    Timestamp                                       Timestamp: 17107041535
447
4482) Using perf framework:
449
450Coresight tracers are represented using the Perf framework's Performance
451Monitoring Unit (PMU) abstraction.  As such the perf framework takes charge of
452controlling when tracing gets enabled based on when the process of interest is
453scheduled.  When configured in a system, Coresight PMUs will be listed when
454queried by the perf command line tool:
455
456	linaro@linaro-nano:~$ ./perf list pmu
457
458		List of pre-defined events (to be used in -e):
459
460		cs_etm//                                    [Kernel PMU event]
461
462	linaro@linaro-nano:~$
463
464Regardless of the number of tracers available in a system (usually equal to the
465amount of processor cores), the "cs_etm" PMU will be listed only once.
466
467A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
468listed along with configuration options within forward slashes '/'.  Since a
469Coresight system will typically have more than one sink, the name of the sink to
470work with needs to be specified as an event option.
471On newer kernels the available sinks are listed in sysFS under
472($SYSFS)/bus/event_source/devices/cs_etm/sinks/::
473
474	root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
475	tmc_etf0  tmc_etr0  tpiu0
476
477On older kernels, this may need to be found from the list of coresight devices,
478available under ($SYSFS)/bus/coresight/devices/::
479
480	root:~# ls /sys/bus/coresight/devices/
481	 etm0     etm1     etm2         etm3  etm4      etm5      funnel0
482	 funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
483	root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program
484
485As mentioned above in section "Device Naming scheme", the names of the devices could
486look different from what is used in the example above. One must use the device names
487as it appears under the sysFS.
488
489The syntax within the forward slashes '/' is important.  The '@' character
490tells the parser that a sink is about to be specified and that this is the sink
491to use for the trace session.
492
493More information on the above and other example on how to use Coresight with
494the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
495repository [#third]_.
496
4972.1) AutoFDO analysis using the perf tools:
498
499perf can be used to record and analyze trace of programs.
500
501Execution can be recorded using 'perf record' with the cs_etm event,
502specifying the name of the sink to record to, e.g::
503
504    perf record -e cs_etm/@tmc_etr0/u --per-thread
505
506The 'perf report' and 'perf script' commands can be used to analyze execution,
507synthesizing instruction and branch events from the instruction trace.
508'perf inject' can be used to replace the trace data with the synthesized events.
509The --itrace option controls the type and frequency of synthesized events
510(see perf documentation).
511
512Note that only 64-bit programs are currently supported - further work is
513required to support instruction decode of 32-bit Arm programs.
514
5152.2) Tracing PID
516
517The kernel can be built to write the PID value into the PE ContextID registers.
518For a kernel running at EL1, the PID is stored in CONTEXTIDR_EL1.  A PE may
519implement Arm Virtualization Host Extensions (VHE), which the kernel can
520run at EL2 as a virtualisation host; in this case, the PID value is stored in
521CONTEXTIDR_EL2.
522
523perf provides PMU formats that program the ETM to insert these values into the
524trace data; the PMU formats are defined as below:
525
526  "contextid1": Available on both EL1 kernel and EL2 kernel.  When the
527                kernel is running at EL1, "contextid1" enables the PID
528                tracing; when the kernel is running at EL2, this enables
529                tracing the PID of guest applications.
530
531  "contextid2": Only usable when the kernel is running at EL2.  When
532                selected, enables PID tracing on EL2 kernel.
533
534  "contextid":  Will be an alias for the option that enables PID
535                tracing.  I.e,
536                contextid == contextid1, on EL1 kernel.
537                contextid == contextid2, on EL2 kernel.
538
539perf will always enable PID tracing at the relevant EL, this is accomplished by
540automatically enable the "contextid" config - but for EL2 it is possible to make
541specific adjustments using configs "contextid1" and "contextid2", E.g. if a user
542wants to trace PIDs for both host and guest, the two configs "contextid1" and
543"contextid2" can be set at the same time:
544
545  perf record -e cs_etm/contextid1,contextid2/u -- vm
546
547
548Generating coverage files for Feedback Directed Optimization: AutoFDO
549---------------------------------------------------------------------
550
551'perf inject' accepts the --itrace option in which case tracing data is
552removed and replaced with the synthesized events. e.g.
553::
554
555	perf inject --itrace --strip -i perf.data -o perf.data.new
556
557Below is an example of using ARM ETM for autoFDO.  It requires autofdo
558(https://github.com/google/autofdo) and gcc version 5.  The bubble
559sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
560::
561
562	$ gcc-5 -O3 sort.c -o sort
563	$ taskset -c 2 ./sort
564	Bubble sorting array of 30000 elements
565	5910 ms
566
567	$ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
568	Bubble sorting array of 30000 elements
569	12543 ms
570	[ perf record: Woken up 35 times to write data ]
571	[ perf record: Captured and wrote 69.640 MB perf.data ]
572
573	$ perf inject -i perf.data -o inj.data --itrace=il64 --strip
574	$ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
575	$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
576	$ taskset -c 2 ./sort_autofdo
577	Bubble sorting array of 30000 elements
578	5806 ms
579
580
581How to use the STM module
582-------------------------
583
584Using the System Trace Macrocell module is the same as the tracers - the only
585difference is that clients are driving the trace capture rather
586than the program flow through the code.
587
588As with any other CoreSight component, specifics about the STM tracer can be
589found in sysfs with more information on each entry being found in [#first]_::
590
591    root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
592    enable_source   hwevent_select  port_enable     subsystem       uevent
593    hwevent_enable  mgmt            port_select     traceid
594    root@genericarmv8:~#
595
596Like any other source a sink needs to be identified and the STM enabled before
597being used::
598
599    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
600    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source
601
602From there user space applications can request and use channels using the devfs
603interface provided for that purpose by the generic STM API::
604
605    root@genericarmv8:~# ls -l /dev/stm0
606    crw-------    1 root     root       10,  61 Jan  3 18:11 /dev/stm0
607    root@genericarmv8:~#
608
609Details on how to use the generic STM API can be found here:- :doc:`../stm` [#second]_.
610
611The CTI & CTM Modules
612---------------------
613
614The CTI (Cross Trigger Interface) provides a set of trigger signals between
615individual CTIs and components, and can propagate these between all CTIs via
616channels on the CTM (Cross Trigger Matrix).
617
618A separate documentation file is provided to explain the use of these devices.
619(:doc:`coresight-ect`) [#fourth]_.
620
621
622.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
623
624.. [#second] Documentation/trace/stm.rst
625
626.. [#third] https://github.com/Linaro/perf-opencsd
627
628.. [#fourth] Documentation/trace/coresight/coresight-ect.rst
629