xref: /openbmc/linux/Documentation/networking/packet_mmap.rst (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1.. SPDX-License-Identifier: GPL-2.0
2
3===========
4Packet MMAP
5===========
6
7Abstract
8========
9
10This file documents the mmap() facility available with the PACKET
11socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
12
13i) capture network traffic with utilities like tcpdump,
14ii) transmit network traffic, or any other that needs raw
15    access to network interface.
16
17Howto can be found at:
18
19    https://sites.google.com/site/packetmmap/
20
21Please send your comments to
22    - Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
23    - Johann Baudy
24
25Why use PACKET_MMAP
26===================
27
28In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
29inefficient. It uses very limited buffers and requires one system call to
30capture each packet, it requires two if you want to get packet's timestamp
31(like libpcap always does).
32
33In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
34configurable circular buffer mapped in user space that can be used to either
35send or receive packets. This way reading packets just needs to wait for them,
36most of the time there is no need to issue a single system call. Concerning
37transmission, multiple packets can be sent through one system call to get the
38highest bandwidth. By using a shared buffer between the kernel and the user
39also has the benefit of minimizing packet copies.
40
41It's fine to use PACKET_MMAP to improve the performance of the capture and
42transmission process, but it isn't everything. At least, if you are capturing
43at high speeds (this is relative to the cpu speed), you should check if the
44device driver of your network interface card supports some sort of interrupt
45load mitigation or (even better) if it supports NAPI, also make sure it is
46enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
47supported by devices of your network. CPU IRQ pinning of your network interface
48card can also be an advantage.
49
50How to use mmap() to improve capture process
51============================================
52
53From the user standpoint, you should use the higher level libpcap library, which
54is a de facto standard, portable across nearly all operating systems
55including Win32.
56
57Packet MMAP support was integrated into libpcap around the time of version 1.3.0;
58TPACKET_V3 support was added in version 1.5.0
59
60How to use mmap() directly to improve capture process
61=====================================================
62
63From the system calls stand point, the use of PACKET_MMAP involves
64the following process::
65
66
67    [setup]     socket() -------> creation of the capture socket
68		setsockopt() ---> allocation of the circular buffer (ring)
69				  option: PACKET_RX_RING
70		mmap() ---------> mapping of the allocated buffer to the
71				  user process
72
73    [capture]   poll() ---------> to wait for incoming packets
74
75    [shutdown]  close() --------> destruction of the capture socket and
76				  deallocation of all associated
77				  resources.
78
79
80socket creation and destruction is straight forward, and is done
81the same way with or without PACKET_MMAP::
82
83 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
84
85where mode is SOCK_RAW for the raw interface were link level
86information can be captured or SOCK_DGRAM for the cooked
87interface where link level information capture is not
88supported and a link level pseudo-header is provided
89by the kernel.
90
91The destruction of the socket and all associated resources
92is done by a simple call to close(fd).
93
94Similarly as without PACKET_MMAP, it is possible to use one socket
95for capture and transmission. This can be done by mapping the
96allocated RX and TX buffer ring with a single mmap() call.
97See "Mapping and use of the circular buffer (ring)".
98
99Next I will describe PACKET_MMAP settings and its constraints,
100also the mapping of the circular buffer in the user process and
101the use of this buffer.
102
103How to use mmap() directly to improve transmission process
104==========================================================
105Transmission process is similar to capture as shown below::
106
107    [setup]         socket() -------> creation of the transmission socket
108		    setsockopt() ---> allocation of the circular buffer (ring)
109				      option: PACKET_TX_RING
110		    bind() ---------> bind transmission socket with a network interface
111		    mmap() ---------> mapping of the allocated buffer to the
112				      user process
113
114    [transmission]  poll() ---------> wait for free packets (optional)
115		    send() ---------> send all packets that are set as ready in
116				      the ring
117				      The flag MSG_DONTWAIT can be used to return
118				      before end of transfer.
119
120    [shutdown]      close() --------> destruction of the transmission socket and
121				      deallocation of all associated resources.
122
123Socket creation and destruction is also straight forward, and is done
124the same way as in capturing described in the previous paragraph::
125
126 int fd = socket(PF_PACKET, mode, 0);
127
128The protocol can optionally be 0 in case we only want to transmit
129via this socket, which avoids an expensive call to packet_rcv().
130In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
131set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.
