xref: /openbmc/linux/Documentation/staging/static-keys.rst (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1===========
2Static Keys
3===========
4
5.. warning::
6
7   DEPRECATED API:
8
9   The use of 'struct static_key' directly, is now DEPRECATED. In addition
10   static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following::
11
12	struct static_key false = STATIC_KEY_INIT_FALSE;
13	struct static_key true = STATIC_KEY_INIT_TRUE;
14	static_key_true()
15	static_key_false()
16
17   The updated API replacements are::
18
19	DEFINE_STATIC_KEY_TRUE(key);
20	DEFINE_STATIC_KEY_FALSE(key);
21	DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
22	DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
23	static_branch_likely()
24	static_branch_unlikely()
25
26Abstract
27========
28
29Static keys allows the inclusion of seldom used features in
30performance-sensitive fast-path kernel code, via a GCC feature and a code
31patching technique. A quick example::
32
33	DEFINE_STATIC_KEY_FALSE(key);
34
35	...
36
37        if (static_branch_unlikely(&key))
38                do unlikely code
39        else
40                do likely code
41
42	...
43	static_branch_enable(&key);
44	...
45	static_branch_disable(&key);
46	...
47
48The static_branch_unlikely() branch will be generated into the code with as little
49impact to the likely code path as possible.
50
51
52Motivation
53==========
54
55
56Currently, tracepoints are implemented using a conditional branch. The
57conditional check requires checking a global variable for each tracepoint.
58Although the overhead of this check is small, it increases when the memory
59cache comes under pressure (memory cache lines for these global variables may
60be shared with other memory accesses). As we increase the number of tracepoints
61in the kernel this overhead may become more of an issue. In addition,
62tracepoints are often dormant (disabled) and provide no direct kernel
63functionality. Thus, it is highly desirable to reduce their impact as much as
64possible. Although tracepoints are the original motivation for this work, other
65kernel code paths should be able to make use of the static keys facility.
66
67
68Solution
69========
70
71
72gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
73
74https://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
75
76Using the 'asm goto', we can create branches that are either taken or not taken
77by default, without the need to check memory. Then, at run-time, we can patch
78the branch site to change the branch direction.
79
80For example, if we have a simple branch that is disabled by default::
81
82	if (static_branch_unlikely(&key))
83		printk("I am the true branch\n");
84
85Thus, by default the 'printk' will not be emitted. And the code generated will
86consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
87straight-line code path. When the branch is 'flipped', we will patch the
88'no-op' in the straight-line codepath with a 'jump' instruction to the
89out-of-line true branch. Thus, changing branch direction is expensive but
90branch selection is basically 'free'. That is the basic tradeoff of this
91optimization.
92
93This lowlevel patching mechanism is called 'jump label patching', and it gives
94the basis for the static keys facility.
95
96Static key label API, usage and examples
97========================================
98
99
100In order to make use of this optimization you must first define a key::
101
102	DEFINE_STATIC_KEY_TRUE(key);
103
104or::
105
106	DEFINE_STATIC_KEY_FALSE(key);
107
108
109The key must be global, that is, it can't be allocated on the stack or dynamically
110allocated at run-time.
111
112The key is then used in code as::
113
114        if (static_branch_unlikely(&key))
115                do unlikely code
116        else
117                do likely code
118
119Or::
120
121        if (static_branch_likely(&key))
122                do likely code
123        else
124                do unlikely code
125
126Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
127be used in either static_branch_likely() or static_branch_unlikely()
128statements.
129
130Branch(es) can be set true via::
131
132	static_branch_enable(&key);
133
134or false via::
135
136	static_branch_disable(&key);
137
138The branch(es) can then be switched via reference counts::
139
140	static_branch_inc(&key);
141	...
142	static_branch_dec(&key);
143
144Thus, 'static_branch_inc()' means 'make the branch true', and
145'static_branch_dec()' means 'make the branch false' with appropriate
146reference counting. For example, if the key is initialized true, a
147static_branch_dec(), will switch the branch to false. And a subsequent
148static_branch_inc(), will change the branch back to true. Likewise, if the
149key is initialized false, a 'static_branch_inc()', will change the branch to
150true. And then a 'static_branch_dec()', will again make the branch false.
