1			 ============================
2			 LINUX KERNEL MEMORY BARRIERS
3			 ============================
4
5By: David Howells <dhowells@redhat.com>
6    Paul E. McKenney <paulmck@linux.ibm.com>
7    Will Deacon <will.deacon@arm.com>
8    Peter Zijlstra <peterz@infradead.org>
9
10==========
11DISCLAIMER
12==========
13
14This document is not a specification; it is intentionally (for the sake of
15brevity) and unintentionally (due to being human) incomplete. This document is
16meant as a guide to using the various memory barriers provided by Linux, but
17in case of any doubt (and there are many) please ask.  Some doubts may be
18resolved by referring to the formal memory consistency model and related
19documentation at tools/memory-model/.  Nevertheless, even this memory
20model should be viewed as the collective opinion of its maintainers rather
21than as an infallible oracle.
22
23To repeat, this document is not a specification of what Linux expects from
24hardware.
25
26The purpose of this document is twofold:
27
28 (1) to specify the minimum functionality that one can rely on for any
29     particular barrier, and
30
31 (2) to provide a guide as to how to use the barriers that are available.
32
33Note that an architecture can provide more than the minimum requirement
34for any particular barrier, but if the architecture provides less than
35that, that architecture is incorrect.
36
37Note also that it is possible that a barrier may be a no-op for an
38architecture because the way that arch works renders an explicit barrier
39unnecessary in that case.
40
41
42========
43CONTENTS
44========
45
46 (*) Abstract memory access model.
47
48     - Device operations.
49     - Guarantees.
50
51 (*) What are memory barriers?
52
53     - Varieties of memory barrier.
54     - What may not be assumed about memory barriers?
55     - Data dependency barriers (historical).
56     - Control dependencies.
57     - SMP barrier pairing.
58     - Examples of memory barrier sequences.
59     - Read memory barriers vs load speculation.
60     - Multicopy atomicity.
61
62 (*) Explicit kernel barriers.
63
64     - Compiler barrier.
65     - CPU memory barriers.
66
67 (*) Implicit kernel memory barriers.
68
69     - Lock acquisition functions.
70     - Interrupt disabling functions.
71     - Sleep and wake-up functions.
72     - Miscellaneous functions.
73
74 (*) Inter-CPU acquiring barrier effects.
75
76     - Acquires vs memory accesses.
77
78 (*) Where are memory barriers needed?
79
80     - Interprocessor interaction.
81     - Atomic operations.
82     - Accessing devices.
83     - Interrupts.
84
85 (*) Kernel I/O barrier effects.
86
87 (*) Assumed minimum execution ordering model.
88
89 (*) The effects of the cpu cache.
90
91     - Cache coherency.
92     - Cache coherency vs DMA.
93     - Cache coherency vs MMIO.
94
95 (*) The things CPUs get up to.
96
97     - And then there's the Alpha.
98     - Virtual Machine Guests.
99
100 (*) Example uses.
101
102     - Circular buffers.
103
104 (*) References.
105
106
107============================
108ABSTRACT MEMORY ACCESS MODEL
109============================
110
111Consider the following abstract model of the system:
112
113		            :                :
114		            :                :
115		            :                :
116		+-------+   :   +--------+   :   +-------+
117		|       |   :   |        |   :   |       |
118		|       |   :   |        |   :   |       |
119		| CPU 1 |<----->| Memory |<----->| CPU 2 |
120		|       |   :   |        |   :   |       |
121		|       |   :   |        |   :   |       |
122		+-------+   :   +--------+   :   +-------+
123		    ^       :       ^        :       ^
124		    |       :       |        :       |
125		    |       :       |        :       |
126		    |       :       v        :       |
127		    |       :   +--------+   :       |
128		    |       :   |        |   :       |
129		    |       :   |        |   :       |
130		    +---------->| Device |<----------+
131		            :   |        |   :
132		            :   |        |   :
133		            :   +--------+   :
134		            :                :
135
136Each CPU executes a program that generates memory access operations.  In the
137abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
138perform the memory operations in any order it likes, provided program causality
139appears to be maintained.  Similarly, the compiler may also arrange the
140instructions it emits in any order it likes, provided it doesn't affect the
141apparent operation of the program.
142
143So in the above diagram, the effects of the memory operations performed by a
144CPU are perceived by the rest of the system as the operations cross the
145interface between the CPU and rest of the system (the dotted lines).
146
147
148For example, consider the following sequence of events:
149
150	CPU 1		CPU 2
151	===============	===============
152	{ A == 1; B == 2 }
153	A = 3;		x = B;
154	B = 4;		y = A;
155
156The set of accesses as seen by the memory system in the middle can be arranged
157in 24 different combinations:
158
159	STORE A=3,	STORE B=4,	y=LOAD A->3,	x=LOAD B->4
160	STORE A=3,	STORE B=4,	x=LOAD B->4,	y=LOAD A->3
161	STORE A=3,	y=LOAD A->3,	STORE B=4,	x=LOAD B->4
162	STORE A=3,	y=LOAD A->3,	x=LOAD B->2,	STORE B=4
163	STORE A=3,	x=LOAD B->2,	STORE B=4,	y=LOAD A->3
164	STORE A=3,	x=LOAD B->2,	y=LOAD A->3,	STORE B=4
165	STORE B=4,	STORE A=3,	y=LOAD A->3,	x=LOAD B->4
166	STORE B=4, ...
167	...
168
169and can thus result in four different combinations of values:
170
171	x == 2, y == 1
172	x == 2, y == 3
173	x == 4, y == 1
174	x == 4, y == 3
175
176
177Furthermore, the stores committed by a CPU to the memory system may not be
178perceived by the loads made by another CPU in the same order as the stores were
179committed.
180
181
182As a further example, consider this sequence of events:
183
184	CPU 1		CPU 2
185	===============	===============
186	{ A == 1, B == 2, C == 3, P == &A, Q == &C }
187	B = 4;		Q = P;
188	P = &B;		D = *Q;
189
190There is an obvious data dependency here, as the value loaded into D depends on
191the address retrieved from P by CPU 2.  At the end of the sequence, any of the
192following results are possible:
193
194	(Q == &A) and (D == 1)
195	(Q == &B) and (D == 2)
196	(Q == &B) and (D == 4)
197
198Note that CPU 2 will never try and load C into D because the CPU will load P
199into Q before issuing the load of *Q.
200
201
202DEVICE OPERATIONS
203-----------------
204
205Some devices present their control interfaces as collections of memory
206locations, but the order in which the control registers are accessed is very
207important.  For instance, imagine an ethernet card with a set of internal
208registers that are accessed through an address port register (A) and a data
209port register (D).  To read internal register 5, the following code might then
210be used:
211
212	*A = 5;
213	x = *D;
214
215but this might show up as either of the following two sequences:
216
217	STORE *A = 5, x = LOAD *D
218	x = LOAD *D, STORE *A = 5
219
220the second of which will almost certainly result in a malfunction, since it set
221the address _after_ attempting to read the register.
222
223
224GUARANTEES
225----------
226
227There are some minimal guarantees that may be expected of a CPU:
228
229 (*) On any given CPU, dependent memory accesses will be issued in order, with
230     respect to itself.  This means that for:
231
232	Q = READ_ONCE(P); D = READ_ONCE(*Q);
233
234     the CPU will issue the following memory operations:
235
236	Q = LOAD P, D = LOAD *Q
237
238     and always in that order.  However, on DEC Alpha, READ_ONCE() also
239     emits a memory-barrier instruction, so that a DEC Alpha CPU will
240     instead issue the following memory operations:
241
242	Q = LOAD P, MEMORY_BARRIER, D = LOAD *Q, MEMORY_BARRIER
243
244     Whether on DEC Alpha or not, the READ_ONCE() also prevents compiler
245     mischief.
246
247 (*) Overlapping loads and stores within a particular CPU will appear to be
248     ordered within that CPU.  This means that for:
249
250	a = READ_ONCE(*X); WRITE_ONCE(*X, b);
251
252     the CPU will only issue the following sequence of memory operations:
253
254	a = LOAD *X, STORE *X = b
255
256     And for:
257
258	WRITE_ONCE(*X, c); d = READ_ONCE(*X);
259
260     the CPU will only issue:
261
262	STORE *X = c, d = LOAD *X
263
264     (Loads and stores overlap if they are targeted at overlapping pieces of
265     memory).
266
267And there are a number of things that _must_ or _must_not_ be assumed:
268
269 (*) It _must_not_ be assumed that the compiler will do what you want
270     with memory references that are not protected by READ_ONCE() and
271     WRITE_ONCE().  Without them, the compiler is within its rights to
272     do all sorts of "creative" transformations, which are covered in
273     the COMPILER BARRIER section.
274
275 (*) It _must_not_ be assumed that independent loads and stores will be issued
276     in the order given.  This means that for:
277
278	X = *A; Y = *B; *D = Z;
279
280     we may get any of the following sequences:
281
282	X = LOAD *A,  Y = LOAD *B,  STORE *D = Z
283	X = LOAD *A,  STORE *D = Z, Y = LOAD *B
284	Y = LOAD *B,  X = LOAD *A,  STORE *D = Z
285	Y = LOAD *B,  STORE *D = Z, X = LOAD *A
286	STORE *D = Z, X = LOAD *A,  Y = LOAD *B
287	STORE *D = Z, Y = LOAD *B,  X = LOAD *A
288
289 (*) It _must_ be assumed that overlapping memory accesses may be merged or
290     discarded.  This means that for:
291
292	X = *A; Y = *(A + 4);
293
294     we may get any one of the following sequences:
295
296	X = LOAD *A; Y = LOAD *(A + 4);
297	Y = LOAD *(A + 4); X = LOAD *A;
298	{X, Y} = LOAD {*A, *(A + 4) };
299
300     And for:
301
302	*A = X; *(A + 4) = Y;
303
304     we may get any of:
305
306	STORE *A = X; STORE *(A + 4) = Y;
307	STORE *(A + 4) = Y; STORE *A = X;
308	STORE {*A, *(A + 4) } = {X, Y};
309
310And there are anti-guarantees:
311
312 (*) These guarantees do not apply to bitfields, because compilers often
313     generate code to modify these using non-atomic read-modify-write
314     sequences.  Do not attempt to use bitfields to synchronize parallel
315     algorithms.
316
317 (*) Even in cases where bitfields are protected by locks, all fields
318     in a given bitfield must be protected by one lock.  If two fields
319     in a given bitfield are protected by different locks, the compiler's
320     non-atomic read-modify-write sequences can cause an update to one
321     field to corrupt the value of an adjacent field.
322
323 (*) These guarantees apply only to properly aligned and sized scalar
324     variables.  "Properly sized" currently means variables that are
325     the same size as "char", "short", "int" and "long".  "Properly
326     aligned" means the natural alignment, thus no constraints for
327     "char", two-byte alignment for "short", four-byte alignment for
328     "int", and either four-byte or eight-byte alignment for "long",
329     on 32-bit and 64-bit systems, respectively.  Note that these
330     guarantees were introduced into the C11 standard, so beware when
331     using older pre-C11 compilers (for example, gcc 4.6).  The portion
332     of the standard containing this guarantee is Section 3.14, which
333     defines "memory location" as follows:
334
335     	memory location
336		either an object of scalar type, or a maximal sequence
337		of adjacent bit-fields all having nonzero width
338
339		NOTE 1: Two threads of execution can update and access
340		separate memory locations without interfering with
341		each other.
342
343		NOTE 2: A bit-field and an adjacent non-bit-field member
344		are in separate memory locations. The same applies
345		to two bit-fields, if one is declared inside a nested
346		structure declaration and the other is not, or if the two
347		are separated by a zero-length bit-field declaration,
348		or if they are separated by a non-bit-field member
349		declaration. It is not safe to concurrently update two
350		bit-fields in the same structure if all members declared
351		between them are also bit-fields, no matter what the
352		sizes of those intervening bit-fields happen to be.
353
354
355=========================
356WHAT ARE MEMORY BARRIERS?
357=========================
358
359As can be seen above, independent memory operations are effectively performed
360in random order, but this can be a problem for CPU-CPU interaction and for I/O.
