xref: /openbmc/linux/Documentation/security/keys/trusted-encrypted.rst (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1==========================
2Trusted and Encrypted Keys
3==========================
4
5Trusted and Encrypted Keys are two new key types added to the existing kernel
6key ring service.  Both of these new types are variable length symmetric keys,
7and in both cases all keys are created in the kernel, and user space sees,
8stores, and loads only encrypted blobs.  Trusted Keys require the availability
9of a Trusted Platform Module (TPM) chip for greater security, while Encrypted
10Keys can be used on any system.  All user level blobs, are displayed and loaded
11in hex ascii for convenience, and are integrity verified.
12
13Trusted Keys use a TPM both to generate and to seal the keys.  Keys are sealed
14under a 2048 bit RSA key in the TPM, and optionally sealed to specified PCR
15(integrity measurement) values, and only unsealed by the TPM, if PCRs and blob
16integrity verifications match.  A loaded Trusted Key can be updated with new
17(future) PCR values, so keys are easily migrated to new pcr values, such as
18when the kernel and initramfs are updated.  The same key can have many saved
19blobs under different PCR values, so multiple boots are easily supported.
20
21TPM 1.2
22-------
23
24By default, trusted keys are sealed under the SRK, which has the default
25authorization value (20 zeros).  This can be set at takeownership time with the
26trouser's utility: "tpm_takeownership -u -z".
27
28TPM 2.0
29-------
30
31The user must first create a storage key and make it persistent, so the key is
32available after reboot. This can be done using the following commands.
33
34With the IBM TSS 2 stack::
35
36  #> tsscreateprimary -hi o -st
37  Handle 80000000
38  #> tssevictcontrol -hi o -ho 80000000 -hp 81000001
39
40Or with the Intel TSS 2 stack::
41
42  #> tpm2_createprimary --hierarchy o -G rsa2048 -o key.ctxt
43  [...]
44  handle: 0x800000FF
45  #> tpm2_evictcontrol -c key.ctxt -p 0x81000001
46  persistentHandle: 0x81000001
47
48Usage::
49
50    keyctl add trusted name "new keylen [options]" ring
51    keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring
52    keyctl update key "update [options]"
53    keyctl print keyid
54
55    options:
56       keyhandle=    ascii hex value of sealing key
57                       TPM 1.2: default 0x40000000 (SRK)
58                       TPM 2.0: no default; must be passed every time
59       keyauth=	     ascii hex auth for sealing key default 0x00...i
60                     (40 ascii zeros)
61       blobauth=     ascii hex auth for sealed data default 0x00...
62                     (40 ascii zeros)
63       pcrinfo=	     ascii hex of PCR_INFO or PCR_INFO_LONG (no default)
64       pcrlock=	     pcr number to be extended to "lock" blob
65       migratable=   0|1 indicating permission to reseal to new PCR values,
66                     default 1 (resealing allowed)
67       hash=         hash algorithm name as a string. For TPM 1.x the only
68                     allowed value is sha1. For TPM 2.x the allowed values
69                     are sha1, sha256, sha384, sha512 and sm3-256.
70       policydigest= digest for the authorization policy. must be calculated
71                     with the same hash algorithm as specified by the 'hash='
72                     option.
73       policyhandle= handle to an authorization policy session that defines the
74                     same policy and with the same hash algorithm as was used to
75                     seal the key.
76
77"keyctl print" returns an ascii hex copy of the sealed key, which is in standard
78TPM_STORED_DATA format.  The key length for new keys are always in bytes.
79Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit
80within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding.
81
82Encrypted keys do not depend on a TPM, and are faster, as they use AES for
83encryption/decryption.  New keys are created from kernel generated random
84numbers, and are encrypted/decrypted using a specified 'master' key.  The
85'master' key can either be a trusted-key or user-key type.  The main
86disadvantage of encrypted keys is that if they are not rooted in a trusted key,
87they are only as secure as the user key encrypting them.  The master user key
88should therefore be loaded in as secure a way as possible, preferably early in
89boot.
90
91The decrypted portion of encrypted keys can contain either a simple symmetric
92key or a more complex structure. The format of the more complex structure is
93application specific, which is identified by 'format'.
94
95Usage::
96
97    keyctl add encrypted name "new [format] key-type:master-key-name keylen"
98        ring
99    keyctl add encrypted name "load hex_blob" ring
100    keyctl update keyid "update key-type:master-key-name"
101
102Where::
103
104	format:= 'default | ecryptfs | enc32'
105	key-type:= 'trusted' | 'user'
106
107
108Examples of trusted and encrypted key usage:
109
110Create and save a trusted key named "kmk" of length 32 bytes.
111
112Note: When using a TPM 2.0 with a persistent key with handle 0x81000001,
113append 'keyhandle=0x81000001' to statements between quotes, such as
114"new 32 keyhandle=0x81000001".
115
116::
117
118    $ keyctl add trusted kmk "new 32" @u
119    440502848
120
121    $ keyctl show
122    Session Keyring
123           -3 --alswrv    500   500  keyring: _ses
124     97833714 --alswrv    500    -1   \_ keyring: _uid.500
125    440502848 --alswrv    500   500       \_ trusted: kmk
126
127    $ keyctl print 440502848
128    0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
129    3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
130    27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
131    a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
132    d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
133    dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
134    f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
135    e4a8aea2b607ec96931e6f4d4fe563ba
136
137    $ keyctl pipe 440502848 > kmk.blob
138
139Load a trusted key from the saved blob::
140
141    $ keyctl add trusted kmk "load `cat kmk.blob`" @u
142    268728824
143
144    $ keyctl print 268728824
145    0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
146    3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
147    27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
148    a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
149    d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
150    dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
151    f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
152    e4a8aea2b607ec96931e6f4d4fe563ba
153
154Reseal a trusted key under new pcr values::
155
156    $ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`"
157    $ keyctl print 268728824
158    010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805
159    77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73
160    d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e
161    df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4
162    9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6
163    e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610
164    94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9
165    7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
166    df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8
167
168The initial consumer of trusted keys is EVM, which at boot time needs a high
169quality symmetric key for HMAC protection of file metadata.  The use of a
170trusted key provides strong guarantees that the EVM key has not been
171compromised by a user level problem, and when sealed to specific boot PCR
172values, protects against boot and offline attacks.  Create and save an
173encrypted key "evm" using the above trusted key "kmk":
174
175option 1: omitting 'format'::
176
177    $ keyctl add encrypted evm "new trusted:kmk 32" @u
178    159771175
179
180option 2: explicitly defining 'format' as 'default'::
181
182    $ keyctl add encrypted evm "new default trusted:kmk 32" @u
183    159771175
184
185    $ keyctl print 159771175
186    default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
187    82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
188    24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
189
190    $ keyctl pipe 159771175 > evm.blob
191
192Load an encrypted key "evm" from saved blob::
193
194    $ keyctl add encrypted evm "load `cat evm.blob`" @u
195    831684262
196
197    $ keyctl print 831684262
198    default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
199    82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
200    24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
201
202Other uses for trusted and encrypted keys, such as for disk and file encryption
203are anticipated.  In particular the new format 'ecryptfs' has been defined
204in order to use encrypted keys to mount an eCryptfs filesystem.  More details
205about the usage can be found in the file
206``Documentation/security/keys/ecryptfs.rst``.
207
208Another new format 'enc32' has been defined in order to support encrypted keys
209with payload size of 32 bytes. This will initially be used for nvdimm security
210but may expand to other usages that require 32 bytes payload.
211