151
152The state and the reference count can be retrieved with 'static_key_enabled()'
153and 'static_key_count()'.  In general, if you use these functions, they
154should be protected with the same mutex used around the enable/disable
155or increment/decrement function.
156
157Note that switching branches results in some locks being taken,
158particularly the CPU hotplug lock (in order to avoid races against
159CPUs being brought in the kernel while the kernel is getting
160patched). Calling the static key API from within a hotplug notifier is
161thus a sure deadlock recipe. In order to still allow use of the
162functionality, the following functions are provided:
163
164	static_key_enable_cpuslocked()
165	static_key_disable_cpuslocked()
166	static_branch_enable_cpuslocked()
167	static_branch_disable_cpuslocked()
168
169These functions are *not* general purpose, and must only be used when
170you really know that you're in the above context, and no other.
171
172Where an array of keys is required, it can be defined as::
173
174	DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
175
176or::
177
178	DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
179
1804) Architecture level code patching interface, 'jump labels'
181
182
183There are a few functions and macros that architectures must implement in order
184to take advantage of this optimization. If there is no architecture support, we
185simply fall back to a traditional, load, test, and jump sequence. Also, the
186struct jump_entry table must be at least 4-byte aligned because the
187static_key->entry field makes use of the two least significant bits.
188
189* ``select HAVE_ARCH_JUMP_LABEL``,
190    see: arch/x86/Kconfig
191
192* ``#define JUMP_LABEL_NOP_SIZE``,
193    see: arch/x86/include/asm/jump_label.h
194
195* ``__always_inline bool arch_static_branch(struct static_key *key, bool branch)``,
196    see: arch/x86/include/asm/jump_label.h
197
198* ``__always_inline bool arch_static_branch_jump(struct static_key *key, bool branch)``,
199    see: arch/x86/include/asm/jump_label.h
200
201* ``void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type)``,
202    see: arch/x86/kernel/jump_label.c
203
204* ``__init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type)``,
205    see: arch/x86/kernel/jump_label.c
206
207* ``struct jump_entry``,
208    see: arch/x86/include/asm/jump_label.h
209
210
2115) Static keys / jump label analysis, results (x86_64):
212
213
214As an example, let's add the following branch to 'getppid()', such that the
215system call now looks like::
216
217  SYSCALL_DEFINE0(getppid)
218  {
219        int pid;
220
221  +     if (static_branch_unlikely(&key))
222  +             printk("I am the true branch\n");
223
224        rcu_read_lock();
225        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
226        rcu_read_unlock();
227
228        return pid;
229  }
230
231The resulting instructions with jump labels generated by GCC is::
232
233  ffffffff81044290 <sys_getppid>:
234  ffffffff81044290:       55                      push   %rbp
235  ffffffff81044291:       48 89 e5                mov    %rsp,%rbp
236  ffffffff81044294:       e9 00 00 00 00          jmpq   ffffffff81044299 <sys_getppid+0x9>
237  ffffffff81044299:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
238  ffffffff810442a0:       00 00
239  ffffffff810442a2:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
240  ffffffff810442a9:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
241  ffffffff810442b0:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
242  ffffffff810442b7:       e8 f4 d9 00 00          callq  ffffffff81051cb0 <pid_vnr>
243  ffffffff810442bc:       5d                      pop    %rbp
244  ffffffff810442bd:       48 98                   cltq
245  ffffffff810442bf:       c3                      retq
246  ffffffff810442c0:       48 c7 c7 e3 54 98 81    mov    $0xffffffff819854e3,%rdi
247  ffffffff810442c7:       31 c0                   xor    %eax,%eax
248  ffffffff810442c9:       e8 71 13 6d 00          callq  ffffffff8171563f <printk>
249  ffffffff810442ce:       eb c9                   jmp    ffffffff81044299 <sys_getppid+0x9>
250
251Without the jump label optimization it looks like::
252
253  ffffffff810441f0 <sys_getppid>:
254  ffffffff810441f0:       8b 05 8a 52 d8 00       mov    0xd8528a(%rip),%eax        # ffffffff81dc9480 <key>
255  ffffffff810441f6:       55                      push   %rbp
256  ffffffff810441f7:       48 89 e5                mov    %rsp,%rbp