361What is required is some way of intervening to instruct the compiler and the
362CPU to restrict the order.
363
364Memory barriers are such interventions.  They impose a perceived partial
365ordering over the memory operations on either side of the barrier.
366
367Such enforcement is important because the CPUs and other devices in a system
368can use a variety of tricks to improve performance, including reordering,
369deferral and combination of memory operations; speculative loads; speculative
370branch prediction and various types of caching.  Memory barriers are used to
371override or suppress these tricks, allowing the code to sanely control the
372interaction of multiple CPUs and/or devices.
373
374
375VARIETIES OF MEMORY BARRIER
376---------------------------
377
378Memory barriers come in four basic varieties:
379
380 (1) Write (or store) memory barriers.
381
382     A write memory barrier gives a guarantee that all the STORE operations
383     specified before the barrier will appear to happen before all the STORE
384     operations specified after the barrier with respect to the other
385     components of the system.
386
387     A write barrier is a partial ordering on stores only; it is not required
388     to have any effect on loads.
389
390     A CPU can be viewed as committing a sequence of store operations to the
391     memory system as time progresses.  All stores _before_ a write barrier
392     will occur _before_ all the stores after the write barrier.
393
394     [!] Note that write barriers should normally be paired with read or data
395     dependency barriers; see the "SMP barrier pairing" subsection.
396
397
398 (2) Data dependency barriers.
399
400     A data dependency barrier is a weaker form of read barrier.  In the case
401     where two loads are performed such that the second depends on the result
402     of the first (eg: the first load retrieves the address to which the second
403     load will be directed), a data dependency barrier would be required to
404     make sure that the target of the second load is updated after the address
405     obtained by the first load is accessed.
406
407     A data dependency barrier is a partial ordering on interdependent loads
408     only; it is not required to have any effect on stores, independent loads
409     or overlapping loads.
410
411     As mentioned in (1), the other CPUs in the system can be viewed as
412     committing sequences of stores to the memory system that the CPU being
413     considered can then perceive.  A data dependency barrier issued by the CPU
414     under consideration guarantees that for any load preceding it, if that
415     load touches one of a sequence of stores from another CPU, then by the
416     time the barrier completes, the effects of all the stores prior to that
417     touched by the load will be perceptible to any loads issued after the data
418     dependency barrier.
419
420     See the "Examples of memory barrier sequences" subsection for diagrams
421     showing the ordering constraints.
422
423     [!] Note that the first load really has to have a _data_ dependency and
424     not a control dependency.  If the address for the second load is dependent
425     on the first load, but the dependency is through a conditional rather than
426     actually loading the address itself, then it's a _control_ dependency and
427     a full read barrier or better is required.  See the "Control dependencies"
428     subsection for more information.
429
430     [!] Note that data dependency barriers should normally be paired with
431     write barriers; see the "SMP barrier pairing" subsection.
432
433
434 (3) Read (or load) memory barriers.
435
436     A read barrier is a data dependency barrier plus a guarantee that all the
437     LOAD operations specified before the barrier will appear to happen before
438     all the LOAD operations specified after the barrier with respect to the
439     other components of the system.
440
441     A read barrier is a partial ordering on loads only; it is not required to
442     have any effect on stores.
443
444     Read memory barriers imply data dependency barriers, and so can substitute
445     for them.
446
447     [!] Note that read barriers should normally be paired with write barriers;
448     see the "SMP barrier pairing" subsection.
449
450
451 (4) General memory barriers.
452
453     A general memory barrier gives a guarantee that all the LOAD and STORE
454     operations specified before the barrier will appear to happen before all
455     the LOAD and STORE operations specified after the barrier with respect to
456     the other components of the system.
457
458     A general memory barrier is a partial ordering over both loads and stores.
459
460     General memory barriers imply both read and write memory barriers, and so
461     can substitute for either.
462
463
464And a couple of implicit varieties:
465
466 (5) ACQUIRE operations.
467
468     This acts as a one-way permeable barrier.  It guarantees that all memory
469     operations after the ACQUIRE operation will appear to happen after the
470     ACQUIRE operation with respect to the other components of the system.
471     ACQUIRE operations include LOCK operations and both smp_load_acquire()
472     and smp_cond_load_acquire() operations.
473
474     Memory operations that occur before an ACQUIRE operation may appear to
475     happen after it completes.
476
477     An ACQUIRE operation should almost always be paired with a RELEASE
478     operation.
479
480
481 (6) RELEASE operations.
482
483     This also acts as a one-way permeable barrier.  It guarantees that all
484     memory operations before the RELEASE operation will appear to happen
485     before the RELEASE operation with respect to the other components of the
486     system. RELEASE operations include UNLOCK operations and
487     smp_store_release() operations.
488
489     Memory operations that occur after a RELEASE operation may appear to
490     happen before it completes.
491
492     The use of ACQUIRE and RELEASE operations generally precludes the need
493     for other sorts of memory barrier.  In addition, a RELEASE+ACQUIRE pair is
494     -not- guaranteed to act as a full memory barrier.  However, after an
495     ACQUIRE on a given variable, all memory accesses preceding any prior
496     RELEASE on that same variable are guaranteed to be visible.  In other
497     words, within a given variable's critical section, all accesses of all
498     previous critical sections for that variable are guaranteed to have
499     completed.
500
501     This means that ACQUIRE acts as a minimal "acquire" operation and
502     RELEASE acts as a minimal "release" operation.
503
504A subset of the atomic operations described in atomic_t.txt have ACQUIRE and
505RELEASE variants in addition to fully-ordered and relaxed (no barrier
506semantics) definitions.  For compound atomics performing both a load and a
507store, ACQUIRE semantics apply only to the load and RELEASE semantics apply
508only to the store portion of the operation.
509
510Memory barriers are only required where there's a possibility of interaction
511between two CPUs or between a CPU and a device.  If it can be guaranteed that
512there won't be any such interaction in any particular piece of code, then
513memory barriers are unnecessary in that piece of code.
514
515
516Note that these are the _minimum_ guarantees.  Different architectures may give
517more substantial guarantees, but they may _not_ be relied upon outside of arch
518specific code.
519
520
521WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS?
522----------------------------------------------
523
524There are certain things that the Linux kernel memory barriers do not guarantee:
525
526 (*) There is no guarantee that any of the memory accesses specified before a
527     memory barrier will be _complete_ by the completion of a memory barrier
528     instruction; the barrier can be considered to draw a line in that CPU's
529     access queue that accesses of the appropriate type may not cross.
530
531 (*) There is no guarantee that issuing a memory barrier on one CPU will have
532     any direct effect on another CPU or any other hardware in the system.  The
533     indirect effect will be the order in which the second CPU sees the effects
534     of the first CPU's accesses occur, but see the next point:
535
536 (*) There is no guarantee that a CPU will see the correct order of effects
537     from a second CPU's accesses, even _if_ the second CPU uses a memory
538     barrier, unless the first CPU _also_ uses a matching memory barrier (see
539     the subsection on "SMP Barrier Pairing").
540
541 (*) There is no guarantee that some intervening piece of off-the-CPU
542     hardware[*] will not reorder the memory accesses.  CPU cache coherency
543     mechanisms should propagate the indirect effects of a memory barrier
544     between CPUs, but might not do so in order.
545
546	[*] For information on bus mastering DMA and coherency please read:
547
548	    Documentation/driver-api/pci/pci.rst
549	    Documentation/core-api/dma-api-howto.rst
550	    Documentation/core-api/dma-api.rst
551
552
553DATA DEPENDENCY BARRIERS (HISTORICAL)
554-------------------------------------
555
556As of v4.15 of the Linux kernel, an smp_mb() was added to READ_ONCE() for
557DEC Alpha, which means that about the only people who need to pay attention
558to this section are those working on DEC Alpha architecture-specific code
559and those working on READ_ONCE() itself.  For those who need it, and for
560those who are interested in the history, here is the story of
561data-dependency barriers.
562
563The usage requirements of data dependency barriers are a little subtle, and
564it's not always obvious that they're needed.  To illustrate, consider the
565following sequence of events:
566
567	CPU 1		      CPU 2
568	===============	      ===============
569	{ A == 1, B == 2, C == 3, P == &A, Q == &C }
570	B = 4;
571	<write barrier>
572	WRITE_ONCE(P, &B);
573			      Q = READ_ONCE(P);
574			      D = *Q;
575
576There's a clear data dependency here, and it would seem that by the end of the
577sequence, Q must be either &A or &B, and that:
578
579	(Q == &A) implies (D == 1)
580	(Q == &B) implies (D == 4)
581
582But!  CPU 2's perception of P may be updated _before_ its perception of B, thus
583leading to the following situation:
584
585	(Q == &B) and (D == 2) ????
586
587While this may seem like a failure of coherency or causality maintenance, it
588isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
589Alpha).
590
591To deal with this, a data dependency barrier or better must be inserted
592between the address load and the data load:
593
594	CPU 1		      CPU 2
595	===============	      ===============
596	{ A == 1, B == 2, C == 3, P == &A, Q == &C }
597	B = 4;
598	<write barrier>
599	WRITE_ONCE(P, &B);
600			      Q = READ_ONCE(P);
601			      <data dependency barrier>
602			      D = *Q;
603
604This enforces the occurrence of one of the two implications, and prevents the
605third possibility from arising.
606
607
608[!] Note that this extremely counterintuitive situation arises most easily on
609machines with split caches, so that, for example, one cache bank processes
610even-numbered cache lines and the other bank processes odd-numbered cache
611lines.  The pointer P might be stored in an odd-numbered cache line, and the
612variable B might be stored in an even-numbered cache line.  Then, if the
613even-numbered bank of the reading CPU's cache is extremely busy while the
614odd-numbered bank is idle, one can see the new value of the pointer P (&B),
615but the old value of the variable B (2).
616
617
618A data-dependency barrier is not required to order dependent writes
619because the CPUs that the Linux kernel supports don't do writes
620until they are certain (1) that the write will actually happen, (2)
621of the location of the write, and (3) of the value to be written.
622But please carefully read the "CONTROL DEPENDENCIES" section and the
623Documentation/RCU/rcu_dereference.rst file:  The compiler can and does
624break dependencies in a great many highly creative ways.
625
626	CPU 1		      CPU 2
627	===============	      ===============
628	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
629	B = 4;
630	<write barrier>
631	WRITE_ONCE(P, &B);
632			      Q = READ_ONCE(P);
633			      WRITE_ONCE(*Q, 5);
634
635Therefore, no data-dependency barrier is required to order the read into
636Q with the store into *Q.  In other words, this outcome is prohibited,
637even without a data-dependency barrier:
638
639	(Q == &B) && (B == 4)
640
641Please note that this pattern should be rare.  After all, the whole point
642of dependency ordering is to -prevent- writes to the data structure, along
643with the expensive cache misses associated with those writes.  This pattern
644can be used to record rare error conditions and the like, and the CPUs'
645naturally occurring ordering prevents such records from being lost.
646
647
648Note well that the ordering provided by a data dependency is local to
649the CPU containing it.  See the section on "Multicopy atomicity" for
650more information.
651
652
653The data dependency barrier is very important to the RCU system,
654for example.  See rcu_assign_pointer() and rcu_dereference() in
655include/linux/rcupdate.h.  This permits the current target of an RCU'd
656pointer to be replaced with a new modified target, without the replacement
657target appearing to be incompletely initialised.
658
659See also the subsection on "Cache Coherency" for a more thorough example.
660
661
662CONTROL DEPENDENCIES
663--------------------
664
665Control dependencies can be a bit tricky because current compilers do
666not understand them.  The purpose of this section is to help you prevent
667the compiler's ignorance from breaking your code.
668
669A load-load control dependency requires a full read memory barrier, not
670simply a data dependency barrier to make it work correctly.  Consider the
671following bit of code:
672
673	q = READ_ONCE(a);
674	if (q) {
675		<data dependency barrier>  /* BUG: No data dependency!!! */
676		p = READ_ONCE(b);
677	}
678
679This will not have the desired effect because there is no actual data
680dependency, but rather a control dependency that the CPU may short-circuit
681by attempting to predict the outcome in advance, so that other CPUs see
682the load from b as having happened before the load from a.  In such a
683case what's actually required is:
684
685	q = READ_ONCE(a);
686	if (q) {
687		<read barrier>
688		p = READ_ONCE(b);
689	}
690
691However, stores are not speculated.  This means that ordering -is- provided
692for load-store control dependencies, as in the following example:
693
694	q = READ_ONCE(a);
695	if (q) {
696		WRITE_ONCE(b, 1);
697	}
698
699Control dependencies pair normally with other types of barriers.