132
133Binding the socket to your network interface is mandatory (with zero copy) to
134know the header size of frames used in the circular buffer.
135
136As capture, each frame contains two parts::
137
138    --------------------
139    | struct tpacket_hdr | Header. It contains the status of
140    |                    | of this frame
141    |--------------------|
142    | data buffer        |
143    .                    .  Data that will be sent over the network interface.
144    .                    .
145    --------------------
146
147 bind() associates the socket to your network interface thanks to
148 sll_ifindex parameter of struct sockaddr_ll.
149
150 Initialization example::
151
152    struct sockaddr_ll my_addr;
153    struct ifreq s_ifr;
154    ...
155
156    strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
157
158    /* get interface index of eth0 */
159    ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
160
161    /* fill sockaddr_ll struct to prepare binding */
162    my_addr.sll_family = AF_PACKET;
163    my_addr.sll_protocol = htons(ETH_P_ALL);
164    my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
165
166    /* bind socket to eth0 */
167    bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
168
169 A complete tutorial is available at: https://sites.google.com/site/packetmmap/
170
171By default, the user should put data at::
172
173 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
174
175So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
176the beginning of the user data will be at::
177
178 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
179
180If you wish to put user data at a custom offset from the beginning of
181the frame (for payload alignment with SOCK_RAW mode for instance) you
182can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
183to make this work it must be enabled previously with setsockopt()
184and the PACKET_TX_HAS_OFF option.
185
186PACKET_MMAP settings
187====================
188
189To setup PACKET_MMAP from user level code is done with a call like
190
191 - Capture process::
192
193     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
194
195 - Transmission process::
196
197     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
198
199The most significant argument in the previous call is the req parameter,
200this parameter must to have the following structure::
201
202    struct tpacket_req
203    {
204	unsigned int    tp_block_size;  /* Minimal size of contiguous block */
205	unsigned int    tp_block_nr;    /* Number of blocks */
206	unsigned int    tp_frame_size;  /* Size of frame */
207	unsigned int    tp_frame_nr;    /* Total number of frames */
208    };
209
210This structure is defined in /usr/include/linux/if_packet.h and establishes a
211circular buffer (ring) of unswappable memory.
212Being mapped in the capture process allows reading the captured frames and
213related meta-information like timestamps without requiring a system call.
214
215Frames are grouped in blocks. Each block is a physically contiguous
216region of memory and holds tp_block_size/tp_frame_size frames. The total number
217of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because::
218
219    frames_per_block = tp_block_size/tp_frame_size
220
221indeed, packet_set_ring checks that the following condition is true::
222
223    frames_per_block * tp_block_nr == tp_frame_nr
224
225Lets see an example, with the following values::
226
227     tp_block_size= 4096
228     tp_frame_size= 2048
229     tp_block_nr  = 4
230     tp_frame_nr  = 8
231
232we will get the following buffer structure::
233
234	    block #1                 block #2
235    +---------+---------+    +---------+---------+
236    | frame 1 | frame 2 |    | frame 3 | frame 4 |
237    +---------+---------+    +---------+---------+
238
239	    block #3                 block #4
240    +---------+---------+    +---------+---------+
241    | frame 5 | frame 6 |    | frame 7 | frame 8 |
242    +---------+---------+    +---------+---------+
243
244A frame can be of any size with the only condition it can fit in a block. A block
245can only hold an integer number of frames, or in other words, a frame cannot
246be spawned across two blocks, so there are some details you have to take into
247account when choosing the frame_size. See "Mapping and use of the circular
248buffer (ring)".
249
250PACKET_MMAP setting constraints
251===============================
252
253In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
254the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
25516384 in a 64 bit architecture. For information on these kernel versions
256see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
257
258Block size limit
259----------------
260
261As stated earlier, each block is a contiguous physical region of memory. These
262memory regions are allocated with calls to the __get_free_pages() function. As
263the name indicates, this function allocates pages of memory, and the second
264argument is "order" or a power of two number of pages, that is
265(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes,
266order=2 ==> 16384 bytes, etc. The maximum size of a
267region allocated by __get_free_pages is determined by the MAX_ORDER macro. More
268precisely the limit can be calculated as::
269
270   PAGE_SIZE << MAX_ORDER
271
272   In a i386 architecture PAGE_SIZE is 4096 bytes
273   In a 2.4/i386 kernel MAX_ORDER is 10
274   In a 2.6/i386 kernel MAX_ORDER is 11
275
276So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel
277respectively, with an i386 architecture.
