1======================================
2Coresight - HW Assisted Tracing on ARM
3======================================
4
5   :Author:   Mathieu Poirier <mathieu.poirier@linaro.org>
6   :Date:     September 11th, 2014
7
8Introduction
9------------
10
11Coresight is an umbrella of technologies allowing for the debugging of ARM
12based SoC.  It includes solutions for JTAG and HW assisted tracing.  This
13document is concerned with the latter.
14
15HW assisted tracing is becoming increasingly useful when dealing with systems
16that have many SoCs and other components like GPU and DMA engines.  ARM has
17developed a HW assisted tracing solution by means of different components, each
18being added to a design at synthesis time to cater to specific tracing needs.
19Components are generally categorised as source, link and sinks and are
20(usually) discovered using the AMBA bus.
21
22"Sources" generate a compressed stream representing the processor instruction
23path based on tracing scenarios as configured by users.  From there the stream
24flows through the coresight system (via ATB bus) using links that are connecting
25the emanating source to a sink(s).  Sinks serve as endpoints to the coresight
26implementation, either storing the compressed stream in a memory buffer or
27creating an interface to the outside world where data can be transferred to a
28host without fear of filling up the onboard coresight memory buffer.
29
30At typical coresight system would look like this::
31
32  *****************************************************************
33 **************************** AMBA AXI  ****************************===||
34  *****************************************************************    ||
35        ^                    ^                            |            ||
36        |                    |                            *            **
37     0000000    :::::     0000000    :::::    :::::    @@@@@@@    ||||||||||||
38     0 CPU 0<-->: C :     0 CPU 0<-->: C :    : C :    @ STM @    || System ||
39  |->0000000    : T :  |->0000000    : T :    : T :<--->@@@@@     || Memory ||
40  |  #######<-->: I :  |  #######<-->: I :    : I :      @@@<-|   ||||||||||||
41  |  # ETM #    :::::  |  # PTM #    :::::    :::::       @   |
42  |   #####      ^ ^   |   #####      ^ !      ^ !        .   |   |||||||||
43  | |->###       | !   | |->###       | !      | !        .   |   || DAP ||
44  | |   #        | !   | |   #        | !      | !        .   |   |||||||||
45  | |   .        | !   | |   .        | !      | !        .   |      |  |
46  | |   .        | !   | |   .        | !      | !        .   |      |  *
47  | |   .        | !   | |   .        | !      | !        .   |      | SWD/
48  | |   .        | !   | |   .        | !      | !        .   |      | JTAG
49  *****************************************************************<-|
50 *************************** AMBA Debug APB ************************
51  *****************************************************************
52   |    .          !         .          !        !        .    |
53   |    .          *         .          *        *        .    |
54  *****************************************************************
55 ******************** Cross Trigger Matrix (CTM) *******************
56  *****************************************************************
57   |    .     ^              .                            .    |
58   |    *     !              *                            *    |
59  *****************************************************************
60 ****************** AMBA Advanced Trace Bus (ATB) ******************
61  *****************************************************************
62   |          !                        ===============         |
63   |          *                         ===== F =====<---------|
64   |   :::::::::                         ==== U ====
65   |-->:: CTI ::<!!                       === N ===
66   |   :::::::::  !                        == N ==
67   |    ^         *                        == E ==
68   |    !  &&&&&&&&&       IIIIIII         == L ==
69   |------>&& ETB &&<......II     I        =======
70   |    !  &&&&&&&&&       II     I           .
71   |    !                    I     I          .
72   |    !                    I REP I<..........
73   |    !                    I     I
74   |    !!>&&&&&&&&&       II     I           *Source: ARM ltd.
75   |------>& TPIU  &<......II    I            DAP = Debug Access Port
76           &&&&&&&&&       IIIIIII            ETM = Embedded Trace Macrocell
77               ;                              PTM = Program Trace Macrocell
78               ;                              CTI = Cross Trigger Interface
79               *                              ETB = Embedded Trace Buffer
80          To trace port                       TPIU= Trace Port Interface Unit
81                                              SWD = Serial Wire Debug
82
83While on target configuration of the components is done via the APB bus,
84all trace data are carried out-of-band on the ATB bus.  The CTM provides
85a way to aggregate and distribute signals between CoreSight components.
86
87The coresight framework provides a central point to represent, configure and
88manage coresight devices on a platform.  This first implementation centers on
89the basic tracing functionality, enabling components such ETM/PTM, funnel,
90replicator, TMC, TPIU and ETB.  Future work will enable more
91intricate IP blocks such as STM and CTI.