700That said, please note that neither READ_ONCE() nor WRITE_ONCE()
701are optional! Without the READ_ONCE(), the compiler might combine the
702load from 'a' with other loads from 'a'.  Without the WRITE_ONCE(),
703the compiler might combine the store to 'b' with other stores to 'b'.
704Either can result in highly counterintuitive effects on ordering.
705
706Worse yet, if the compiler is able to prove (say) that the value of
707variable 'a' is always non-zero, it would be well within its rights
708to optimize the original example by eliminating the "if" statement
709as follows:
710
711	q = a;
712	b = 1;  /* BUG: Compiler and CPU can both reorder!!! */
713
714So don't leave out the READ_ONCE().
715
716It is tempting to try to enforce ordering on identical stores on both
717branches of the "if" statement as follows:
718
719	q = READ_ONCE(a);
720	if (q) {
721		barrier();
722		WRITE_ONCE(b, 1);
723		do_something();
724	} else {
725		barrier();
726		WRITE_ONCE(b, 1);
727		do_something_else();
728	}
729
730Unfortunately, current compilers will transform this as follows at high
731optimization levels:
732
733	q = READ_ONCE(a);
734	barrier();
735	WRITE_ONCE(b, 1);  /* BUG: No ordering vs. load from a!!! */
736	if (q) {
737		/* WRITE_ONCE(b, 1); -- moved up, BUG!!! */
738		do_something();
739	} else {
740		/* WRITE_ONCE(b, 1); -- moved up, BUG!!! */
741		do_something_else();
742	}
743
744Now there is no conditional between the load from 'a' and the store to
745'b', which means that the CPU is within its rights to reorder them:
746The conditional is absolutely required, and must be present in the
747assembly code even after all compiler optimizations have been applied.
748Therefore, if you need ordering in this example, you need explicit
749memory barriers, for example, smp_store_release():
750
751	q = READ_ONCE(a);
752	if (q) {
753		smp_store_release(&b, 1);
754		do_something();
755	} else {
756		smp_store_release(&b, 1);
757		do_something_else();
758	}
759
760In contrast, without explicit memory barriers, two-legged-if control
761ordering is guaranteed only when the stores differ, for example:
762
763	q = READ_ONCE(a);
764	if (q) {
765		WRITE_ONCE(b, 1);
766		do_something();
767	} else {
768		WRITE_ONCE(b, 2);
769		do_something_else();
770	}
771
772The initial READ_ONCE() is still required to prevent the compiler from
773proving the value of 'a'.
774
775In addition, you need to be careful what you do with the local variable 'q',
776otherwise the compiler might be able to guess the value and again remove
777the needed conditional.  For example:
778
779	q = READ_ONCE(a);
780	if (q % MAX) {
781		WRITE_ONCE(b, 1);
782		do_something();
783	} else {
784		WRITE_ONCE(b, 2);
785		do_something_else();
786	}
787
788If MAX is defined to be 1, then the compiler knows that (q % MAX) is
789equal to zero, in which case the compiler is within its rights to
790transform the above code into the following:
791
792	q = READ_ONCE(a);
793	WRITE_ONCE(b, 2);
794	do_something_else();
795
796Given this transformation, the CPU is not required to respect the ordering
797between the load from variable 'a' and the store to variable 'b'.  It is
798tempting to add a barrier(), but this does not help.  The conditional
799is gone, and the barrier won't bring it back.  Therefore, if you are
800relying on this ordering, you should make sure that MAX is greater than
801one, perhaps as follows:
802
803	q = READ_ONCE(a);
804	BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
805	if (q % MAX) {
806		WRITE_ONCE(b, 1);
807		do_something();
808	} else {
809		WRITE_ONCE(b, 2);
810		do_something_else();
811	}
812
813Please note once again that the stores to 'b' differ.  If they were
814identical, as noted earlier, the compiler could pull this store outside
815of the 'if' statement.
816
817You must also be careful not to rely too much on boolean short-circuit
818evaluation.  Consider this example:
819
820	q = READ_ONCE(a);
821	if (q || 1 > 0)
822		WRITE_ONCE(b, 1);
823
824Because the first condition cannot fault and the second condition is
825always true, the compiler can transform this example as following,
826defeating control dependency:
827
828	q = READ_ONCE(a);
829	WRITE_ONCE(b, 1);
830
831This example underscores the need to ensure that the compiler cannot
832out-guess your code.  More generally, although READ_ONCE() does force
833the compiler to actually emit code for a given load, it does not force
834the compiler to use the results.
835
836In addition, control dependencies apply only to the then-clause and
837else-clause of the if-statement in question.  In particular, it does
838not necessarily apply to code following the if-statement:
839
840	q = READ_ONCE(a);
841	if (q) {
842		WRITE_ONCE(b, 1);
843	} else {
844		WRITE_ONCE(b, 2);
845	}
846	WRITE_ONCE(c, 1);  /* BUG: No ordering against the read from 'a'. */
847
848It is tempting to argue that there in fact is ordering because the
849compiler cannot reorder volatile accesses and also cannot reorder
850the writes to 'b' with the condition.  Unfortunately for this line
851of reasoning, the compiler might compile the two writes to 'b' as
852conditional-move instructions, as in this fanciful pseudo-assembly
853language:
854
855	ld r1,a
856	cmp r1,$0
857	cmov,ne r4,$1
858	cmov,eq r4,$2
859	st r4,b
860	st $1,c
861
862A weakly ordered CPU would have no dependency of any sort between the load
863from 'a' and the store to 'c'.  The control dependencies would extend
864only to the pair of cmov instructions and the store depending on them.
865In short, control dependencies apply only to the stores in the then-clause
866and else-clause of the if-statement in question (including functions
867invoked by those two clauses), not to code following that if-statement.
868
869
870Note well that the ordering provided by a control dependency is local
871to the CPU containing it.  See the section on "Multicopy atomicity"
872for more information.
873
874
875In summary:
876
877  (*) Control dependencies can order prior loads against later stores.
878      However, they do -not- guarantee any other sort of ordering:
879      Not prior loads against later loads, nor prior stores against
880      later anything.  If you need these other forms of ordering,
881      use smp_rmb(), smp_wmb(), or, in the case of prior stores and
882      later loads, smp_mb().
883
884  (*) If both legs of the "if" statement begin with identical stores to
885      the same variable, then those stores must be ordered, either by
886      preceding both of them with smp_mb() or by using smp_store_release()
887      to carry out the stores.  Please note that it is -not- sufficient
888      to use barrier() at beginning of each leg of the "if" statement
889      because, as shown by the example above, optimizing compilers can
890      destroy the control dependency while respecting the letter of the
891      barrier() law.
892
893  (*) Control dependencies require at least one run-time conditional
894      between the prior load and the subsequent store, and this
895      conditional must involve the prior load.  If the compiler is able
896      to optimize the conditional away, it will have also optimized
897      away the ordering.  Careful use of READ_ONCE() and WRITE_ONCE()
898      can help to preserve the needed conditional.
899
900  (*) Control dependencies require that the compiler avoid reordering the
901      dependency into nonexistence.  Careful use of READ_ONCE() or
902      atomic{,64}_read() can help to preserve your control dependency.
903      Please see the COMPILER BARRIER section for more information.
904
905  (*) Control dependencies apply only to the then-clause and else-clause
906      of the if-statement containing the control dependency, including
907      any functions that these two clauses call.  Control dependencies
908      do -not- apply to code following the if-statement containing the
909      control dependency.
910
911  (*) Control dependencies pair normally with other types of barriers.
912
913  (*) Control dependencies do -not- provide multicopy atomicity.  If you
914      need all the CPUs to see a given store at the same time, use smp_mb().
915
916  (*) Compilers do not understand control dependencies.  It is therefore
917      your job to ensure that they do not break your code.
918
919
920SMP BARRIER PAIRING
921-------------------
922
923When dealing with CPU-CPU interactions, certain types of memory barrier should
924always be paired.  A lack of appropriate pairing is almost certainly an error.
925
926General barriers pair with each other, though they also pair with most
927other types of barriers, albeit without multicopy atomicity.  An acquire
928barrier pairs with a release barrier, but both may also pair with other
929barriers, including of course general barriers.  A write barrier pairs
930with a data dependency barrier, a control dependency, an acquire barrier,
931a release barrier, a read barrier, or a general barrier.  Similarly a
932read barrier, control dependency, or a data dependency barrier pairs
933with a write barrier, an acquire barrier, a release barrier, or a
934general barrier:
935
936	CPU 1		      CPU 2
937	===============	      ===============
938	WRITE_ONCE(a, 1);
939	<write barrier>
940	WRITE_ONCE(b, 2);     x = READ_ONCE(b);
941			      <read barrier>
942			      y = READ_ONCE(a);
943
944Or:
945
946	CPU 1		      CPU 2
947	===============	      ===============================
948	a = 1;
949	<write barrier>
950	WRITE_ONCE(b, &a);    x = READ_ONCE(b);
951			      <data dependency barrier>
952			      y = *x;
953
954Or even:
955
956	CPU 1		      CPU 2
957	===============	      ===============================
958	r1 = READ_ONCE(y);
959	<general barrier>
960	WRITE_ONCE(x, 1);     if (r2 = READ_ONCE(x)) {
961			         <implicit control dependency>
962			         WRITE_ONCE(y, 1);
963			      }
964
965	assert(r1 == 0 || r2 == 0);
966
967Basically, the read barrier always has to be there, even though it can be of
968the "weaker" type.
969
970[!] Note that the stores before the write barrier would normally be expected to
971match the loads after the read barrier or the data dependency barrier, and vice
972versa:
973
974	CPU 1                               CPU 2
975	===================                 ===================
976	WRITE_ONCE(a, 1);    }----   --->{  v = READ_ONCE(c);
977	WRITE_ONCE(b, 2);    }    \ /    {  w = READ_ONCE(d);
978	<write barrier>            \        <read barrier>
979	WRITE_ONCE(c, 3);    }    / \    {  x = READ_ONCE(a);
980	WRITE_ONCE(d, 4);    }----   --->{  y = READ_ONCE(b);
981
982
983EXAMPLES OF MEMORY BARRIER SEQUENCES
984------------------------------------
985
986Firstly, write barriers act as partial orderings on store operations.