278
279User space programs can include /usr/include/sys/user.h and
280/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
281
282The pagesize can also be determined dynamically with the getpagesize (2)
283system call.
284
285Block number limit
286------------------
287
288To understand the constraints of PACKET_MMAP, we have to see the structure
289used to hold the pointers to each block.
290
291Currently, this structure is a dynamically allocated vector with kmalloc
292called pg_vec, its size limits the number of blocks that can be allocated::
293
294    +---+---+---+---+
295    | x | x | x | x |
296    +---+---+---+---+
297      |   |   |   |
298      |   |   |   v
299      |   |   v  block #4
300      |   v  block #3
301      v  block #2
302     block #1
303
304kmalloc allocates any number of bytes of physically contiguous memory from
305a pool of pre-determined sizes. This pool of memory is maintained by the slab
306allocator which is at the end the responsible for doing the allocation and
307hence which imposes the maximum memory that kmalloc can allocate.
308
309In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The
310predetermined sizes that kmalloc uses can be checked in the "size-<bytes>"
311entries of /proc/slabinfo
312
313In a 32 bit architecture, pointers are 4 bytes long, so the total number of
314pointers to blocks is::
315
316     131072/4 = 32768 blocks
317
318PACKET_MMAP buffer size calculator
319==================================
320
321Definitions:
322
323==============  ================================================================
324<size-max>      is the maximum size of allocable with kmalloc
325		(see /proc/slabinfo)
326<pointer size>  depends on the architecture -- ``sizeof(void *)``
327<page size>     depends on the architecture -- PAGE_SIZE or getpagesize (2)
328<max-order>     is the value defined with MAX_ORDER
329<frame size>    it's an upper bound of frame's capture size (more on this later)
330==============  ================================================================
331
332from these definitions we will derive::
333
334	<block number> = <size-max>/<pointer size>
335	<block size> = <pagesize> << <max-order>
336
337so, the max buffer size is::
338
339	<block number> * <block size>
340
341and, the number of frames be::
342
343	<block number> * <block size> / <frame size>
344
345Suppose the following parameters, which apply for 2.6 kernel and an
346i386 architecture::
347
348	<size-max> = 131072 bytes
349	<pointer size> = 4 bytes
350	<pagesize> = 4096 bytes
351	<max-order> = 11
352
353and a value for <frame size> of 2048 bytes. These parameters will yield::
354
355	<block number> = 131072/4 = 32768 blocks
356	<block size> = 4096 << 11 = 8 MiB.
357
358and hence the buffer will have a 262144 MiB size. So it can hold
359262144 MiB / 2048 bytes = 134217728 frames
360
361Actually, this buffer size is not possible with an i386 architecture.
362Remember that the memory is allocated in kernel space, in the case of
363an i386 kernel's memory size is limited to 1GiB.
364
365All memory allocations are not freed until the socket is closed. The memory
366allocations are done with GFP_KERNEL priority, this basically means that
367the allocation can wait and swap other process' memory in order to allocate
368the necessary memory, so normally limits can be reached.
369
370Other constraints
371-----------------
372
373If you check the source code you will see that what I draw here as a frame
374is not only the link level frame. At the beginning of each frame there is a
375header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
376meta information like timestamp. So what we draw here a frame it's really
377the following (from include/linux/if_packet.h)::
378
379 /*
380   Frame structure:
381
382   - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
383   - struct tpacket_hdr
384   - pad to TPACKET_ALIGNMENT=16
385   - struct sockaddr_ll
386   - Gap, chosen so that packet data (Start+tp_net) aligns to
387     TPACKET_ALIGNMENT=16
388   - Start+tp_mac: [ Optional MAC header ]
389   - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
390   - Pad to align to TPACKET_ALIGNMENT=16
391 */
392
393The following are conditions that are checked in packet_set_ring
394
395   - tp_block_size must be a multiple of PAGE_SIZE (1)
396   - tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
397   - tp_frame_size must be a multiple of TPACKET_ALIGNMENT
398   - tp_frame_nr   must be exactly frames_per_block*tp_block_nr
399
400Note that tp_block_size should be chosen to be a power of two or there will
401be a waste of memory.