92
93
94Acronyms and Classification
95---------------------------
96
97Acronyms:
98
99PTM:
100    Program Trace Macrocell
101ETM:
102    Embedded Trace Macrocell
103STM:
104    System trace Macrocell
105ETB:
106    Embedded Trace Buffer
107ITM:
108    Instrumentation Trace Macrocell
109TPIU:
110     Trace Port Interface Unit
111TMC-ETR:
112        Trace Memory Controller, configured as Embedded Trace Router
113TMC-ETF:
114        Trace Memory Controller, configured as Embedded Trace FIFO
115CTI:
116    Cross Trigger Interface
117
118Classification:
119
120Source:
121   ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
122Link:
123   Funnel, replicator (intelligent or not), TMC-ETR
124Sinks:
125   ETBv1.0, ETB1.1, TPIU, TMC-ETF
126Misc:
127   CTI
128
129
130Device Tree Bindings
131--------------------
132
133See Documentation/devicetree/bindings/arm/coresight.txt for details.
134
135As of this writing drivers for ITM, STMs and CTIs are not provided but are
136expected to be added as the solution matures.
137
138
139Framework and implementation
140----------------------------
141
142The coresight framework provides a central point to represent, configure and
143manage coresight devices on a platform.  Any coresight compliant device can
144register with the framework for as long as they use the right APIs:
145
146.. c:function:: struct coresight_device *coresight_register(struct coresight_desc *desc);
147.. c:function:: void coresight_unregister(struct coresight_device *csdev);
148
149The registering function is taking a ``struct coresight_desc *desc`` and
150register the device with the core framework. The unregister function takes
151a reference to a ``struct coresight_device *csdev`` obtained at registration time.
152
153If everything goes well during the registration process the new devices will
154show up under /sys/bus/coresight/devices, as showns here for a TC2 platform::
155
156    root:~# ls /sys/bus/coresight/devices/
157    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
158    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
159    root:~#
160
161The functions take a ``struct coresight_device``, which looks like this::
162
163    struct coresight_desc {
164            enum coresight_dev_type type;
165            struct coresight_dev_subtype subtype;
166            const struct coresight_ops *ops;
167            struct coresight_platform_data *pdata;
168            struct device *dev;
169            const struct attribute_group **groups;
170    };
171
172
173The "coresight_dev_type" identifies what the device is, i.e, source link or
174sink while the "coresight_dev_subtype" will characterise that type further.
175
176The ``struct coresight_ops`` is mandatory and will tell the framework how to
177perform base operations related to the components, each component having
178a different set of requirement. For that ``struct coresight_ops_sink``,
179``struct coresight_ops_link`` and ``struct coresight_ops_source`` have been
180provided.
181
182The next field ``struct coresight_platform_data *pdata`` is acquired by calling
183``of_get_coresight_platform_data()``, as part of the driver's _probe routine and
184``struct device *dev`` gets the device reference embedded in the ``amba_device``::
185
186    static int etm_probe(struct amba_device *adev, const struct amba_id *id)
187    {
188     ...
189     ...
190     drvdata->dev = &adev->dev;
191     ...
192    }
193
194Specific class of device (source, link, or sink) have generic operations
195that can be performed on them (see ``struct coresight_ops``). The ``**groups``
196is a list of sysfs entries pertaining to operations
197specific to that component only.  "Implementation defined" customisations are
198expected to be accessed and controlled using those entries.
199
200Device Naming scheme
201--------------------
202
203The devices that appear on the "coresight" bus were named the same as their
204parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
205Thus the names were based on the Linux Open Firmware layer naming convention,
206which follows the base physical address of the device followed by the device
207type. e.g::
208
209    root:~# ls /sys/bus/coresight/devices/
210     20010000.etf  20040000.funnel      20100000.stm     22040000.etm
211     22140000.etm  230c0000.funnel      23240000.etm     20030000.tpiu
212     20070000.etr  20120000.replicator  220c0000.funnel
213     23040000.etm  23140000.etm         23340000.etm
214
215However, with the introduction of ACPI support, the names of the real
216devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
217introduced to use more generic names based on the type of the device. The
218following rules apply::
219
220  1) Devices that are bound to CPUs, are named based on the CPU logical
221     number.
222
223     e.g, ETM bound to CPU0 is named "etm0"
224
225  2) All other devices follow a pattern, "<device_type_prefix>N", where :
226
227	<device_type_prefix> 	- A prefix specific to the type of the device
228	N			- a sequential number assigned based on the order
229				  of probing.
230
231	e.g, tmc_etf0, tmc_etr0, funnel0, funnel1
232
233Thus, with the new scheme the devices could appear as ::
234
235    root:~# ls /sys/bus/coresight/devices/
236     etm0     etm1     etm2         etm3  etm4      etm5      funnel0
237     funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
238
239Some of the examples below might refer to old naming scheme and some
240to the newer scheme, to give a confirmation that what you see on your
241system is not unexpected. One must use the "names" as they appear on
242the system under specified locations.
243
244How to use the tracer modules
245-----------------------------
246
247There are two ways to use the Coresight framework:
248
2491. using the perf cmd line tools.