987Consider the following sequence of events:
988
989	CPU 1
990	=======================
991	STORE A = 1
992	STORE B = 2
993	STORE C = 3
994	<write barrier>
995	STORE D = 4
996	STORE E = 5
997
998This sequence of events is committed to the memory coherence system in an order
999that the rest of the system might perceive as the unordered set of { STORE A,
1000STORE B, STORE C } all occurring before the unordered set of { STORE D, STORE E
1001}:
1002
1003	+-------+       :      :
1004	|       |       +------+
1005	|       |------>| C=3  |     }     /\
1006	|       |  :    +------+     }-----  \  -----> Events perceptible to
1007	|       |  :    | A=1  |     }        \/       the rest of the system
1008	|       |  :    +------+     }
1009	| CPU 1 |  :    | B=2  |     }
1010	|       |       +------+     }
1011	|       |   wwwwwwwwwwwwwwww }   <--- At this point the write barrier
1012	|       |       +------+     }        requires all stores prior to the
1013	|       |  :    | E=5  |     }        barrier to be committed before
1014	|       |  :    +------+     }        further stores may take place
1015	|       |------>| D=4  |     }
1016	|       |       +------+
1017	+-------+       :      :
1018	                   |
1019	                   | Sequence in which stores are committed to the
1020	                   | memory system by CPU 1
1021	                   V
1022
1023
1024Secondly, data dependency barriers act as partial orderings on data-dependent
1025loads.  Consider the following sequence of events:
1026
1027	CPU 1			CPU 2
1028	=======================	=======================
1029		{ B = 7; X = 9; Y = 8; C = &Y }
1030	STORE A = 1
1031	STORE B = 2
1032	<write barrier>
1033	STORE C = &B		LOAD X
1034	STORE D = 4		LOAD C (gets &B)
1035				LOAD *C (reads B)
1036
1037Without intervention, CPU 2 may perceive the events on CPU 1 in some
1038effectively random order, despite the write barrier issued by CPU 1:
1039
1040	+-------+       :      :                :       :
1041	|       |       +------+                +-------+  | Sequence of update
1042	|       |------>| B=2  |-----       --->| Y->8  |  | of perception on
1043	|       |  :    +------+     \          +-------+  | CPU 2
1044	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |  V
1045	|       |       +------+       |        +-------+
1046	|       |   wwwwwwwwwwwwwwww   |        :       :
1047	|       |       +------+       |        :       :
1048	|       |  :    | C=&B |---    |        :       :       +-------+
1049	|       |  :    +------+   \   |        +-------+       |       |
1050	|       |------>| D=4  |    ----------->| C->&B |------>|       |
1051	|       |       +------+       |        +-------+       |       |
1052	+-------+       :      :       |        :       :       |       |
1053	                               |        :       :       |       |
1054	                               |        :       :       | CPU 2 |
1055	                               |        +-------+       |       |
1056	    Apparently incorrect --->  |        | B->7  |------>|       |
1057	    perception of B (!)        |        +-------+       |       |
1058	                               |        :       :       |       |
1059	                               |        +-------+       |       |
1060	    The load of X holds --->    \       | X->9  |------>|       |
1061	    up the maintenance           \      +-------+       |       |
1062	    of coherence of B             ----->| B->2  |       +-------+
1063	                                        +-------+
1064	                                        :       :
1065
1066
1067In the above example, CPU 2 perceives that B is 7, despite the load of *C
1068(which would be B) coming after the LOAD of C.
1069
1070If, however, a data dependency barrier were to be placed between the load of C
1071and the load of *C (ie: B) on CPU 2:
1072
1073	CPU 1			CPU 2
1074	=======================	=======================
1075		{ B = 7; X = 9; Y = 8; C = &Y }
1076	STORE A = 1
1077	STORE B = 2
1078	<write barrier>
1079	STORE C = &B		LOAD X
1080	STORE D = 4		LOAD C (gets &B)
1081				<data dependency barrier>
1082				LOAD *C (reads B)
1083
1084then the following will occur:
1085
1086	+-------+       :      :                :       :
1087	|       |       +------+                +-------+
1088	|       |------>| B=2  |-----       --->| Y->8  |
1089	|       |  :    +------+     \          +-------+
1090	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |
1091	|       |       +------+       |        +-------+
1092	|       |   wwwwwwwwwwwwwwww   |        :       :
1093	|       |       +------+       |        :       :
1094	|       |  :    | C=&B |---    |        :       :       +-------+
1095	|       |  :    +------+   \   |        +-------+       |       |
1096	|       |------>| D=4  |    ----------->| C->&B |------>|       |
1097	|       |       +------+       |        +-------+       |       |
1098	+-------+       :      :       |        :       :       |       |
1099	                               |        :       :       |       |
1100	                               |        :       :       | CPU 2 |
1101	                               |        +-------+       |       |
1102	                               |        | X->9  |------>|       |
1103	                               |        +-------+       |       |
1104	  Makes sure all effects --->   \   ddddddddddddddddd   |       |
1105	  prior to the store of C        \      +-------+       |       |
1106	  are perceptible to              ----->| B->2  |------>|       |
1107	  subsequent loads                      +-------+       |       |
1108	                                        :       :       +-------+
1109
1110
1111And thirdly, a read barrier acts as a partial order on loads.  Consider the
1112following sequence of events:
1113
1114	CPU 1			CPU 2
1115	=======================	=======================
1116		{ A = 0, B = 9 }
1117	STORE A=1
1118	<write barrier>
1119	STORE B=2
1120				LOAD B
1121				LOAD A
1122
1123Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
1124some effectively random order, despite the write barrier issued by CPU 1:
1125
1126	+-------+       :      :                :       :
1127	|       |       +------+                +-------+
1128	|       |------>| A=1  |------      --->| A->0  |
1129	|       |       +------+      \         +-------+
1130	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1131	|       |       +------+        |       +-------+
1132	|       |------>| B=2  |---     |       :       :
1133	|       |       +------+   \    |       :       :       +-------+
1134	+-------+       :      :    \   |       +-------+       |       |
1135	                             ---------->| B->2  |------>|       |
1136	                                |       +-------+       | CPU 2 |
1137	                                |       | A->0  |------>|       |
1138	                                |       +-------+       |       |
1139	                                |       :       :       +-------+
1140	                                 \      :       :
1141	                                  \     +-------+
1142	                                   ---->| A->1  |
1143	                                        +-------+
1144	                                        :       :
1145
1146
1147If, however, a read barrier were to be placed between the load of B and the
1148load of A on CPU 2:
1149
1150	CPU 1			CPU 2
1151	=======================	=======================
1152		{ A = 0, B = 9 }
1153	STORE A=1
1154	<write barrier>
1155	STORE B=2
1156				LOAD B
1157				<read barrier>
1158				LOAD A
1159
1160then the partial ordering imposed by CPU 1 will be perceived correctly by CPU
11612:
1162
1163	+-------+       :      :                :       :
1164	|       |       +------+                +-------+
1165	|       |------>| A=1  |------      --->| A->0  |
1166	|       |       +------+      \         +-------+
1167	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1168	|       |       +------+        |       +-------+
1169	|       |------>| B=2  |---     |       :       :
1170	|       |       +------+   \    |       :       :       +-------+
1171	+-------+       :      :    \   |       +-------+       |       |
1172	                             ---------->| B->2  |------>|       |
1173	                                |       +-------+       | CPU 2 |
1174	                                |       :       :       |       |
1175	                                |       :       :       |       |
1176	  At this point the read ---->   \  rrrrrrrrrrrrrrrrr   |       |
1177	  barrier causes all effects      \     +-------+       |       |
1178	  prior to the storage of B        ---->| A->1  |------>|       |
1179	  to be perceptible to CPU 2            +-------+       |       |
1180	                                        :       :       +-------+
1181
1182
1183To illustrate this more completely, consider what could happen if the code
1184contained a load of A either side of the read barrier:
1185
1186	CPU 1			CPU 2
1187	=======================	=======================
1188		{ A = 0, B = 9 }
1189	STORE A=1
1190	<write barrier>
1191	STORE B=2
1192				LOAD B
1193				LOAD A [first load of A]
1194				<read barrier>
1195				LOAD A [second load of A]
1196
1197Even though the two loads of A both occur after the load of B, they may both
1198come up with different values:
1199
1200	+-------+       :      :                :       :
1201	|       |       +------+                +-------+
1202	|       |------>| A=1  |------      --->| A->0  |
1203	|       |       +------+      \         +-------+
1204	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1205	|       |       +------+        |       +-------+
1206	|       |------>| B=2  |---     |       :       :
1207	|       |       +------+   \    |       :       :       +-------+
1208	+-------+       :      :    \   |       +-------+       |       |
1209	                             ---------->| B->2  |------>|       |
1210	                                |       +-------+       | CPU 2 |
1211	                                |       :       :       |       |
1212	                                |       :       :       |       |
1213	                                |       +-------+       |       |
1214	                                |       | A->0  |------>| 1st   |
1215	                                |       +-------+       |       |
1216	  At this point the read ---->   \  rrrrrrrrrrrrrrrrr   |       |
1217	  barrier causes all effects      \     +-------+       |       |
1218	  prior to the storage of B        ---->| A->1  |------>| 2nd   |
1219	  to be perceptible to CPU 2            +-------+       |       |
1220	                                        :       :       +-------+
1221
1222
1223But it may be that the update to A from CPU 1 becomes perceptible to CPU 2
1224before the read barrier completes anyway:
1225
1226	+-------+       :      :                :       :
1227	|       |       +------+                +-------+
1228	|       |------>| A=1  |------      --->| A->0  |
1229	|       |       +------+      \         +-------+
1230	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1231	|       |       +------+        |       +-------+
1232	|       |------>| B=2  |---     |       :       :
1233	|       |       +------+   \    |       :       :       +-------+
1234	+-------+       :      :    \   |       +-------+       |       |
1235	                             ---------->| B->2  |------>|       |
1236	                                |       +-------+       | CPU 2 |
1237	                                |       :       :       |       |
1238	                                 \      :       :       |       |
1239	                                  \     +-------+       |       |
1240	                                   ---->| A->1  |------>| 1st   |
1241	                                        +-------+       |       |
1242	                                    rrrrrrrrrrrrrrrrr   |       |
1243	                                        +-------+       |       |
1244	                                        | A->1  |------>| 2nd   |
1245	                                        +-------+       |       |
1246	                                        :       :       +-------+
1247
1248
1249The guarantee is that the second load will always come up with A == 1 if the
1250load of B came up with B == 2.  No such guarantee exists for the first load of
1251A; that may come up with either A == 0 or A == 1.
1252
1253
1254READ MEMORY BARRIERS VS LOAD SPECULATION
1255----------------------------------------
1256
1257Many CPUs speculate with loads: that is they see that they will need to load an
1258item from memory, and they find a time where they're not using the bus for any
1259other loads, and so do the load in advance - even though they haven't actually
1260got to that point in the instruction execution flow yet.  This permits the
1261actual load instruction to potentially complete immediately because the CPU
1262already has the value to hand.
1263
1264It may turn out that the CPU didn't actually need the value - perhaps because a
1265branch circumvented the load - in which case it can discard the value or just
1266cache it for later use.
1267
1268Consider:
1269
1270	CPU 1			CPU 2
1271	=======================	=======================
1272				LOAD B
1273				DIVIDE		} Divide instructions generally
1274				DIVIDE		} take a long time to perform
1275				LOAD A
1276
1277Which might appear as this:
1278
1279	                                        :       :       +-------+
1280	                                        +-------+       |       |
1281	                                    --->| B->2  |------>|       |
1282	                                        +-------+       | CPU 2 |
1283	                                        :       :DIVIDE |       |
1284	                                        +-------+       |       |
1285	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1286	division speculates on the              +-------+   ~   |       |
1287	LOAD of A                               :       :   ~   |       |
1288	                                        :       :DIVIDE |       |
1289	                                        :       :   ~   |       |
1290	Once the divisions are complete -->     :       :   ~-->|       |
1291	the CPU can then perform the            :       :       |       |
1292	LOAD with immediate effect              :       :       +-------+
1293
1294
1295Placing a read barrier or a data dependency barrier just before the second
1296load:
1297
1298	CPU 1			CPU 2
1299	=======================	=======================
1300				LOAD B
1301				DIVIDE
1302				DIVIDE
1303				<read barrier>
1304				LOAD A
1305
1306will force any value speculatively obtained to be reconsidered to an extent
1307dependent on the type of barrier used.  If there was no change made to the
1308speculated memory location, then the speculated value will just be used:
1309
1310	                                        :       :       +-------+
1311	                                        +-------+       |       |
1312	                                    --->| B->2  |------>|       |
1313	                                        +-------+       | CPU 2 |
1314	                                        :       :DIVIDE |       |
1315	                                        +-------+       |       |
1316	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1317	division speculates on the              +-------+   ~   |       |
1318	LOAD of A                               :       :   ~   |       |
1319	                                        :       :DIVIDE |       |
1320	                                        :       :   ~   |       |
1321	                                        :       :   ~   |       |
1322	                                    rrrrrrrrrrrrrrrr~   |       |
1323	                                        :       :   ~   |       |
1324	                                        :       :   ~-->|       |
1325	                                        :       :       |       |
1326	                                        :       :       +-------+
1327
1328
1329but if there was an update or an invalidation from another CPU pending, then
1330the speculation will be cancelled and the value reloaded:
1331
1332	                                        :       :       +-------+
1333	                                        +-------+       |       |
1334	                                    --->| B->2  |------>|       |
1335	                                        +-------+       | CPU 2 |
1336	                                        :       :DIVIDE |       |
1337	                                        +-------+       |       |
1338	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1339	division speculates on the              +-------+   ~   |       |
1340	LOAD of A                               :       :   ~   |       |
1341	                                        :       :DIVIDE |       |
1342	                                        :       :   ~   |       |
1343	                                        :       :   ~   |       |
1344	                                    rrrrrrrrrrrrrrrrr   |       |
1345	                                        +-------+       |       |
1346	The speculation is discarded --->   --->| A->1  |------>|       |
1347	and an updated value is                 +-------+       |       |
1348	retrieved                               :       :       +-------+
1349
1350
1351MULTICOPY ATOMICITY
1352--------------------
1353
1354Multicopy atomicity is a deeply intuitive notion about ordering that is
1355not always provided by real computer systems, namely that a given store
1356becomes visible at the same time to all CPUs, or, alternatively, that all
1357CPUs agree on the order in which all stores become visible.  However,
1358support of full multicopy atomicity would rule out valuable hardware
1359optimizations, so a weaker form called ``other multicopy atomicity''
1360instead guarantees only that a given store becomes visible at the same
1361time to all -other- CPUs.  The remainder of this document discusses this
1362weaker form, but for brevity will call it simply ``multicopy atomicity''.