402
403Mapping and use of the circular buffer (ring)
404---------------------------------------------
405
406The mapping of the buffer in the user process is done with the conventional
407mmap function. Even the circular buffer is compound of several physically
408discontiguous blocks of memory, they are contiguous to the user space, hence
409just one call to mmap is needed::
410
411    mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
412
413If tp_frame_size is a divisor of tp_block_size frames will be
414contiguously spaced by tp_frame_size bytes. If not, each
415tp_block_size/tp_frame_size frames there will be a gap between
416the frames. This is because a frame cannot be spawn across two
417blocks.
418
419To use one socket for capture and transmission, the mapping of both the
420RX and TX buffer ring has to be done with one call to mmap::
421
422    ...
423    setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &foo, sizeof(foo));
424    setsockopt(fd, SOL_PACKET, PACKET_TX_RING, &bar, sizeof(bar));
425    ...
426    rx_ring = mmap(0, size * 2, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
427    tx_ring = rx_ring + size;
428
429RX must be the first as the kernel maps the TX ring memory right
430after the RX one.
431
432At the beginning of each frame there is an status field (see
433struct tpacket_hdr). If this field is 0 means that the frame is ready
434to be used for the kernel, If not, there is a frame the user can read
435and the following flags apply:
436
437Capture process
438^^^^^^^^^^^^^^^
439
440     from include/linux/if_packet.h
441
442     #define TP_STATUS_COPY          (1 << 1)
443     #define TP_STATUS_LOSING        (1 << 2)
444     #define TP_STATUS_CSUMNOTREADY  (1 << 3)
445     #define TP_STATUS_CSUM_VALID    (1 << 7)
446
447======================  =======================================================
448TP_STATUS_COPY		This flag indicates that the frame (and associated
449			meta information) has been truncated because it's
450			larger than tp_frame_size. This packet can be
451			read entirely with recvfrom().
452
453			In order to make this work it must to be
454			enabled previously with setsockopt() and
455			the PACKET_COPY_THRESH option.
456
457			The number of frames that can be buffered to
458			be read with recvfrom is limited like a normal socket.
459			See the SO_RCVBUF option in the socket (7) man page.
460
461TP_STATUS_LOSING	indicates there were packet drops from last time
462			statistics where checked with getsockopt() and
463			the PACKET_STATISTICS option.
464
465TP_STATUS_CSUMNOTREADY	currently it's used for outgoing IP packets which
466			its checksum will be done in hardware. So while
467			reading the packet we should not try to check the
468			checksum.
469
470TP_STATUS_CSUM_VALID	This flag indicates that at least the transport
471			header checksum of the packet has been already
472			validated on the kernel side. If the flag is not set
473			then we are free to check the checksum by ourselves
474			provided that TP_STATUS_CSUMNOTREADY is also not set.
475======================  =======================================================
476
477for convenience there are also the following defines::
478
479     #define TP_STATUS_KERNEL        0
480     #define TP_STATUS_USER          1
481
482The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
483receives a packet it puts in the buffer and updates the status with
484at least the TP_STATUS_USER flag. Then the user can read the packet,
485once the packet is read the user must zero the status field, so the kernel
486can use again that frame buffer.
487
488The user can use poll (any other variant should apply too) to check if new
489packets are in the ring::
490
491    struct pollfd pfd;
492
493    pfd.fd = fd;
494    pfd.revents = 0;
495    pfd.events = POLLIN|POLLRDNORM|POLLERR;
496
497    if (status == TP_STATUS_KERNEL)
498	retval = poll(&pfd, 1, timeout);
499
500It doesn't incur in a race condition to first check the status value and
501then poll for frames.
502
503Transmission process
504^^^^^^^^^^^^^^^^^^^^
505
506Those defines are also used for transmission::
507
508     #define TP_STATUS_AVAILABLE        0 // Frame is available
509     #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
510     #define TP_STATUS_SENDING          2 // Frame is currently in transmission
511     #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct
512
513First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
514packet, the user fills a data buffer of an available frame, sets tp_len to
515current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
516This can be done on multiple frames. Once the user is ready to transmit, it
517calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
518forwarded to the network device. The kernel updates each status of sent
519frames with TP_STATUS_SENDING until the end of transfer.
