xref: /openbmc/linux/Documentation/networking/switchdev.rst (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1.. SPDX-License-Identifier: GPL-2.0
2.. include:: <isonum.txt>
3
4===============================================
5Ethernet switch device driver model (switchdev)
6===============================================
7
8Copyright |copy| 2014 Jiri Pirko <jiri@resnulli.us>
9
10Copyright |copy| 2014-2015 Scott Feldman <sfeldma@gmail.com>
11
12
13The Ethernet switch device driver model (switchdev) is an in-kernel driver
14model for switch devices which offload the forwarding (data) plane from the
15kernel.
16
17Figure 1 is a block diagram showing the components of the switchdev model for
18an example setup using a data-center-class switch ASIC chip.  Other setups
19with SR-IOV or soft switches, such as OVS, are possible.
20
21::
22
23
24			     User-space tools
25
26       user space                   |
27      +-------------------------------------------------------------------+
28       kernel                       | Netlink
29				    |
30		     +--------------+-------------------------------+
31		     |         Network stack                        |
32		     |           (Linux)                            |
33		     |                                              |
34		     +----------------------------------------------+
35
36			   sw1p2     sw1p4     sw1p6
37		      sw1p1  +  sw1p3  +  sw1p5  +          eth1
38			+    |    +    |    +    |            +
39			|    |    |    |    |    |            |
40		     +--+----+----+----+----+----+---+  +-----+-----+
41		     |         Switch driver         |  |    mgmt   |
42		     |        (this document)        |  |   driver  |
43		     |                               |  |           |
44		     +--------------+----------------+  +-----------+
45				    |
46       kernel                       | HW bus (eg PCI)
47      +-------------------------------------------------------------------+
48       hardware                     |
49		     +--------------+----------------+
50		     |         Switch device (sw1)   |
51		     |  +----+                       +--------+
52		     |  |    v offloaded data path   | mgmt port
53		     |  |    |                       |
54		     +--|----|----+----+----+----+---+
55			|    |    |    |    |    |
56			+    +    +    +    +    +
57		       p1   p2   p3   p4   p5   p6
58
59			     front-panel ports
60
61
62				    Fig 1.
63
64
65Include Files
66-------------
67
68::
69
70    #include <linux/netdevice.h>
71    #include <net/switchdev.h>
72
73
74Configuration
75-------------
76
77Use "depends NET_SWITCHDEV" in driver's Kconfig to ensure switchdev model
78support is built for driver.
79
80
81Switch Ports
82------------
83
84On switchdev driver initialization, the driver will allocate and register a
85struct net_device (using register_netdev()) for each enumerated physical switch
86port, called the port netdev.  A port netdev is the software representation of
87the physical port and provides a conduit for control traffic to/from the
88controller (the kernel) and the network, as well as an anchor point for higher
89level constructs such as bridges, bonds, VLANs, tunnels, and L3 routers.  Using
90standard netdev tools (iproute2, ethtool, etc), the port netdev can also
91provide to the user access to the physical properties of the switch port such
92as PHY link state and I/O statistics.
93
94There is (currently) no higher-level kernel object for the switch beyond the
95port netdevs.  All of the switchdev driver ops are netdev ops or switchdev ops.
96
97A switch management port is outside the scope of the switchdev driver model.
98Typically, the management port is not participating in offloaded data plane and
99is loaded with a different driver, such as a NIC driver, on the management port
100device.
101
102Switch ID
103^^^^^^^^^
104
105The switchdev driver must implement the net_device operation
106ndo_get_port_parent_id for each port netdev, returning the same physical ID for
107each port of a switch. The ID must be unique between switches on the same
108system. The ID does not need to be unique between switches on different
109systems.
110
111The switch ID is used to locate ports on a switch and to know if aggregated
112ports belong to the same switch.
113
114Port Netdev Naming
115^^^^^^^^^^^^^^^^^^
116
117Udev rules should be used for port netdev naming, using some unique attribute
118of the port as a key, for example the port MAC address or the port PHYS name.
119Hard-coding of kernel netdev names within the driver is discouraged; let the
120kernel pick the default netdev name, and let udev set the final name based on a
121port attribute.