257  ffffffff810441fa:       85 c0                   test   %eax,%eax
258  ffffffff810441fc:       75 27                   jne    ffffffff81044225 <sys_getppid+0x35>
259  ffffffff810441fe:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
260  ffffffff81044205:       00 00
261  ffffffff81044207:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
262  ffffffff8104420e:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
263  ffffffff81044215:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
264  ffffffff8104421c:       e8 2f da 00 00          callq  ffffffff81051c50 <pid_vnr>
265  ffffffff81044221:       5d                      pop    %rbp
266  ffffffff81044222:       48 98                   cltq
267  ffffffff81044224:       c3                      retq
268  ffffffff81044225:       48 c7 c7 13 53 98 81    mov    $0xffffffff81985313,%rdi
269  ffffffff8104422c:       31 c0                   xor    %eax,%eax
270  ffffffff8104422e:       e8 60 0f 6d 00          callq  ffffffff81715193 <printk>
271  ffffffff81044233:       eb c9                   jmp    ffffffff810441fe <sys_getppid+0xe>
272  ffffffff81044235:       66 66 2e 0f 1f 84 00    data32 nopw %cs:0x0(%rax,%rax,1)
273  ffffffff8104423c:       00 00 00 00
274
275Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
276vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
277to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
278label case adds::
279
280  6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
281
282If we then include the padding bytes, the jump label code saves, 16 total bytes
283of instruction memory for this small function. In this case the non-jump label
284function is 80 bytes long. Thus, we have saved 20% of the instruction
285footprint. We can in fact improve this even further, since the 5-byte no-op
286really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
287However, we have not yet implemented optimal no-op sizes (they are currently
288hard-coded).
289
290Since there are a number of static key API uses in the scheduler paths,
291'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
292performance improvement. Testing done on 3.3.0-rc2:
293
294jump label disabled::
295
296 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
297
298        855.700314 task-clock                #    0.534 CPUs utilized            ( +-  0.11% )
299           200,003 context-switches          #    0.234 M/sec                    ( +-  0.00% )
300                 0 CPU-migrations            #    0.000 M/sec                    ( +- 39.58% )
301               487 page-faults               #    0.001 M/sec                    ( +-  0.02% )
302     1,474,374,262 cycles                    #    1.723 GHz                      ( +-  0.17% )
303   <not supported> stalled-cycles-frontend
304   <not supported> stalled-cycles-backend
305     1,178,049,567 instructions              #    0.80  insns per cycle          ( +-  0.06% )
306       208,368,926 branches                  #  243.507 M/sec                    ( +-  0.06% )
307         5,569,188 branch-misses             #    2.67% of all branches          ( +-  0.54% )
308
309       1.601607384 seconds time elapsed                                          ( +-  0.07% )
310
311jump label enabled::
312
313 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
314
315        841.043185 task-clock                #    0.533 CPUs utilized            ( +-  0.12% )
316           200,004 context-switches          #    0.238 M/sec                    ( +-  0.00% )
317                 0 CPU-migrations            #    0.000 M/sec                    ( +- 40.87% )
318               487 page-faults               #    0.001 M/sec                    ( +-  0.05% )
319     1,432,559,428 cycles                    #    1.703 GHz                      ( +-  0.18% )
320   <not supported> stalled-cycles-frontend
321   <not supported> stalled-cycles-backend
322     1,175,363,994 instructions              #    0.82  insns per cycle          ( +-  0.04% )
323       206,859,359 branches                  #  245.956 M/sec                    ( +-  0.04% )
324         4,884,119 branch-misses             #    2.36% of all branches          ( +-  0.85% )
325
326       1.579384366 seconds time elapsed
327
328The percentage of saved branches is .7%, and we've saved 12% on
329'branch-misses'. This is where we would expect to get the most savings, since
330this optimization is about reducing the number of branches. In addition, we've
331saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.
332