520
521At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
522
523::
524
525    header->tp_len = in_i_size;
526    header->tp_status = TP_STATUS_SEND_REQUEST;
527    retval = send(this->socket, NULL, 0, 0);
528
529The user can also use poll() to check if a buffer is available:
530
531(status == TP_STATUS_SENDING)
532
533::
534
535    struct pollfd pfd;
536    pfd.fd = fd;
537    pfd.revents = 0;
538    pfd.events = POLLOUT;
539    retval = poll(&pfd, 1, timeout);
540
541What TPACKET versions are available and when to use them?
542=========================================================
543
544::
545
546 int val = tpacket_version;
547 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
548 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
549
550where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
551
552TPACKET_V1:
553	- Default if not otherwise specified by setsockopt(2)
554	- RX_RING, TX_RING available
555
556TPACKET_V1 --> TPACKET_V2:
557	- Made 64 bit clean due to unsigned long usage in TPACKET_V1
558	  structures, thus this also works on 64 bit kernel with 32 bit
559	  userspace and the like
560	- Timestamp resolution in nanoseconds instead of microseconds
561	- RX_RING, TX_RING available
562	- VLAN metadata information available for packets
563	  (TP_STATUS_VLAN_VALID, TP_STATUS_VLAN_TPID_VALID),
564	  in the tpacket2_hdr structure:
565
566		- TP_STATUS_VLAN_VALID bit being set into the tp_status field indicates
567		  that the tp_vlan_tci field has valid VLAN TCI value
568		- TP_STATUS_VLAN_TPID_VALID bit being set into the tp_status field
569		  indicates that the tp_vlan_tpid field has valid VLAN TPID value
570
571	- How to switch to TPACKET_V2:
572
573		1. Replace struct tpacket_hdr by struct tpacket2_hdr
574		2. Query header len and save
575		3. Set protocol version to 2, set up ring as usual
576		4. For getting the sockaddr_ll,
577		   use ``(void *)hdr + TPACKET_ALIGN(hdrlen)`` instead of
578		   ``(void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))``
579
580TPACKET_V2 --> TPACKET_V3:
581	- Flexible buffer implementation for RX_RING:
582		1. Blocks can be configured with non-static frame-size
583		2. Read/poll is at a block-level (as opposed to packet-level)
584		3. Added poll timeout to avoid indefinite user-space wait
585		   on idle links
586		4. Added user-configurable knobs:
587
588			4.1 block::timeout
589			4.2 tpkt_hdr::sk_rxhash
590
591	- RX Hash data available in user space
592	- TX_RING semantics are conceptually similar to TPACKET_V2;
593	  use tpacket3_hdr instead of tpacket2_hdr, and TPACKET3_HDRLEN
594	  instead of TPACKET2_HDRLEN. In the current implementation,
595	  the tp_next_offset field in the tpacket3_hdr MUST be set to
596	  zero, indicating that the ring does not hold variable sized frames.
597	  Packets with non-zero values of tp_next_offset will be dropped.
598
599AF_PACKET fanout mode
600=====================
601
602In the AF_PACKET fanout mode, packet reception can be load balanced among
603processes. This also works in combination with mmap(2) on packet sockets.
604
605Currently implemented fanout policies are:
606
607  - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
608  - PACKET_FANOUT_LB: schedule to socket by round-robin
609  - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
610  - PACKET_FANOUT_RND: schedule to socket by random selection
611  - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
612  - PACKET_FANOUT_QM: schedule to socket by skbs recorded queue_mapping
613
614Minimal example code by David S. Miller (try things like "./test eth0 hash",
615"./test eth0 lb", etc.)::
616
617    #include <stddef.h>
618    #include <stdlib.h>
619    #include <stdio.h>
620    #include <string.h>
621