122
123Using port PHYS name (ndo_get_phys_port_name) for the key is particularly
124useful for dynamically-named ports where the device names its ports based on
125external configuration.  For example, if a physical 40G port is split logically
126into 4 10G ports, resulting in 4 port netdevs, the device can give a unique
127name for each port using port PHYS name.  The udev rule would be::
128
129    SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}=="<phys_switch_id>", \
130	    ATTR{phys_port_name}!="", NAME="swX$attr{phys_port_name}"
131
132Suggested naming convention is "swXpYsZ", where X is the switch name or ID, Y
133is the port name or ID, and Z is the sub-port name or ID.  For example, sw1p1s0
134would be sub-port 0 on port 1 on switch 1.
135
136Port Features
137^^^^^^^^^^^^^
138
139NETIF_F_NETNS_LOCAL
140
141If the switchdev driver (and device) only supports offloading of the default
142network namespace (netns), the driver should set this feature flag to prevent
143the port netdev from being moved out of the default netns.  A netns-aware
144driver/device would not set this flag and be responsible for partitioning
145hardware to preserve netns containment.  This means hardware cannot forward
146traffic from a port in one namespace to another port in another namespace.
147
148Port Topology
149^^^^^^^^^^^^^
150
151The port netdevs representing the physical switch ports can be organized into
152higher-level switching constructs.  The default construct is a standalone
153router port, used to offload L3 forwarding.  Two or more ports can be bonded
154together to form a LAG.  Two or more ports (or LAGs) can be bridged to bridge
155L2 networks.  VLANs can be applied to sub-divide L2 networks.  L2-over-L3
156tunnels can be built on ports.  These constructs are built using standard Linux
157tools such as the bridge driver, the bonding/team drivers, and netlink-based
158tools such as iproute2.
159
160The switchdev driver can know a particular port's position in the topology by
161monitoring NETDEV_CHANGEUPPER notifications.  For example, a port moved into a
162bond will see it's upper master change.  If that bond is moved into a bridge,
163the bond's upper master will change.  And so on.  The driver will track such
164movements to know what position a port is in in the overall topology by
165registering for netdevice events and acting on NETDEV_CHANGEUPPER.
166
167L2 Forwarding Offload
168---------------------
169
170The idea is to offload the L2 data forwarding (switching) path from the kernel
171to the switchdev device by mirroring bridge FDB entries down to the device.  An
172FDB entry is the {port, MAC, VLAN} tuple forwarding destination.
173
174To offloading L2 bridging, the switchdev driver/device should support:
175
176	- Static FDB entries installed on a bridge port
177	- Notification of learned/forgotten src mac/vlans from device
178	- STP state changes on the port
179	- VLAN flooding of multicast/broadcast and unknown unicast packets
180
181Static FDB Entries
182^^^^^^^^^^^^^^^^^^
183
184A driver which implements the ``ndo_fdb_add``, ``ndo_fdb_del`` and
185``ndo_fdb_dump`` operations is able to support the command below, which adds a
186static bridge FDB entry::
187
188        bridge fdb add dev DEV ADDRESS [vlan VID] [self] static
189
190(the "static" keyword is non-optional: if not specified, the entry defaults to
191being "local", which means that it should not be forwarded)
192
193The "self" keyword (optional because it is implicit) has the role of
194instructing the kernel to fulfill the operation through the ``ndo_fdb_add``
195implementation of the ``DEV`` device itself. If ``DEV`` is a bridge port, this
196will bypass the bridge and therefore leave the software database out of sync
197with the hardware one.
198
199To avoid this, the "master" keyword can be used::
200
201        bridge fdb add dev DEV ADDRESS [vlan VID] master static
202
203The above command instructs the kernel to search for a master interface of
204``DEV`` and fulfill the operation through the ``ndo_fdb_add`` method of that.
205This time, the bridge generates a ``SWITCHDEV_FDB_ADD_TO_DEVICE`` notification
206which the port driver can handle and use it to program its hardware table. This
207way, the software and the hardware database will both contain this static FDB
208entry.
209
210Note: for new switchdev drivers that offload the Linux bridge, implementing the
211``ndo_fdb_add`` and ``ndo_fdb_del`` bridge bypass methods is strongly
212discouraged: all static FDB entries should be added on a bridge port using the
213"master" flag. The ``ndo_fdb_dump`` is an exception and can be implemented to
214visualize the hardware tables, if the device does not have an interrupt for
215notifying the operating system of newly learned/forgotten dynamic FDB
216addresses. In that case, the hardware FDB might end up having entries that the
217software FDB does not, and implementing ``ndo_fdb_dump`` is the only way to see
218them.