2502. interacting directly with the Coresight devices using the sysFS interface.
251
252Preference is given to the former as using the sysFS interface
253requires a deep understanding of the Coresight HW.  The following sections
254provide details on using both methods.
255
2561) Using the sysFS interface:
257
258Before trace collection can start, a coresight sink needs to be identified.
259There is no limit on the amount of sinks (nor sources) that can be enabled at
260any given moment.  As a generic operation, all device pertaining to the sink
261class will have an "active" entry in sysfs::
262
263    root:/sys/bus/coresight/devices# ls
264    replicator  20030000.tpiu    2201c000.ptm  2203c000.etm  2203e000.etm
265    20010000.etb         20040000.funnel  2201d000.ptm  2203d000.etm
266    root:/sys/bus/coresight/devices# ls 20010000.etb
267    enable_sink  status  trigger_cntr
268    root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
269    root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
270    1
271    root:/sys/bus/coresight/devices#
272
273At boot time the current etm3x driver will configure the first address
274comparator with "_stext" and "_etext", essentially tracing any instruction
275that falls within that range.  As such "enabling" a source will immediately
276trigger a trace capture::
277
278    root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
279    root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
280    1
281    root:/sys/bus/coresight/devices# cat 20010000.etb/status
282    Depth:          0x2000
283    Status:         0x1
284    RAM read ptr:   0x0
285    RAM wrt ptr:    0x19d3   <----- The write pointer is moving
286    Trigger cnt:    0x0
287    Control:        0x1
288    Flush status:   0x0
289    Flush ctrl:     0x2001
290    root:/sys/bus/coresight/devices#
291
292Trace collection is stopped the same way::
293
294    root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
295    root:/sys/bus/coresight/devices#
296
297The content of the ETB buffer can be harvested directly from /dev::
298
299    root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
300    of=~/cstrace.bin
301    64+0 records in
302    64+0 records out
303    32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
304    root:/sys/bus/coresight/devices#
305
306The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
307
308Following is a DS-5 output of an experimental loop that increments a variable up
309to a certain value.  The example is simple and yet provides a glimpse of the
310wealth of possibilities that coresight provides.
311::
312
313    Info                                    Tracing enabled
314    Instruction     106378866       0x8026B53C      E52DE004        false   PUSH     {lr}
315    Instruction     0       0x8026B540      E24DD00C        false   SUB      sp,sp,#0xc
316    Instruction     0       0x8026B544      E3A03000        false   MOV      r3,#0
317    Instruction     0       0x8026B548      E58D3004        false   STR      r3,[sp,#4]
318    Instruction     0       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
319    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
320    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
321    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
322    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
323    Timestamp                                       Timestamp: 17106715833
324    Instruction     319     0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
325    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
326    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
327    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
328    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
329    Instruction     9       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
330    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
331    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
332    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
333    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
334    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
335    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
336    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
337    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
338    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
339    Instruction     7       0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
340    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
341    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
342    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
343    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
344    Instruction     10      0x8026B54C      E59D3004        false   LDR      r3,[sp,#4]
345    Instruction     0       0x8026B550      E3530004        false   CMP      r3,#4
346    Instruction     0       0x8026B554      E2833001        false   ADD      r3,r3,#1
347    Instruction     0       0x8026B558      E58D3004        false   STR      r3,[sp,#4]
348    Instruction     0       0x8026B55C      DAFFFFFA        true    BLE      {pc}-0x10 ; 0x8026b54c
349    Instruction     6       0x8026B560      EE1D3F30        false   MRC      p15,#0x0,r3,c13,c0,#1
350    Instruction     0       0x8026B564      E1A0100D        false   MOV      r1,sp
351    Instruction     0       0x8026B568      E3C12D7F        false   BIC      r2,r1,#0x1fc0
352    Instruction     0       0x8026B56C      E3C2203F        false   BIC      r2,r2,#0x3f
353    Instruction     0       0x8026B570      E59D1004        false   LDR      r1,[sp,#4]
354    Instruction     0       0x8026B574      E59F0010        false   LDR      r0,[pc,#16] ; [0x8026B58C] = 0x80550368
355    Instruction     0       0x8026B578      E592200C        false   LDR      r2,[r2,#0xc]
356    Instruction     0       0x8026B57C      E59221D0        false   LDR      r2,[r2,#0x1d0]
357    Instruction     0       0x8026B580      EB07A4CF        true    BL       {pc}+0x1e9344 ; 0x804548c4
358    Info                                    Tracing enabled
359    Instruction     13570831        0x8026B584      E28DD00C        false   ADD      sp,sp,#0xc
360    Instruction     0       0x8026B588      E8BD8000        true    LDM      sp!,{pc}
361    Timestamp                                       Timestamp: 17107041535
362
3632) Using perf framework:
364
365Coresight tracers are represented using the Perf framework's Performance
366Monitoring Unit (PMU) abstraction.  As such the perf framework takes charge of
367controlling when tracing gets enabled based on when the process of interest is
368scheduled.  When configured in a system, Coresight PMUs will be listed when
369queried by the perf command line tool:
370
371	linaro@linaro-nano:~$ ./perf list pmu
372
373		List of pre-defined events (to be used in -e):
374
375		cs_etm//                                    [Kernel PMU event]
376
377	linaro@linaro-nano:~$
378
379Regardless of the number of tracers available in a system (usually equal to the
380amount of processor cores), the "cs_etm" PMU will be listed only once.