622    #include <sys/types.h>
623    #include <sys/wait.h>
624    #include <sys/socket.h>
625    #include <sys/ioctl.h>
626
627    #include <unistd.h>
628
629    #include <linux/if_ether.h>
630    #include <linux/if_packet.h>
631
632    #include <net/if.h>
633
634    static const char *device_name;
635    static int fanout_type;
636    static int fanout_id;
637
638    #ifndef PACKET_FANOUT
639    # define PACKET_FANOUT			18
640    # define PACKET_FANOUT_HASH		0
641    # define PACKET_FANOUT_LB		1
642    #endif
643
644    static int setup_socket(void)
645    {
646	    int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
647	    struct sockaddr_ll ll;
648	    struct ifreq ifr;
649	    int fanout_arg;
650
651	    if (fd < 0) {
652		    perror("socket");
653		    return EXIT_FAILURE;
654	    }
655
656	    memset(&ifr, 0, sizeof(ifr));
657	    strcpy(ifr.ifr_name, device_name);
658	    err = ioctl(fd, SIOCGIFINDEX, &ifr);
659	    if (err < 0) {
660		    perror("SIOCGIFINDEX");
661		    return EXIT_FAILURE;
662	    }
663
664	    memset(&ll, 0, sizeof(ll));
665	    ll.sll_family = AF_PACKET;
666	    ll.sll_ifindex = ifr.ifr_ifindex;
667	    err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
668	    if (err < 0) {
669		    perror("bind");
670		    return EXIT_FAILURE;
671	    }
672
673	    fanout_arg = (fanout_id | (fanout_type << 16));
674	    err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
675			    &fanout_arg, sizeof(fanout_arg));
676	    if (err) {
677		    perror("setsockopt");
678		    return EXIT_FAILURE;
679	    }
680
681	    return fd;
682    }
683
684    static void fanout_thread(void)
685    {
686	    int fd = setup_socket();
687	    int limit = 10000;
688
689	    if (fd < 0)
690		    exit(fd);
691
692	    while (limit-- > 0) {
693		    char buf[1600];
694		    int err;
695
696		    err = read(fd, buf, sizeof(buf));
697		    if (err < 0) {
698			    perror("read");
699			    exit(EXIT_FAILURE);
700		    }
701		    if ((limit % 10) == 0)
702			    fprintf(stdout, "(%d) \n", getpid());
703	    }
704
705	    fprintf(stdout, "%d: Received 10000 packets\n", getpid());
706
707	    close(fd);
708	    exit(0);
709    }
710
711    int main(int argc, char **argp)
712    {
713	    int fd, err;
714	    int i;
715
716	    if (argc != 3) {
717		    fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
718		    return EXIT_FAILURE;
719	    }
720
721	    if (!strcmp(argp[2], "hash"))
722		    fanout_type = PACKET_FANOUT_HASH;
723	    else if (!strcmp(argp[2], "lb"))
724		    fanout_type = PACKET_FANOUT_LB;
725	    else {
726		    fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
727		    exit(EXIT_FAILURE);
728	    }
729
730	    device_name = argp[1];
731	    fanout_id = getpid() & 0xffff;
732
733	    for (i = 0; i < 4; i++) {
734		    pid_t pid = fork();
735
736		    switch (pid) {
737		    case 0:
738			    fanout_thread();
739
740		    case -1:
741			    perror("fork");
742			    exit(EXIT_FAILURE);
743		    }
744	    }
745
746	    for (i = 0; i < 4; i++) {
747		    int status;
748
749		    wait(&status);
750	    }
751
752	    return 0;
753    }
754
755AF_PACKET TPACKET_V3 example
756============================
757
758AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
759sizes by doing it's own memory management. It is based on blocks where polling
760works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
761
762It is said that TPACKET_V3 brings the following benefits:
763
764 * ~15% - 20% reduction in CPU-usage
765 * ~20% increase in packet capture rate
766 * ~2x increase in packet density
767 * Port aggregation analysis
768 * Non static frame size to capture entire packet payload
769
770So it seems to be a good candidate to be used with packet fanout.