1363
1364The following example demonstrates multicopy atomicity:
1365
1366	CPU 1			CPU 2			CPU 3
1367	=======================	=======================	=======================
1368		{ X = 0, Y = 0 }
1369	STORE X=1		r1=LOAD X (reads 1)	LOAD Y (reads 1)
1370				<general barrier>	<read barrier>
1371				STORE Y=r1		LOAD X
1372
1373Suppose that CPU 2's load from X returns 1, which it then stores to Y,
1374and CPU 3's load from Y returns 1.  This indicates that CPU 1's store
1375to X precedes CPU 2's load from X and that CPU 2's store to Y precedes
1376CPU 3's load from Y.  In addition, the memory barriers guarantee that
1377CPU 2 executes its load before its store, and CPU 3 loads from Y before
1378it loads from X.  The question is then "Can CPU 3's load from X return 0?"
1379
1380Because CPU 3's load from X in some sense comes after CPU 2's load, it
1381is natural to expect that CPU 3's load from X must therefore return 1.
1382This expectation follows from multicopy atomicity: if a load executing
1383on CPU B follows a load from the same variable executing on CPU A (and
1384CPU A did not originally store the value which it read), then on
1385multicopy-atomic systems, CPU B's load must return either the same value
1386that CPU A's load did or some later value.  However, the Linux kernel
1387does not require systems to be multicopy atomic.
1388
1389The use of a general memory barrier in the example above compensates
1390for any lack of multicopy atomicity.  In the example, if CPU 2's load
1391from X returns 1 and CPU 3's load from Y returns 1, then CPU 3's load
1392from X must indeed also return 1.
1393
1394However, dependencies, read barriers, and write barriers are not always
1395able to compensate for non-multicopy atomicity.  For example, suppose
1396that CPU 2's general barrier is removed from the above example, leaving
1397only the data dependency shown below:
1398
1399	CPU 1			CPU 2			CPU 3
1400	=======================	=======================	=======================
1401		{ X = 0, Y = 0 }
1402	STORE X=1		r1=LOAD X (reads 1)	LOAD Y (reads 1)
1403				<data dependency>	<read barrier>
1404				STORE Y=r1		LOAD X (reads 0)
1405
1406This substitution allows non-multicopy atomicity to run rampant: in
1407this example, it is perfectly legal for CPU 2's load from X to return 1,
1408CPU 3's load from Y to return 1, and its load from X to return 0.
1409
1410The key point is that although CPU 2's data dependency orders its load
1411and store, it does not guarantee to order CPU 1's store.  Thus, if this
1412example runs on a non-multicopy-atomic system where CPUs 1 and 2 share a
1413store buffer or a level of cache, CPU 2 might have early access to CPU 1's
1414writes.  General barriers are therefore required to ensure that all CPUs
1415agree on the combined order of multiple accesses.
1416
1417General barriers can compensate not only for non-multicopy atomicity,
1418but can also generate additional ordering that can ensure that -all-
1419CPUs will perceive the same order of -all- operations.  In contrast, a
1420chain of release-acquire pairs do not provide this additional ordering,
1421which means that only those CPUs on the chain are guaranteed to agree
1422on the combined order of the accesses.  For example, switching to C code
1423in deference to the ghost of Herman Hollerith:
1424
1425	int u, v, x, y, z;
1426
1427	void cpu0(void)
1428	{
1429		r0 = smp_load_acquire(&x);
1430		WRITE_ONCE(u, 1);
1431		smp_store_release(&y, 1);
1432	}
1433
1434	void cpu1(void)
1435	{
1436		r1 = smp_load_acquire(&y);
1437		r4 = READ_ONCE(v);
1438		r5 = READ_ONCE(u);
1439		smp_store_release(&z, 1);
1440	}
1441
1442	void cpu2(void)
1443	{
1444		r2 = smp_load_acquire(&z);
1445		smp_store_release(&x, 1);
1446	}
1447
1448	void cpu3(void)
1449	{
1450		WRITE_ONCE(v, 1);
1451		smp_mb();
1452		r3 = READ_ONCE(u);
1453	}
1454
1455Because cpu0(), cpu1(), and cpu2() participate in a chain of
1456smp_store_release()/smp_load_acquire() pairs, the following outcome
1457is prohibited:
1458
1459	r0 == 1 && r1 == 1 && r2 == 1
1460
1461Furthermore, because of the release-acquire relationship between cpu0()
1462and cpu1(), cpu1() must see cpu0()'s writes, so that the following
1463outcome is prohibited:
1464
1465	r1 == 1 && r5 == 0
1466
1467However, the ordering provided by a release-acquire chain is local
1468to the CPUs participating in that chain and does not apply to cpu3(),
1469at least aside from stores.  Therefore, the following outcome is possible:
1470
1471	r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0
1472
1473As an aside, the following outcome is also possible:
1474
1475	r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1
1476
1477Although cpu0(), cpu1(), and cpu2() will see their respective reads and
1478writes in order, CPUs not involved in the release-acquire chain might
1479well disagree on the order.  This disagreement stems from the fact that
1480the weak memory-barrier instructions used to implement smp_load_acquire()
1481and smp_store_release() are not required to order prior stores against
1482subsequent loads in all cases.  This means that cpu3() can see cpu0()'s
1483store to u as happening -after- cpu1()'s load from v, even though
1484both cpu0() and cpu1() agree that these two operations occurred in the
1485intended order.
1486
1487However, please keep in mind that smp_load_acquire() is not magic.
1488In particular, it simply reads from its argument with ordering.  It does
1489-not- ensure that any particular value will be read.  Therefore, the
1490following outcome is possible:
1491
1492	r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0
1493
1494Note that this outcome can happen even on a mythical sequentially
1495consistent system where nothing is ever reordered.
1496
1497To reiterate, if your code requires full ordering of all operations,
1498use general barriers throughout.
1499
1500
1501========================
1502EXPLICIT KERNEL BARRIERS
1503========================
1504
1505The Linux kernel has a variety of different barriers that act at different
1506levels:
1507
1508  (*) Compiler barrier.
1509
1510  (*) CPU memory barriers.
1511
1512
1513COMPILER BARRIER
1514----------------
1515
1516The Linux kernel has an explicit compiler barrier function that prevents the
1517compiler from moving the memory accesses either side of it to the other side:
1518
1519	barrier();
1520
1521This is a general barrier -- there are no read-read or write-write
1522variants of barrier().  However, READ_ONCE() and WRITE_ONCE() can be
1523thought of as weak forms of barrier() that affect only the specific
1524accesses flagged by the READ_ONCE() or WRITE_ONCE().
1525
1526The barrier() function has the following effects:
1527
1528 (*) Prevents the compiler from reordering accesses following the
1529     barrier() to precede any accesses preceding the barrier().
1530     One example use for this property is to ease communication between
1531     interrupt-handler code and the code that was interrupted.
1532
1533 (*) Within a loop, forces the compiler to load the variables used
1534     in that loop's conditional on each pass through that loop.
1535
1536The READ_ONCE() and WRITE_ONCE() functions can prevent any number of
1537optimizations that, while perfectly safe in single-threaded code, can
1538be fatal in concurrent code.  Here are some examples of these sorts
1539of optimizations:
1540
1541 (*) The compiler is within its rights to reorder loads and stores
1542     to the same variable, and in some cases, the CPU is within its
1543     rights to reorder loads to the same variable.  This means that
1544     the following code:
1545
1546	a[0] = x;
1547	a[1] = x;
1548
1549     Might result in an older value of x stored in a[1] than in a[0].
1550     Prevent both the compiler and the CPU from doing this as follows:
1551
1552	a[0] = READ_ONCE(x);
1553	a[1] = READ_ONCE(x);
1554
1555     In short, READ_ONCE() and WRITE_ONCE() provide cache coherence for
1556     accesses from multiple CPUs to a single variable.
1557
1558 (*) The compiler is within its rights to merge successive loads from
1559     the same variable.  Such merging can cause the compiler to "optimize"
1560     the following code:
1561
1562	while (tmp = a)
1563		do_something_with(tmp);
1564
1565     into the following code, which, although in some sense legitimate
1566     for single-threaded code, is almost certainly not what the developer
1567     intended:
1568
1569	if (tmp = a)
1570		for (;;)
1571			do_something_with(tmp);
1572
1573     Use READ_ONCE() to prevent the compiler from doing this to you:
1574
1575	while (tmp = READ_ONCE(a))
1576		do_something_with(tmp);
1577
1578 (*) The compiler is within its rights to reload a variable, for example,
1579     in cases where high register pressure prevents the compiler from
1580     keeping all data of interest in registers.  The compiler might
1581     therefore optimize the variable 'tmp' out of our previous example:
1582
1583	while (tmp = a)
1584		do_something_with(tmp);
1585
1586     This could result in the following code, which is perfectly safe in
1587     single-threaded code, but can be fatal in concurrent code:
1588
1589	while (a)
1590		do_something_with(a);
1591
1592     For example, the optimized version of this code could result in
1593     passing a zero to do_something_with() in the case where the variable
1594     a was modified by some other CPU between the "while" statement and
1595     the call to do_something_with().
1596
1597     Again, use READ_ONCE() to prevent the compiler from doing this:
1598
1599	while (tmp = READ_ONCE(a))
1600		do_something_with(tmp);
1601
1602     Note that if the compiler runs short of registers, it might save
1603     tmp onto the stack.  The overhead of this saving and later restoring
1604     is why compilers reload variables.  Doing so is perfectly safe for
1605     single-threaded code, so you need to tell the compiler about cases
1606     where it is not safe.
1607
1608 (*) The compiler is within its rights to omit a load entirely if it knows
1609     what the value will be.  For example, if the compiler can prove that
1610     the value of variable 'a' is always zero, it can optimize this code:
1611
1612	while (tmp = a)
1613		do_something_with(tmp);
1614
1615     Into this:
1616
1617	do { } while (0);
1618
1619     This transformation is a win for single-threaded code because it
1620     gets rid of a load and a branch.  The problem is that the compiler
1621     will carry out its proof assuming that the current CPU is the only
1622     one updating variable 'a'.  If variable 'a' is shared, then the
1623     compiler's proof will be erroneous.  Use READ_ONCE() to tell the
1624     compiler that it doesn't know as much as it thinks it does:
1625
1626	while (tmp = READ_ONCE(a))
1627		do_something_with(tmp);
1628
1629     But please note that the compiler is also closely watching what you
1630     do with the value after the READ_ONCE().  For example, suppose you
1631     do the following and MAX is a preprocessor macro with the value 1:
1632
1633	while ((tmp = READ_ONCE(a)) % MAX)
1634		do_something_with(tmp);
1635
1636     Then the compiler knows that the result of the "%" operator applied
1637     to MAX will always be zero, again allowing the compiler to optimize
1638     the code into near-nonexistence.  (It will still load from the
1639     variable 'a'.)
1640
1641 (*) Similarly, the compiler is within its rights to omit a store entirely
1642     if it knows that the variable already has the value being stored.