219
220Note: by default, the bridge does not filter on VLAN and only bridges untagged
221traffic.  To enable VLAN support, turn on VLAN filtering::
222
223	echo 1 >/sys/class/net/<bridge>/bridge/vlan_filtering
224
225Notification of Learned/Forgotten Source MAC/VLANs
226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
227
228The switch device will learn/forget source MAC address/VLAN on ingress packets
229and notify the switch driver of the mac/vlan/port tuples.  The switch driver,
230in turn, will notify the bridge driver using the switchdev notifier call::
231
232	err = call_switchdev_notifiers(val, dev, info, extack);
233
234Where val is SWITCHDEV_FDB_ADD when learning and SWITCHDEV_FDB_DEL when
235forgetting, and info points to a struct switchdev_notifier_fdb_info.  On
236SWITCHDEV_FDB_ADD, the bridge driver will install the FDB entry into the
237bridge's FDB and mark the entry as NTF_EXT_LEARNED.  The iproute2 bridge
238command will label these entries "offload"::
239
240	$ bridge fdb
241	52:54:00:12:35:01 dev sw1p1 master br0 permanent
242	00:02:00:00:02:00 dev sw1p1 master br0 offload
243	00:02:00:00:02:00 dev sw1p1 self
244	52:54:00:12:35:02 dev sw1p2 master br0 permanent
245	00:02:00:00:03:00 dev sw1p2 master br0 offload
246	00:02:00:00:03:00 dev sw1p2 self
247	33:33:00:00:00:01 dev eth0 self permanent
248	01:00:5e:00:00:01 dev eth0 self permanent
249	33:33:ff:00:00:00 dev eth0 self permanent
250	01:80:c2:00:00:0e dev eth0 self permanent
251	33:33:00:00:00:01 dev br0 self permanent
252	01:00:5e:00:00:01 dev br0 self permanent
253	33:33:ff:12:35:01 dev br0 self permanent
254
255Learning on the port should be disabled on the bridge using the bridge command::
256
257	bridge link set dev DEV learning off
258
259Learning on the device port should be enabled, as well as learning_sync::
260
261	bridge link set dev DEV learning on self
262	bridge link set dev DEV learning_sync on self
263
264Learning_sync attribute enables syncing of the learned/forgotten FDB entry to
265the bridge's FDB.  It's possible, but not optimal, to enable learning on the
266device port and on the bridge port, and disable learning_sync.
267
268To support learning, the driver implements switchdev op
269switchdev_port_attr_set for SWITCHDEV_ATTR_PORT_ID_{PRE}_BRIDGE_FLAGS.
270
271FDB Ageing
272^^^^^^^^^^
273
274The bridge will skip ageing FDB entries marked with NTF_EXT_LEARNED and it is
275the responsibility of the port driver/device to age out these entries.  If the
276port device supports ageing, when the FDB entry expires, it will notify the
277driver which in turn will notify the bridge with SWITCHDEV_FDB_DEL.  If the
278device does not support ageing, the driver can simulate ageing using a
279garbage collection timer to monitor FDB entries.  Expired entries will be
280notified to the bridge using SWITCHDEV_FDB_DEL.  See rocker driver for
281example of driver running ageing timer.
282
283To keep an NTF_EXT_LEARNED entry "alive", the driver should refresh the FDB
284entry by calling call_switchdev_notifiers(SWITCHDEV_FDB_ADD, ...).  The
285notification will reset the FDB entry's last-used time to now.  The driver
286should rate limit refresh notifications, for example, no more than once a
287second.  (The last-used time is visible using the bridge -s fdb option).
288
289STP State Change on Port
290^^^^^^^^^^^^^^^^^^^^^^^^
291
292Internally or with a third-party STP protocol implementation (e.g. mstpd), the
293bridge driver maintains the STP state for ports, and will notify the switch
294driver of STP state change on a port using the switchdev op
295switchdev_attr_port_set for SWITCHDEV_ATTR_PORT_ID_STP_UPDATE.