771
772Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
773it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.)::
774
775    /* Written from scratch, but kernel-to-user space API usage
776    * dissected from lolpcap:
777    *  Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
778    *  License: GPL, version 2.0
779    */
780
781    #include <stdio.h>
782    #include <stdlib.h>
783    #include <stdint.h>
784    #include <string.h>
785    #include <assert.h>
786    #include <net/if.h>
787    #include <arpa/inet.h>
788    #include <netdb.h>
789    #include <poll.h>
790    #include <unistd.h>
791    #include <signal.h>
792    #include <inttypes.h>
793    #include <sys/socket.h>
794    #include <sys/mman.h>
795    #include <linux/if_packet.h>
796    #include <linux/if_ether.h>
797    #include <linux/ip.h>
798
799    #ifndef likely
800    # define likely(x)		__builtin_expect(!!(x), 1)
801    #endif
802    #ifndef unlikely
803    # define unlikely(x)		__builtin_expect(!!(x), 0)
804    #endif
805
806    struct block_desc {
807	    uint32_t version;
808	    uint32_t offset_to_priv;
809	    struct tpacket_hdr_v1 h1;
810    };
811
812    struct ring {
813	    struct iovec *rd;
814	    uint8_t *map;
815	    struct tpacket_req3 req;
816    };
817
818    static unsigned long packets_total = 0, bytes_total = 0;
819    static sig_atomic_t sigint = 0;
820
821    static void sighandler(int num)
822    {
823	    sigint = 1;
824    }
825
826    static int setup_socket(struct ring *ring, char *netdev)
827    {
828	    int err, i, fd, v = TPACKET_V3;
829	    struct sockaddr_ll ll;
830	    unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
831	    unsigned int blocknum = 64;
832
833	    fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
834	    if (fd < 0) {
835		    perror("socket");
836		    exit(1);
837	    }
838
839	    err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
840	    if (err < 0) {
841		    perror("setsockopt");
842		    exit(1);
843	    }
844
845	    memset(&ring->req, 0, sizeof(ring->req));
846	    ring->req.tp_block_size = blocksiz;
847	    ring->req.tp_frame_size = framesiz;
848	    ring->req.tp_block_nr = blocknum;
849	    ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
850	    ring->req.tp_retire_blk_tov = 60;
851	    ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
852
853	    err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
854			    sizeof(ring->req));
855	    if (err < 0) {
856		    perror("setsockopt");
857		    exit(1);
858	    }
859
860	    ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
861			    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
862	    if (ring->map == MAP_FAILED) {
863		    perror("mmap");
864		    exit(1);
865	    }
866
867	    ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
868	    assert(ring->rd);
869	    for (i = 0; i < ring->req.tp_block_nr; ++i) {
870		    ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
871		    ring->rd[i].iov_len = ring->req.tp_block_size;
872	    }
873
874	    memset(&ll, 0, sizeof(ll));
875	    ll.sll_family = PF_PACKET;
876	    ll.sll_protocol = htons(ETH_P_ALL);
877	    ll.sll_ifindex = if_nametoindex(netdev);
878	    ll.sll_hatype = 0;
879	    ll.sll_pkttype = 0;
880	    ll.sll_halen = 0;
881
882	    err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
883	    if (err < 0) {
884		    perror("bind");
885		    exit(1);
886	    }
887
888	    return fd;
889    }
890
891    static void display(struct tpacket3_hdr *ppd)
892    {
893	    struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
894	    struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
895
896	    if (eth->h_proto == htons(ETH_P_IP)) {
897		    struct sockaddr_in ss, sd;
898		    char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
899
900		    memset(&ss, 0, sizeof(ss));
901		    ss.sin_family = PF_INET;
902		    ss.sin_addr.s_addr = ip->saddr;
903		    getnameinfo((struct sockaddr *) &ss, sizeof(ss),
904				sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
905
906		    memset(&sd, 0, sizeof(sd));
907		    sd.sin_family = PF_INET;
908		    sd.sin_addr.s_addr = ip->daddr;
909		    getnameinfo((struct sockaddr *) &sd, sizeof(sd),
910				dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
911
912		    printf("%s -> %s, ", sbuff, dbuff);
913	    }
914
915	    printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
916    }
917
918    static void walk_block(struct block_desc *pbd, const int block_num)
919    {
920	    int num_pkts = pbd->h1.num_pkts, i;
921	    unsigned long bytes = 0;
922	    struct tpacket3_hdr *ppd;
923
924	    ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
925					pbd->h1.offset_to_first_pkt);
926	    for (i = 0; i < num_pkts; ++i) {
927		    bytes += ppd->tp_snaplen;
928		    display(ppd);
929
930		    ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
931						ppd->tp_next_offset);
932	    }
933
934	    packets_total += num_pkts;
935	    bytes_total += bytes;
936    }
937
938    static void flush_block(struct block_desc *pbd)
939    {
940	    pbd->h1.block_status = TP_STATUS_KERNEL;
941    }
942
943    static void teardown_socket(struct ring *ring, int fd)