1643     Again, the compiler assumes that the current CPU is the only one
1644     storing into the variable, which can cause the compiler to do the
1645     wrong thing for shared variables.  For example, suppose you have
1646     the following:
1647
1648	a = 0;
1649	... Code that does not store to variable a ...
1650	a = 0;
1651
1652     The compiler sees that the value of variable 'a' is already zero, so
1653     it might well omit the second store.  This would come as a fatal
1654     surprise if some other CPU might have stored to variable 'a' in the
1655     meantime.
1656
1657     Use WRITE_ONCE() to prevent the compiler from making this sort of
1658     wrong guess:
1659
1660	WRITE_ONCE(a, 0);
1661	... Code that does not store to variable a ...
1662	WRITE_ONCE(a, 0);
1663
1664 (*) The compiler is within its rights to reorder memory accesses unless
1665     you tell it not to.  For example, consider the following interaction
1666     between process-level code and an interrupt handler:
1667
1668	void process_level(void)
1669	{
1670		msg = get_message();
1671		flag = true;
1672	}
1673
1674	void interrupt_handler(void)
1675	{
1676		if (flag)
1677			process_message(msg);
1678	}
1679
1680     There is nothing to prevent the compiler from transforming
1681     process_level() to the following, in fact, this might well be a
1682     win for single-threaded code:
1683
1684	void process_level(void)
1685	{
1686		flag = true;
1687		msg = get_message();
1688	}
1689
1690     If the interrupt occurs between these two statement, then
1691     interrupt_handler() might be passed a garbled msg.  Use WRITE_ONCE()
1692     to prevent this as follows:
1693
1694	void process_level(void)
1695	{
1696		WRITE_ONCE(msg, get_message());
1697		WRITE_ONCE(flag, true);
1698	}
1699
1700	void interrupt_handler(void)
1701	{
1702		if (READ_ONCE(flag))
1703			process_message(READ_ONCE(msg));
1704	}
1705
1706     Note that the READ_ONCE() and WRITE_ONCE() wrappers in
1707     interrupt_handler() are needed if this interrupt handler can itself
1708     be interrupted by something that also accesses 'flag' and 'msg',
1709     for example, a nested interrupt or an NMI.  Otherwise, READ_ONCE()
1710     and WRITE_ONCE() are not needed in interrupt_handler() other than
1711     for documentation purposes.  (Note also that nested interrupts
1712     do not typically occur in modern Linux kernels, in fact, if an
1713     interrupt handler returns with interrupts enabled, you will get a
1714     WARN_ONCE() splat.)
1715
1716     You should assume that the compiler can move READ_ONCE() and
1717     WRITE_ONCE() past code not containing READ_ONCE(), WRITE_ONCE(),
1718     barrier(), or similar primitives.
1719
1720     This effect could also be achieved using barrier(), but READ_ONCE()
1721     and WRITE_ONCE() are more selective:  With READ_ONCE() and
1722     WRITE_ONCE(), the compiler need only forget the contents of the
1723     indicated memory locations, while with barrier() the compiler must
1724     discard the value of all memory locations that it has currently
1725     cached in any machine registers.  Of course, the compiler must also
1726     respect the order in which the READ_ONCE()s and WRITE_ONCE()s occur,
1727     though the CPU of course need not do so.
1728
1729 (*) The compiler is within its rights to invent stores to a variable,
1730     as in the following example:
1731
1732	if (a)
1733		b = a;
1734	else
1735		b = 42;
1736
1737     The compiler might save a branch by optimizing this as follows:
1738
1739	b = 42;
1740	if (a)
1741		b = a;
1742
1743     In single-threaded code, this is not only safe, but also saves
1744     a branch.  Unfortunately, in concurrent code, this optimization
1745     could cause some other CPU to see a spurious value of 42 -- even
1746     if variable 'a' was never zero -- when loading variable 'b'.
1747     Use WRITE_ONCE() to prevent this as follows:
1748
1749	if (a)
1750		WRITE_ONCE(b, a);
1751	else
1752		WRITE_ONCE(b, 42);
1753
1754     The compiler can also invent loads.  These are usually less
1755     damaging, but they can result in cache-line bouncing and thus in
1756     poor performance and scalability.  Use READ_ONCE() to prevent
1757     invented loads.
1758
1759 (*) For aligned memory locations whose size allows them to be accessed
1760     with a single memory-reference instruction, prevents "load tearing"
1761     and "store tearing," in which a single large access is replaced by
1762     multiple smaller accesses.  For example, given an architecture having
1763     16-bit store instructions with 7-bit immediate fields, the compiler
1764     might be tempted to use two 16-bit store-immediate instructions to
1765     implement the following 32-bit store:
1766
1767	p = 0x00010002;
1768
1769     Please note that GCC really does use this sort of optimization,
1770     which is not surprising given that it would likely take more
1771     than two instructions to build the constant and then store it.
1772     This optimization can therefore be a win in single-threaded code.
1773     In fact, a recent bug (since fixed) caused GCC to incorrectly use
1774     this optimization in a volatile store.  In the absence of such bugs,
1775     use of WRITE_ONCE() prevents store tearing in the following example:
1776
1777	WRITE_ONCE(p, 0x00010002);
1778
1779     Use of packed structures can also result in load and store tearing,
1780     as in this example:
1781
1782	struct __attribute__((__packed__)) foo {
1783		short a;
1784		int b;
1785		short c;
1786	};
1787	struct foo foo1, foo2;
1788	...
1789
1790	foo2.a = foo1.a;
1791	foo2.b = foo1.b;
1792	foo2.c = foo1.c;
1793
1794     Because there are no READ_ONCE() or WRITE_ONCE() wrappers and no
1795     volatile markings, the compiler would be well within its rights to
1796     implement these three assignment statements as a pair of 32-bit
1797     loads followed by a pair of 32-bit stores.  This would result in
1798     load tearing on 'foo1.b' and store tearing on 'foo2.b'.  READ_ONCE()
1799     and WRITE_ONCE() again prevent tearing in this example:
1800
1801	foo2.a = foo1.a;
1802	WRITE_ONCE(foo2.b, READ_ONCE(foo1.b));
1803	foo2.c = foo1.c;
1804
1805All that aside, it is never necessary to use READ_ONCE() and
1806WRITE_ONCE() on a variable that has been marked volatile.  For example,
1807because 'jiffies' is marked volatile, it is never necessary to
1808say READ_ONCE(jiffies).  The reason for this is that READ_ONCE() and
1809WRITE_ONCE() are implemented as volatile casts, which has no effect when
1810its argument is already marked volatile.
1811
1812Please note that these compiler barriers have no direct effect on the CPU,
1813which may then reorder things however it wishes.
1814
1815
1816CPU MEMORY BARRIERS
1817-------------------
1818
1819The Linux kernel has eight basic CPU memory barriers:
1820
1821	TYPE		MANDATORY		SMP CONDITIONAL
1822	===============	=======================	===========================
1823	GENERAL		mb()			smp_mb()
1824	WRITE		wmb()			smp_wmb()
1825	READ		rmb()			smp_rmb()
1826	DATA DEPENDENCY				READ_ONCE()
1827
1828
1829All memory barriers except the data dependency barriers imply a compiler
1830barrier.  Data dependencies do not impose any additional compiler ordering.
1831
1832Aside: In the case of data dependencies, the compiler would be expected
1833to issue the loads in the correct order (eg. `a[b]` would have to load
1834the value of b before loading a[b]), however there is no guarantee in
1835the C specification that the compiler may not speculate the value of b
1836(eg. is equal to 1) and load a[b] before b (eg. tmp = a[1]; if (b != 1)
1837tmp = a[b]; ).  There is also the problem of a compiler reloading b after
1838having loaded a[b], thus having a newer copy of b than a[b].  A consensus
1839has not yet been reached about these problems, however the READ_ONCE()
1840macro is a good place to start looking.
1841
1842SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
1843systems because it is assumed that a CPU will appear to be self-consistent,
1844and will order overlapping accesses correctly with respect to itself.
1845However, see the subsection on "Virtual Machine Guests" below.
1846
1847[!] Note that SMP memory barriers _must_ be used to control the ordering of
1848references to shared memory on SMP systems, though the use of locking instead
1849is sufficient.
1850
1851Mandatory barriers should not be used to control SMP effects, since mandatory
1852barriers impose unnecessary overhead on both SMP and UP systems. They may,
1853however, be used to control MMIO effects on accesses through relaxed memory I/O
1854windows.  These barriers are required even on non-SMP systems as they affect
1855the order in which memory operations appear to a device by prohibiting both the
1856compiler and the CPU from reordering them.
1857
1858
1859There are some more advanced barrier functions:
1860
1861 (*) smp_store_mb(var, value)
1862
1863     This assigns the value to the variable and then inserts a full memory
1864     barrier after it.  It isn't guaranteed to insert anything more than a
1865     compiler barrier in a UP compilation.
1866
1867
1868 (*) smp_mb__before_atomic();
1869 (*) smp_mb__after_atomic();
1870
1871     These are for use with atomic RMW functions that do not imply memory
1872     barriers, but where the code needs a memory barrier. Examples for atomic
1873     RMW functions that do not imply a memory barrier are e.g. add,
1874     subtract, (failed) conditional operations, _relaxed functions,
1875     but not atomic_read or atomic_set. A common example where a memory
1876     barrier may be required is when atomic ops are used for reference
1877     counting.
1878
1879     These are also used for atomic RMW bitop functions that do not imply a
1880     memory barrier (such as set_bit and clear_bit).
1881
1882     As an example, consider a piece of code that marks an object as being dead
1883     and then decrements the object's reference count:
1884
1885	obj->dead = 1;
1886	smp_mb__before_atomic();
1887	atomic_dec(&obj->ref_count);
1888
1889     This makes sure that the death mark on the object is perceived to be set
1890     *before* the reference counter is decremented.
1891
1892     See Documentation/atomic_{t,bitops}.txt for more information.
1893
1894
1895 (*) dma_wmb();
1896 (*) dma_rmb();
1897
1898     These are for use with consistent memory to guarantee the ordering
1899     of writes or reads of shared memory accessible to both the CPU and a
1900     DMA capable device.
1901
1902     For example, consider a device driver that shares memory with a device
1903     and uses a descriptor status value to indicate if the descriptor belongs
1904     to the device or the CPU, and a doorbell to notify it when new
1905     descriptors are available:
1906
1907	if (desc->status != DEVICE_OWN) {
1908		/* do not read data until we own descriptor */
1909		dma_rmb();
1910
1911		/* read/modify data */
1912		read_data = desc->data;
1913		desc->data = write_data;
1914
1915		/* flush modifications before status update */
1916		dma_wmb();
1917
1918		/* assign ownership */
1919		desc->status = DEVICE_OWN;
1920
1921		/* notify device of new descriptors */
1922		writel(DESC_NOTIFY, doorbell);
1923	}
1924
1925     The dma_rmb() allows us guarantee the device has released ownership
1926     before we read the data from the descriptor, and the dma_wmb() allows
1927     us to guarantee the data is written to the descriptor before the device
1928     can see it now has ownership.  Note that, when using writel(), a prior
1929     wmb() is not needed to guarantee that the cache coherent memory writes
1930     have completed before writing to the MMIO region.  The cheaper
1931     writel_relaxed() does not provide this guarantee and must not be used
1932     here.
1933
1934     See the subsection "Kernel I/O barrier effects" for more information on
1935     relaxed I/O accessors and the Documentation/core-api/dma-api.rst file for
1936     more information on consistent memory.
1937
1938 (*) pmem_wmb();
1939
1940     This is for use with persistent memory to ensure that stores for which
1941     modifications are written to persistent storage reached a platform
1942     durability domain.
1943
1944     For example, after a non-temporal write to pmem region, we use pmem_wmb()
1945     to ensure that stores have reached a platform durability domain. This ensures
1946     that stores have updated persistent storage before any data access or
1947     data transfer caused by subsequent instructions is initiated. This is
1948     in addition to the ordering done by wmb().
1949
1950     For load from persistent memory, existing read memory barriers are sufficient
1951     to ensure read ordering.