296
297State is one of BR_STATE_*.  The switch driver can use STP state updates to
298update ingress packet filter list for the port.  For example, if port is
299DISABLED, no packets should pass, but if port moves to BLOCKED, then STP BPDUs
300and other IEEE 01:80:c2:xx:xx:xx link-local multicast packets can pass.
301
302Note that STP BDPUs are untagged and STP state applies to all VLANs on the port
303so packet filters should be applied consistently across untagged and tagged
304VLANs on the port.
305
306Flooding L2 domain
307^^^^^^^^^^^^^^^^^^
308
309For a given L2 VLAN domain, the switch device should flood multicast/broadcast
310and unknown unicast packets to all ports in domain, if allowed by port's
311current STP state.  The switch driver, knowing which ports are within which
312vlan L2 domain, can program the switch device for flooding.  The packet may
313be sent to the port netdev for processing by the bridge driver.  The
314bridge should not reflood the packet to the same ports the device flooded,
315otherwise there will be duplicate packets on the wire.
316
317To avoid duplicate packets, the switch driver should mark a packet as already
318forwarded by setting the skb->offload_fwd_mark bit. The bridge driver will mark
319the skb using the ingress bridge port's mark and prevent it from being forwarded
320through any bridge port with the same mark.
321
322It is possible for the switch device to not handle flooding and push the
323packets up to the bridge driver for flooding.  This is not ideal as the number
324of ports scale in the L2 domain as the device is much more efficient at
325flooding packets that software.
326
327If supported by the device, flood control can be offloaded to it, preventing
328certain netdevs from flooding unicast traffic for which there is no FDB entry.
329
330IGMP Snooping
331^^^^^^^^^^^^^
332
333In order to support IGMP snooping, the port netdevs should trap to the bridge
334driver all IGMP join and leave messages.
335The bridge multicast module will notify port netdevs on every multicast group
336changed whether it is static configured or dynamically joined/leave.
337The hardware implementation should be forwarding all registered multicast
338traffic groups only to the configured ports.
339
340L3 Routing Offload
341------------------
342
343Offloading L3 routing requires that device be programmed with FIB entries from
344the kernel, with the device doing the FIB lookup and forwarding.  The device
345does a longest prefix match (LPM) on FIB entries matching route prefix and
346forwards the packet to the matching FIB entry's nexthop(s) egress ports.
347
348To program the device, the driver has to register a FIB notifier handler
349using register_fib_notifier. The following events are available:
350
351===================  ===================================================
352FIB_EVENT_ENTRY_ADD  used for both adding a new FIB entry to the device,
353		     or modifying an existing entry on the device.
354FIB_EVENT_ENTRY_DEL  used for removing a FIB entry
355FIB_EVENT_RULE_ADD,
356FIB_EVENT_RULE_DEL   used to propagate FIB rule changes
357===================  ===================================================
358
359FIB_EVENT_ENTRY_ADD and FIB_EVENT_ENTRY_DEL events pass::
360
361	struct fib_entry_notifier_info {
362		struct fib_notifier_info info; /* must be first */
363		u32 dst;
364		int dst_len;
365		struct fib_info *fi;
366		u8 tos;
367		u8 type;
368		u32 tb_id;
369		u32 nlflags;
370	};
371
372to add/modify/delete IPv4 dst/dest_len prefix on table tb_id.  The ``*fi``
373structure holds details on the route and route's nexthops.  ``*dev`` is one
374of the port netdevs mentioned in the route's next hop list.
375
376Routes offloaded to the device are labeled with "offload" in the ip route
377listing::
378
379	$ ip route show
380	default via 192.168.0.2 dev eth0
381	11.0.0.0/30 dev sw1p1  proto kernel  scope link  src 11.0.0.2 offload
382	11.0.0.4/30 via 11.0.0.1 dev sw1p1  proto zebra  metric 20 offload
383	11.0.0.8/30 dev sw1p2  proto kernel  scope link  src 11.0.0.10 offload
384	11.0.0.12/30 via 11.0.0.9 dev sw1p2  proto zebra  metric 20 offload
385	12.0.0.2  proto zebra  metric 30 offload
386		nexthop via 11.0.0.1  dev sw1p1 weight 1
387		nexthop via 11.0.0.9  dev sw1p2 weight 1
388	12.0.0.3 via 11.0.0.1 dev sw1p1  proto zebra  metric 20 offload
389	12.0.0.4 via 11.0.0.9 dev sw1p2  proto zebra  metric 20 offload
390	192.168.0.0/24 dev eth0  proto kernel  scope link  src 192.168.0.15
391
392The "offload" flag is set in case at least one device offloads the FIB entry.