944    {
945	    munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
946	    free(ring->rd);
947	    close(fd);
948    }
949
950    int main(int argc, char **argp)
951    {
952	    int fd, err;
953	    socklen_t len;
954	    struct ring ring;
955	    struct pollfd pfd;
956	    unsigned int block_num = 0, blocks = 64;
957	    struct block_desc *pbd;
958	    struct tpacket_stats_v3 stats;
959
960	    if (argc != 2) {
961		    fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
962		    return EXIT_FAILURE;
963	    }
964
965	    signal(SIGINT, sighandler);
966
967	    memset(&ring, 0, sizeof(ring));
968	    fd = setup_socket(&ring, argp[argc - 1]);
969	    assert(fd > 0);
970
971	    memset(&pfd, 0, sizeof(pfd));
972	    pfd.fd = fd;
973	    pfd.events = POLLIN | POLLERR;
974	    pfd.revents = 0;
975
976	    while (likely(!sigint)) {
977		    pbd = (struct block_desc *) ring.rd[block_num].iov_base;
978
979		    if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
980			    poll(&pfd, 1, -1);
981			    continue;
982		    }
983
984		    walk_block(pbd, block_num);
985		    flush_block(pbd);
986		    block_num = (block_num + 1) % blocks;
987	    }
988
989	    len = sizeof(stats);
990	    err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
991	    if (err < 0) {
992		    perror("getsockopt");
993		    exit(1);
994	    }
995
996	    fflush(stdout);
997	    printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
998		stats.tp_packets, bytes_total, stats.tp_drops,
999		stats.tp_freeze_q_cnt);
1000
1001	    teardown_socket(&ring, fd);
1002	    return 0;
1003    }
1004
1005PACKET_QDISC_BYPASS
1006===================
1007
1008If there is a requirement to load the network with many packets in a similar
1009fashion as pktgen does, you might set the following option after socket
1010creation::
1011
1012    int one = 1;
1013    setsockopt(fd, SOL_PACKET, PACKET_QDISC_BYPASS, &one, sizeof(one));
1014
1015This has the side-effect, that packets sent through PF_PACKET will bypass the
1016kernel's qdisc layer and are forcedly pushed to the driver directly. Meaning,
1017packet are not buffered, tc disciplines are ignored, increased loss can occur
1018and such packets are also not visible to other PF_PACKET sockets anymore. So,
1019you have been warned; generally, this can be useful for stress testing various
1020components of a system.
1021
1022On default, PACKET_QDISC_BYPASS is disabled and needs to be explicitly enabled
1023on PF_PACKET sockets.
1024
1025PACKET_TIMESTAMP
1026================
1027
1028The PACKET_TIMESTAMP setting determines the source of the timestamp in
1029the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
1030NIC is capable of timestamping packets in hardware, you can request those
1031hardware timestamps to be used. Note: you may need to enable the generation
1032of hardware timestamps with SIOCSHWTSTAMP (see related information from
1033Documentation/networking/timestamping.rst).
1034
1035PACKET_TIMESTAMP accepts the same integer bit field as SO_TIMESTAMPING::
1036
1037    int req = SOF_TIMESTAMPING_RAW_HARDWARE;
1038    setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1039
1040For the mmap(2)ed ring buffers, such timestamps are stored in the
1041``tpacket{,2,3}_hdr`` structure's tp_sec and ``tp_{n,u}sec`` members.
1042To determine what kind of timestamp has been reported, the tp_status field
1043is binary or'ed with the following possible bits ...
1044
1045::
1046
1047    TP_STATUS_TS_RAW_HARDWARE
1048    TP_STATUS_TS_SOFTWARE
1049
1050... that are equivalent to its ``SOF_TIMESTAMPING_*`` counterparts. For the
1051RX_RING, if neither is set (i.e. PACKET_TIMESTAMP is not set), then a
1052software fallback was invoked *within* PF_PACKET's processing code (less
1053precise).
1054
1055Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1056ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1057frames to be updated resp. the frame handed over to the application, iv) walk
1058through the frames to pick up the individual hw/sw timestamps.
1059
1060Only (!) if transmit timestamping is enabled, then these bits are combined
1061with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1062application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1063in a first step to see if the frame belongs to the application, and then
1064one can extract the type of timestamp in a second step from tp_status)!
1065
1066If you don't care about them, thus having it disabled, checking for
1067TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1068TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1069members do not contain a valid value. For TX_RINGs, by default no timestamp
1070is generated!
1071
1072See include/linux/net_tstamp.h and Documentation/networking/timestamping.rst
1073for more information on hardware timestamps.
1074
1075Miscellaneous bits
1076==================
1077
1078- Packet sockets work well together with Linux socket filters, thus you also
1079  might want to have a look at Documentation/networking/filter.rst
1080
1081THANKS
1082======
1083
1084   Jesse Brandeburg, for fixing my grammathical/spelling errors
1085