381
382A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
383listed along with configuration options within forward slashes '/'.  Since a
384Coresight system will typically have more than one sink, the name of the sink to
385work with needs to be specified as an event option.
386On newer kernels the available sinks are listed in sysFS under
387($SYSFS)/bus/event_source/devices/cs_etm/sinks/::
388
389	root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
390	tmc_etf0  tmc_etr0  tpiu0
391
392On older kernels, this may need to be found from the list of coresight devices,
393available under ($SYSFS)/bus/coresight/devices/::
394
395	root:~# ls /sys/bus/coresight/devices/
396	 etm0     etm1     etm2         etm3  etm4      etm5      funnel0
397	 funnel1  funnel2  replicator0  stm0  tmc_etf0  tmc_etr0  tpiu0
398	root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program
399
400As mentioned above in section "Device Naming scheme", the names of the devices could
401look different from what is used in the example above. One must use the device names
402as it appears under the sysFS.
403
404The syntax within the forward slashes '/' is important.  The '@' character
405tells the parser that a sink is about to be specified and that this is the sink
406to use for the trace session.
407
408More information on the above and other example on how to use Coresight with
409the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
410repository [#third]_.
411
4122.1) AutoFDO analysis using the perf tools:
413
414perf can be used to record and analyze trace of programs.
415
416Execution can be recorded using 'perf record' with the cs_etm event,
417specifying the name of the sink to record to, e.g::
418
419    perf record -e cs_etm/@tmc_etr0/u --per-thread
420
421The 'perf report' and 'perf script' commands can be used to analyze execution,
422synthesizing instruction and branch events from the instruction trace.
423'perf inject' can be used to replace the trace data with the synthesized events.
424The --itrace option controls the type and frequency of synthesized events
425(see perf documentation).
426
427Note that only 64-bit programs are currently supported - further work is
428required to support instruction decode of 32-bit Arm programs.
429
430
431Generating coverage files for Feedback Directed Optimization: AutoFDO
432---------------------------------------------------------------------
433
434'perf inject' accepts the --itrace option in which case tracing data is
435removed and replaced with the synthesized events. e.g.
436::
437
438	perf inject --itrace --strip -i perf.data -o perf.data.new
439
440Below is an example of using ARM ETM for autoFDO.  It requires autofdo
441(https://github.com/google/autofdo) and gcc version 5.  The bubble
442sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
443::
444
445	$ gcc-5 -O3 sort.c -o sort
446	$ taskset -c 2 ./sort
447	Bubble sorting array of 30000 elements
448	5910 ms
449
450	$ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
451	Bubble sorting array of 30000 elements
452	12543 ms
453	[ perf record: Woken up 35 times to write data ]
454	[ perf record: Captured and wrote 69.640 MB perf.data ]
455
456	$ perf inject -i perf.data -o inj.data --itrace=il64 --strip
457	$ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
458	$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
459	$ taskset -c 2 ./sort_autofdo
460	Bubble sorting array of 30000 elements
461	5806 ms
462
463
464How to use the STM module
465-------------------------
466
467Using the System Trace Macrocell module is the same as the tracers - the only
468difference is that clients are driving the trace capture rather
469than the program flow through the code.
470
471As with any other CoreSight component, specifics about the STM tracer can be
472found in sysfs with more information on each entry being found in [#first]_::
473
474    root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
475    enable_source   hwevent_select  port_enable     subsystem       uevent
476    hwevent_enable  mgmt            port_select     traceid
477    root@genericarmv8:~#
478
479Like any other source a sink needs to be identified and the STM enabled before
480being used::
481
482    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
483    root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source
484
485From there user space applications can request and use channels using the devfs
486interface provided for that purpose by the generic STM API::
487
488    root@genericarmv8:~# ls -l /dev/stm0
489    crw-------    1 root     root       10,  61 Jan  3 18:11 /dev/stm0
490    root@genericarmv8:~#
491
492Details on how to use the generic STM API can be found here:- :doc:`../stm` [#second]_.
493
494.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
495
496.. [#second] Documentation/trace/stm.rst
497
498.. [#third] https://github.com/Linaro/perf-opencsd
499