393
394XXX: add/mod/del IPv6 FIB API
395
396Nexthop Resolution
397^^^^^^^^^^^^^^^^^^
398
399The FIB entry's nexthop list contains the nexthop tuple (gateway, dev), but for
400the switch device to forward the packet with the correct dst mac address, the
401nexthop gateways must be resolved to the neighbor's mac address.  Neighbor mac
402address discovery comes via the ARP (or ND) process and is available via the
403arp_tbl neighbor table.  To resolve the routes nexthop gateways, the driver
404should trigger the kernel's neighbor resolution process.  See the rocker
405driver's rocker_port_ipv4_resolve() for an example.
406
407The driver can monitor for updates to arp_tbl using the netevent notifier
408NETEVENT_NEIGH_UPDATE.  The device can be programmed with resolved nexthops
409for the routes as arp_tbl updates.  The driver implements ndo_neigh_destroy
410to know when arp_tbl neighbor entries are purged from the port.
411
412Device driver expected behavior
413-------------------------------
414
415Below is a set of defined behavior that switchdev enabled network devices must
416adhere to.
417
418Configuration-less state
419^^^^^^^^^^^^^^^^^^^^^^^^
420
421Upon driver bring up, the network devices must be fully operational, and the
422backing driver must configure the network device such that it is possible to
423send and receive traffic to this network device and it is properly separated
424from other network devices/ports (e.g.: as is frequent with a switch ASIC). How
425this is achieved is heavily hardware dependent, but a simple solution can be to
426use per-port VLAN identifiers unless a better mechanism is available
427(proprietary metadata for each network port for instance).
428
429The network device must be capable of running a full IP protocol stack
430including multicast, DHCP, IPv4/6, etc. If necessary, it should program the
431appropriate filters for VLAN, multicast, unicast etc. The underlying device
432driver must effectively be configured in a similar fashion to what it would do
433when IGMP snooping is enabled for IP multicast over these switchdev network
434devices and unsolicited multicast must be filtered as early as possible in
435the hardware.
436
437When configuring VLANs on top of the network device, all VLANs must be working,
438irrespective of the state of other network devices (e.g.: other ports being part
439of a VLAN-aware bridge doing ingress VID checking). See below for details.
440
441If the device implements e.g.: VLAN filtering, putting the interface in
442promiscuous mode should allow the reception of all VLAN tags (including those
443not present in the filter(s)).
444
445Bridged switch ports
446^^^^^^^^^^^^^^^^^^^^
447
448When a switchdev enabled network device is added as a bridge member, it should
449not disrupt any functionality of non-bridged network devices and they
450should continue to behave as normal network devices. Depending on the bridge
451configuration knobs below, the expected behavior is documented.
452
453Bridge VLAN filtering
454^^^^^^^^^^^^^^^^^^^^^
455
456The Linux bridge allows the configuration of a VLAN filtering mode (statically,
457at device creation time, and dynamically, during run time) which must be
458observed by the underlying switchdev network device/hardware:
459
460- with VLAN filtering turned off: the bridge is strictly VLAN unaware and its
461  data path will process all Ethernet frames as if they are VLAN-untagged.
462  The bridge VLAN database can still be modified, but the modifications should
463  have no effect while VLAN filtering is turned off. Frames ingressing the
464  device with a VID that is not programmed into the bridge/switch's VLAN table
465  must be forwarded and may be processed using a VLAN device (see below).
466
467- with VLAN filtering turned on: the bridge is VLAN-aware and frames ingressing
468  the device with a VID that is not programmed into the bridges/switch's VLAN
469  table must be dropped (strict VID checking).
470
471When there is a VLAN device (e.g: sw0p1.100) configured on top of a switchdev
472network device which is a bridge port member, the behavior of the software
473network stack must be preserved, or the configuration must be refused if that
474is not possible.