1952
1953 (*) io_stop_wc();
1954
1955     For memory accesses with write-combining attributes (e.g. those returned
1956     by ioremap_wc(), the CPU may wait for prior accesses to be merged with
1957     subsequent ones. io_stop_wc() can be used to prevent the merging of
1958     write-combining memory accesses before this macro with those after it when
1959     such wait has performance implications.
1960
1961===============================
1962IMPLICIT KERNEL MEMORY BARRIERS
1963===============================
1964
1965Some of the other functions in the linux kernel imply memory barriers, amongst
1966which are locking and scheduling functions.
1967
1968This specification is a _minimum_ guarantee; any particular architecture may
1969provide more substantial guarantees, but these may not be relied upon outside
1970of arch specific code.
1971
1972
1973LOCK ACQUISITION FUNCTIONS
1974--------------------------
1975
1976The Linux kernel has a number of locking constructs:
1977
1978 (*) spin locks
1979 (*) R/W spin locks
1980 (*) mutexes
1981 (*) semaphores
1982 (*) R/W semaphores
1983
1984In all cases there are variants on "ACQUIRE" operations and "RELEASE" operations
1985for each construct.  These operations all imply certain barriers:
1986
1987 (1) ACQUIRE operation implication:
1988
1989     Memory operations issued after the ACQUIRE will be completed after the
1990     ACQUIRE operation has completed.
1991
1992     Memory operations issued before the ACQUIRE may be completed after
1993     the ACQUIRE operation has completed.
1994
1995 (2) RELEASE operation implication:
1996
1997     Memory operations issued before the RELEASE will be completed before the
1998     RELEASE operation has completed.
1999
2000     Memory operations issued after the RELEASE may be completed before the
2001     RELEASE operation has completed.
2002
2003 (3) ACQUIRE vs ACQUIRE implication:
2004
2005     All ACQUIRE operations issued before another ACQUIRE operation will be
2006     completed before that ACQUIRE operation.
2007
2008 (4) ACQUIRE vs RELEASE implication:
2009
2010     All ACQUIRE operations issued before a RELEASE operation will be
2011     completed before the RELEASE operation.
2012
2013 (5) Failed conditional ACQUIRE implication:
2014
2015     Certain locking variants of the ACQUIRE operation may fail, either due to
2016     being unable to get the lock immediately, or due to receiving an unblocked
2017     signal while asleep waiting for the lock to become available.  Failed
2018     locks do not imply any sort of barrier.
2019
2020[!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only
2021one-way barriers is that the effects of instructions outside of a critical
2022section may seep into the inside of the critical section.
2023
2024An ACQUIRE followed by a RELEASE may not be assumed to be full memory barrier
2025because it is possible for an access preceding the ACQUIRE to happen after the
2026ACQUIRE, and an access following the RELEASE to happen before the RELEASE, and
2027the two accesses can themselves then cross:
2028
2029	*A = a;
2030	ACQUIRE M
2031	RELEASE M
2032	*B = b;
2033
2034may occur as:
2035
2036	ACQUIRE M, STORE *B, STORE *A, RELEASE M
2037
2038When the ACQUIRE and RELEASE are a lock acquisition and release,
2039respectively, this same reordering can occur if the lock's ACQUIRE and
2040RELEASE are to the same lock variable, but only from the perspective of
2041another CPU not holding that lock.  In short, a ACQUIRE followed by an
2042RELEASE may -not- be assumed to be a full memory barrier.
2043
2044Similarly, the reverse case of a RELEASE followed by an ACQUIRE does
2045not imply a full memory barrier.  Therefore, the CPU's execution of the
2046critical sections corresponding to the RELEASE and the ACQUIRE can cross,
2047so that:
2048
2049	*A = a;
2050	RELEASE M
2051	ACQUIRE N
2052	*B = b;
2053
2054could occur as:
2055
2056	ACQUIRE N, STORE *B, STORE *A, RELEASE M
2057
2058It might appear that this reordering could introduce a deadlock.
2059However, this cannot happen because if such a deadlock threatened,
2060the RELEASE would simply complete, thereby avoiding the deadlock.
2061
2062	Why does this work?
2063
2064	One key point is that we are only talking about the CPU doing
2065	the reordering, not the compiler.  If the compiler (or, for
2066	that matter, the developer) switched the operations, deadlock
2067	-could- occur.
2068
2069	But suppose the CPU reordered the operations.  In this case,
2070	the unlock precedes the lock in the assembly code.  The CPU
2071	simply elected to try executing the later lock operation first.
2072	If there is a deadlock, this lock operation will simply spin (or
2073	try to sleep, but more on that later).	The CPU will eventually
2074	execute the unlock operation (which preceded the lock operation
2075	in the assembly code), which will unravel the potential deadlock,
2076	allowing the lock operation to succeed.
2077
2078	But what if the lock is a sleeplock?  In that case, the code will
2079	try to enter the scheduler, where it will eventually encounter
2080	a memory barrier, which will force the earlier unlock operation
2081	to complete, again unraveling the deadlock.  There might be
2082	a sleep-unlock race, but the locking primitive needs to resolve
2083	such races properly in any case.
2084
2085Locks and semaphores may not provide any guarantee of ordering on UP compiled
2086systems, and so cannot be counted on in such a situation to actually achieve
2087anything at all - especially with respect to I/O accesses - unless combined
2088with interrupt disabling operations.
2089
2090See also the section on "Inter-CPU acquiring barrier effects".
2091
2092
2093As an example, consider the following:
2094
2095	*A = a;
2096	*B = b;
2097	ACQUIRE
2098	*C = c;
2099	*D = d;
2100	RELEASE
2101	*E = e;
2102	*F = f;
2103
2104The following sequence of events is acceptable:
2105
2106	ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE
2107
2108	[+] Note that {*F,*A} indicates a combined access.
2109
2110But none of the following are:
2111
2112	{*F,*A}, *B,	ACQUIRE, *C, *D,	RELEASE, *E
2113	*A, *B, *C,	ACQUIRE, *D,		RELEASE, *E, *F
2114	*A, *B,		ACQUIRE, *C,		RELEASE, *D, *E, *F
2115	*B,		ACQUIRE, *C, *D,	RELEASE, {*F,*A}, *E
2116
2117
2118
2119INTERRUPT DISABLING FUNCTIONS
2120-----------------------------
2121
2122Functions that disable interrupts (ACQUIRE equivalent) and enable interrupts
2123(RELEASE equivalent) will act as compiler barriers only.  So if memory or I/O
2124barriers are required in such a situation, they must be provided from some
2125other means.
2126
2127
2128SLEEP AND WAKE-UP FUNCTIONS
2129---------------------------
2130
2131Sleeping and waking on an event flagged in global data can be viewed as an
2132interaction between two pieces of data: the task state of the task waiting for
2133the event and the global data used to indicate the event.  To make sure that
2134these appear to happen in the right order, the primitives to begin the process
2135of going to sleep, and the primitives to initiate a wake up imply certain
2136barriers.
2137
2138Firstly, the sleeper normally follows something like this sequence of events:
2139
2140	for (;;) {
2141		set_current_state(TASK_UNINTERRUPTIBLE);
2142		if (event_indicated)
2143			break;
2144		schedule();
2145	}
2146
2147A general memory barrier is interpolated automatically by set_current_state()
2148after it has altered the task state:
2149
2150	CPU 1
2151	===============================
2152	set_current_state();
2153	  smp_store_mb();
2154	    STORE current->state
2155	    <general barrier>
2156	LOAD event_indicated
2157
2158set_current_state() may be wrapped by:
2159
2160	prepare_to_wait();
2161	prepare_to_wait_exclusive();
2162
2163which therefore also imply a general memory barrier after setting the state.
2164The whole sequence above is available in various canned forms, all of which
2165interpolate the memory barrier in the right place:
2166
2167	wait_event();
2168	wait_event_interruptible();
2169	wait_event_interruptible_exclusive();
2170	wait_event_interruptible_timeout();
2171	wait_event_killable();
2172	wait_event_timeout();
2173	wait_on_bit();
2174	wait_on_bit_lock();
2175
2176
2177Secondly, code that performs a wake up normally follows something like this:
2178
2179	event_indicated = 1;
2180	wake_up(&event_wait_queue);
2181
2182or:
2183
2184	event_indicated = 1;
2185	wake_up_process(event_daemon);
2186
2187A general memory barrier is executed by wake_up() if it wakes something up.
2188If it doesn't wake anything up then a memory barrier may or may not be
2189executed; you must not rely on it.  The barrier occurs before the task state
2190is accessed, in particular, it sits between the STORE to indicate the event
2191and the STORE to set TASK_RUNNING:
2192
2193	CPU 1 (Sleeper)			CPU 2 (Waker)
2194	===============================	===============================
2195	set_current_state();		STORE event_indicated
2196	  smp_store_mb();		wake_up();
2197	    STORE current->state	  ...
2198	    <general barrier>		  <general barrier>
2199	LOAD event_indicated		  if ((LOAD task->state) & TASK_NORMAL)
2200					    STORE task->state
2201
2202where "task" is the thread being woken up and it equals CPU 1's "current".
2203
2204To repeat, a general memory barrier is guaranteed to be executed by wake_up()
2205if something is actually awakened, but otherwise there is no such guarantee.
2206To see this, consider the following sequence of events, where X and Y are both
2207initially zero:
2208
2209	CPU 1				CPU 2
2210	===============================	===============================
2211	X = 1;				Y = 1;
2212	smp_mb();			wake_up();
2213	LOAD Y				LOAD X
2214
2215If a wakeup does occur, one (at least) of the two loads must see 1.  If, on
2216the other hand, a wakeup does not occur, both loads might see 0.
2217
2218wake_up_process() always executes a general memory barrier.  The barrier again
2219occurs before the task state is accessed.  In particular, if the wake_up() in
2220the previous snippet were replaced by a call to wake_up_process() then one of
2221the two loads would be guaranteed to see 1.
2222
2223The available waker functions include:
2224
2225	complete();
2226	wake_up();
2227	wake_up_all();
2228	wake_up_bit();
2229	wake_up_interruptible();
2230	wake_up_interruptible_all();
2231	wake_up_interruptible_nr();
2232	wake_up_interruptible_poll();
2233	wake_up_interruptible_sync();
2234	wake_up_interruptible_sync_poll();
2235	wake_up_locked();
2236	wake_up_locked_poll();
2237	wake_up_nr();
2238	wake_up_poll();
2239	wake_up_process();
2240
2241In terms of memory ordering, these functions all provide the same guarantees of
2242a wake_up() (or stronger).
2243
2244[!] Note that the memory barriers implied by the sleeper and the waker do _not_
2245order multiple stores before the wake-up with respect to loads of those stored
2246values after the sleeper has called set_current_state().  For instance, if the
2247sleeper does:
2248
2249	set_current_state(TASK_INTERRUPTIBLE);
2250	if (event_indicated)
2251		break;
2252	__set_current_state(TASK_RUNNING);
2253	do_something(my_data);
2254
2255and the waker does:
2256
2257	my_data = value;
2258	event_indicated = 1;
2259	wake_up(&event_wait_queue);
2260
2261there's no guarantee that the change to event_indicated will be perceived by
2262the sleeper as coming after the change to my_data.  In such a circumstance, the
2263code on both sides must interpolate its own memory barriers between the
2264separate data accesses.  Thus the above sleeper ought to do:
2265
2266	set_current_state(TASK_INTERRUPTIBLE);
2267	if (event_indicated) {
2268		smp_rmb();
2269		do_something(my_data);
2270	}
2271
2272and the waker should do:
2273
2274	my_data = value;
2275	smp_wmb();
2276	event_indicated = 1;
2277	wake_up(&event_wait_queue);
2278
2279
2280MISCELLANEOUS FUNCTIONS
2281-----------------------
2282
2283Other functions that imply barriers:
2284
2285 (*) schedule() and similar imply full memory barriers.
2286
2287
2288===================================
2289INTER-CPU ACQUIRING BARRIER EFFECTS
2290===================================
2291
2292On SMP systems locking primitives give a more substantial form of barrier: one
2293that does affect memory access ordering on other CPUs, within the context of
2294conflict on any particular lock.