475
476- with VLAN filtering turned off, the bridge will process all ingress traffic
477  for the port, except for the traffic tagged with a VLAN ID destined for a
478  VLAN upper. The VLAN upper interface (which consumes the VLAN tag) can even
479  be added to a second bridge, which includes other switch ports or software
480  interfaces. Some approaches to ensure that the forwarding domain for traffic
481  belonging to the VLAN upper interfaces are managed properly:
482
483    * If forwarding destinations can be managed per VLAN, the hardware could be
484      configured to map all traffic, except the packets tagged with a VID
485      belonging to a VLAN upper interface, to an internal VID corresponding to
486      untagged packets. This internal VID spans all ports of the VLAN-unaware
487      bridge. The VID corresponding to the VLAN upper interface spans the
488      physical port of that VLAN interface, as well as the other ports that
489      might be bridged with it.
490    * Treat bridge ports with VLAN upper interfaces as standalone, and let
491      forwarding be handled in the software data path.
492
493- with VLAN filtering turned on, these VLAN devices can be created as long as
494  the bridge does not have an existing VLAN entry with the same VID on any
495  bridge port. These VLAN devices cannot be enslaved into the bridge since they
496  duplicate functionality/use case with the bridge's VLAN data path processing.
497
498Non-bridged network ports of the same switch fabric must not be disturbed in any
499way by the enabling of VLAN filtering on the bridge device(s). If the VLAN
500filtering setting is global to the entire chip, then the standalone ports
501should indicate to the network stack that VLAN filtering is required by setting
502'rx-vlan-filter: on [fixed]' in the ethtool features.
503
504Because VLAN filtering can be turned on/off at runtime, the switchdev driver
505must be able to reconfigure the underlying hardware on the fly to honor the
506toggling of that option and behave appropriately. If that is not possible, the
507switchdev driver can also refuse to support dynamic toggling of the VLAN
508filtering knob at runtime and require a destruction of the bridge device(s) and
509creation of new bridge device(s) with a different VLAN filtering value to
510ensure VLAN awareness is pushed down to the hardware.
511
512Even when VLAN filtering in the bridge is turned off, the underlying switch
513hardware and driver may still configure itself in a VLAN-aware mode provided
514that the behavior described above is observed.
515
516The VLAN protocol of the bridge plays a role in deciding whether a packet is
517treated as tagged or not: a bridge using the 802.1ad protocol must treat both
518VLAN-untagged packets, as well as packets tagged with 802.1Q headers, as
519untagged.
520
521The 802.1p (VID 0) tagged packets must be treated in the same way by the device
522as untagged packets, since the bridge device does not allow the manipulation of
523VID 0 in its database.
524
525When the bridge has VLAN filtering enabled and a PVID is not configured on the
526ingress port, untagged and 802.1p tagged packets must be dropped. When the bridge
527has VLAN filtering enabled and a PVID exists on the ingress port, untagged and
528priority-tagged packets must be accepted and forwarded according to the
529bridge's port membership of the PVID VLAN. When the bridge has VLAN filtering
530disabled, the presence/lack of a PVID should not influence the packet
531forwarding decision.
532
533Bridge IGMP snooping
534^^^^^^^^^^^^^^^^^^^^
535
536The Linux bridge allows the configuration of IGMP snooping (statically, at
537interface creation time, or dynamically, during runtime) which must be observed
538by the underlying switchdev network device/hardware in the following way:
539
540- when IGMP snooping is turned off, multicast traffic must be flooded to all
541  ports within the same bridge that have mcast_flood=true. The CPU/management
542  port should ideally not be flooded (unless the ingress interface has
543  IFF_ALLMULTI or IFF_PROMISC) and continue to learn multicast traffic through
544  the network stack notifications. If the hardware is not capable of doing that
545  then the CPU/management port must also be flooded and multicast filtering
546  happens in software.
547
548- when IGMP snooping is turned on, multicast traffic must selectively flow
549  to the appropriate network ports (including CPU/management port). Flooding of
550  unknown multicast should be only towards the ports connected to a multicast
551  router (the local device may also act as a multicast router).
552
553The switch must adhere to RFC 4541 and flood multicast traffic accordingly
554since that is what the Linux bridge implementation does.
555
556Because IGMP snooping can be turned on/off at runtime, the switchdev driver
557must be able to reconfigure the underlying hardware on the fly to honor the
558toggling of that option and behave appropriately.
559
560A switchdev driver can also refuse to support dynamic toggling of the multicast
561snooping knob at runtime and require the destruction of the bridge device(s)
562and creation of a new bridge device(s) with a different multicast snooping
563value.
564