2295
2296
2297ACQUIRES VS MEMORY ACCESSES
2298---------------------------
2299
2300Consider the following: the system has a pair of spinlocks (M) and (Q), and
2301three CPUs; then should the following sequence of events occur:
2302
2303	CPU 1				CPU 2
2304	===============================	===============================
2305	WRITE_ONCE(*A, a);		WRITE_ONCE(*E, e);
2306	ACQUIRE M			ACQUIRE Q
2307	WRITE_ONCE(*B, b);		WRITE_ONCE(*F, f);
2308	WRITE_ONCE(*C, c);		WRITE_ONCE(*G, g);
2309	RELEASE M			RELEASE Q
2310	WRITE_ONCE(*D, d);		WRITE_ONCE(*H, h);
2311
2312Then there is no guarantee as to what order CPU 3 will see the accesses to *A
2313through *H occur in, other than the constraints imposed by the separate locks
2314on the separate CPUs.  It might, for example, see:
2315
2316	*E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M
2317
2318But it won't see any of:
2319
2320	*B, *C or *D preceding ACQUIRE M
2321	*A, *B or *C following RELEASE M
2322	*F, *G or *H preceding ACQUIRE Q
2323	*E, *F or *G following RELEASE Q
2324
2325
2326=================================
2327WHERE ARE MEMORY BARRIERS NEEDED?
2328=================================
2329
2330Under normal operation, memory operation reordering is generally not going to
2331be a problem as a single-threaded linear piece of code will still appear to
2332work correctly, even if it's in an SMP kernel.  There are, however, four
2333circumstances in which reordering definitely _could_ be a problem:
2334
2335 (*) Interprocessor interaction.
2336
2337 (*) Atomic operations.
2338
2339 (*) Accessing devices.
2340
2341 (*) Interrupts.
2342
2343
2344INTERPROCESSOR INTERACTION
2345--------------------------
2346
2347When there's a system with more than one processor, more than one CPU in the
2348system may be working on the same data set at the same time.  This can cause
2349synchronisation problems, and the usual way of dealing with them is to use
2350locks.  Locks, however, are quite expensive, and so it may be preferable to
2351operate without the use of a lock if at all possible.  In such a case
2352operations that affect both CPUs may have to be carefully ordered to prevent
2353a malfunction.
2354
2355Consider, for example, the R/W semaphore slow path.  Here a waiting process is
2356queued on the semaphore, by virtue of it having a piece of its stack linked to
2357the semaphore's list of waiting processes:
2358
2359	struct rw_semaphore {
2360		...
2361		spinlock_t lock;
2362		struct list_head waiters;
2363	};
2364
2365	struct rwsem_waiter {
2366		struct list_head list;
2367		struct task_struct *task;
2368	};
2369
2370To wake up a particular waiter, the up_read() or up_write() functions have to:
2371
2372 (1) read the next pointer from this waiter's record to know as to where the
2373     next waiter record is;
2374
2375 (2) read the pointer to the waiter's task structure;
2376
2377 (3) clear the task pointer to tell the waiter it has been given the semaphore;
2378
2379 (4) call wake_up_process() on the task; and
2380
2381 (5) release the reference held on the waiter's task struct.
2382
2383In other words, it has to perform this sequence of events:
2384
2385	LOAD waiter->list.next;
2386	LOAD waiter->task;
2387	STORE waiter->task;
2388	CALL wakeup
2389	RELEASE task
2390
2391and if any of these steps occur out of order, then the whole thing may
2392malfunction.
2393
2394Once it has queued itself and dropped the semaphore lock, the waiter does not
2395get the lock again; it instead just waits for its task pointer to be cleared
2396before proceeding.  Since the record is on the waiter's stack, this means that
2397if the task pointer is cleared _before_ the next pointer in the list is read,
2398another CPU might start processing the waiter and might clobber the waiter's
2399stack before the up*() function has a chance to read the next pointer.
2400
2401Consider then what might happen to the above sequence of events:
2402
2403	CPU 1				CPU 2
2404	===============================	===============================
2405					down_xxx()
2406					Queue waiter
2407					Sleep
2408	up_yyy()
2409	LOAD waiter->task;
2410	STORE waiter->task;
2411					Woken up by other event
2412	<preempt>
2413					Resume processing
2414					down_xxx() returns
2415					call foo()
2416					foo() clobbers *waiter
2417	</preempt>
2418	LOAD waiter->list.next;
2419	--- OOPS ---
2420
2421This could be dealt with using the semaphore lock, but then the down_xxx()
2422function has to needlessly get the spinlock again after being woken up.
2423
2424The way to deal with this is to insert a general SMP memory barrier:
2425
2426	LOAD waiter->list.next;
2427	LOAD waiter->task;
2428	smp_mb();
2429	STORE waiter->task;
2430	CALL wakeup
2431	RELEASE task
2432
2433In this case, the barrier makes a guarantee that all memory accesses before the
2434barrier will appear to happen before all the memory accesses after the barrier
2435with respect to the other CPUs on the system.  It does _not_ guarantee that all
2436the memory accesses before the barrier will be complete by the time the barrier
2437instruction itself is complete.
2438
2439On a UP system - where this wouldn't be a problem - the smp_mb() is just a
2440compiler barrier, thus making sure the compiler emits the instructions in the
2441right order without actually intervening in the CPU.  Since there's only one
2442CPU, that CPU's dependency ordering logic will take care of everything else.
2443
2444
2445ATOMIC OPERATIONS
2446-----------------
2447
2448While they are technically interprocessor interaction considerations, atomic
2449operations are noted specially as some of them imply full memory barriers and
2450some don't, but they're very heavily relied on as a group throughout the
2451kernel.
2452
2453See Documentation/atomic_t.txt for more information.
2454
2455
2456ACCESSING DEVICES
2457-----------------
2458
2459Many devices can be memory mapped, and so appear to the CPU as if they're just
2460a set of memory locations.  To control such a device, the driver usually has to
2461make the right memory accesses in exactly the right order.
2462
2463However, having a clever CPU or a clever compiler creates a potential problem
2464in that the carefully sequenced accesses in the driver code won't reach the
2465device in the requisite order if the CPU or the compiler thinks it is more
2466efficient to reorder, combine or merge accesses - something that would cause
2467the device to malfunction.
2468
2469Inside of the Linux kernel, I/O should be done through the appropriate accessor
2470routines - such as inb() or writel() - which know how to make such accesses
2471appropriately sequential.  While this, for the most part, renders the explicit
2472use of memory barriers unnecessary, if the accessor functions are used to refer
2473to an I/O memory window with relaxed memory access properties, then _mandatory_
2474memory barriers are required to enforce ordering.
2475
2476See Documentation/driver-api/device-io.rst for more information.
2477
2478
2479INTERRUPTS
2480----------
2481
2482A driver may be interrupted by its own interrupt service routine, and thus the
2483two parts of the driver may interfere with each other's attempts to control or
2484access the device.
2485
2486This may be alleviated - at least in part - by disabling local interrupts (a
2487form of locking), such that the critical operations are all contained within
2488the interrupt-disabled section in the driver.  While the driver's interrupt
2489routine is executing, the driver's core may not run on the same CPU, and its
2490interrupt is not permitted to happen again until the current interrupt has been
2491handled, thus the interrupt handler does not need to lock against that.
2492
2493However, consider a driver that was talking to an ethernet card that sports an
2494address register and a data register.  If that driver's core talks to the card
2495under interrupt-disablement and then the driver's interrupt handler is invoked:
2496
2497	LOCAL IRQ DISABLE
2498	writew(ADDR, 3);
2499	writew(DATA, y);
2500	LOCAL IRQ ENABLE
2501	<interrupt>
2502	writew(ADDR, 4);
2503	q = readw(DATA);
2504	</interrupt>
2505
2506The store to the data register might happen after the second store to the
2507address register if ordering rules are sufficiently relaxed:
2508
2509	STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
2510
2511
2512If ordering rules are relaxed, it must be assumed that accesses done inside an
2513interrupt disabled section may leak outside of it and may interleave with
2514accesses performed in an interrupt - and vice versa - unless implicit or
2515explicit barriers are used.
2516
2517Normally this won't be a problem because the I/O accesses done inside such
2518sections will include synchronous load operations on strictly ordered I/O
2519registers that form implicit I/O barriers.
2520
2521
2522A similar situation may occur between an interrupt routine and two routines
2523running on separate CPUs that communicate with each other.  If such a case is
2524likely, then interrupt-disabling locks should be used to guarantee ordering.
2525
2526
2527==========================
2528KERNEL I/O BARRIER EFFECTS
2529==========================
2530
2531Interfacing with peripherals via I/O accesses is deeply architecture and device
2532specific. Therefore, drivers which are inherently non-portable may rely on
2533specific behaviours of their target systems in order to achieve synchronization
2534in the most lightweight manner possible. For drivers intending to be portable
2535between multiple architectures and bus implementations, the kernel offers a
2536series of accessor functions that provide various degrees of ordering
2537guarantees:
2538
2539 (*) readX(), writeX():
2540
2541	The readX() and writeX() MMIO accessors take a pointer to the
2542	peripheral being accessed as an __iomem * parameter. For pointers
2543	mapped with the default I/O attributes (e.g. those returned by
2544	ioremap()), the ordering guarantees are as follows:
2545
2546	1. All readX() and writeX() accesses to the same peripheral are ordered
2547	   with respect to each other. This ensures that MMIO register accesses
2548	   by the same CPU thread to a particular device will arrive in program
2549	   order.
2550
2551	2. A writeX() issued by a CPU thread holding a spinlock is ordered
2552	   before a writeX() to the same peripheral from another CPU thread
2553	   issued after a later acquisition of the same spinlock. This ensures
2554	   that MMIO register writes to a particular device issued while holding
2555	   a spinlock will arrive in an order consistent with acquisitions of
2556	   the lock.
2557
2558	3. A writeX() by a CPU thread to the peripheral will first wait for the
2559	   completion of all prior writes to memory either issued by, or
2560	   propagated to, the same thread. This ensures that writes by the CPU
2561	   to an outbound DMA buffer allocated by dma_alloc_coherent() will be
2562	   visible to a DMA engine when the CPU writes to its MMIO control
2563	   register to trigger the transfer.
2564
2565	4. A readX() by a CPU thread from the peripheral will complete before
2566	   any subsequent reads from memory by the same thread can begin. This
2567	   ensures that reads by the CPU from an incoming DMA buffer allocated
2568	   by dma_alloc_coherent() will not see stale data after reading from
2569	   the DMA engine's MMIO status register to establish that the DMA
2570	   transfer has completed.
2571
2572	5. A readX() by a CPU thread from the peripheral will complete before
2573	   any subsequent delay() loop can begin execution on the same thread.
2574	   This ensures that two MMIO register writes by the CPU to a peripheral
2575	   will arrive at least 1us apart if the first write is immediately read
2576	   back with readX() and udelay(1) is called prior to the second
2577	   writeX():
2578
2579		writel(42, DEVICE_REGISTER_0); // Arrives at the device...
2580		readl(DEVICE_REGISTER_0);
2581		udelay(1);
2582		writel(42, DEVICE_REGISTER_1); // ...at least 1us before this.
2583
2584	The ordering properties of __iomem pointers obtained with non-default
2585	attributes (e.g. those returned by ioremap_wc()) are specific to the
2586	underlying architecture and therefore the guarantees listed above cannot
2587	generally be relied upon for accesses to these types of mappings.
2588
2589 (*) readX_relaxed(), writeX_relaxed():
2590
2591	These are similar to readX() and writeX(), but provide weaker memory
2592	ordering guarantees. Specifically, they do not guarantee ordering with
2593	respect to locking, normal memory accesses or delay() loops (i.e.
2594	bullets 2-5 above) but they are still guaranteed to be ordered with
2595	respect to other accesses from the same CPU thread to the same
2596	peripheral when operating on __iomem pointers mapped with the default
2597	I/O attributes.
2598
2599 (*) readsX(), writesX():
2600
2601	The readsX() and writesX() MMIO accessors are designed for accessing
2602	register-based, memory-mapped FIFOs residing on peripherals that are not
2603	capable of performing DMA. Consequently, they provide only the ordering
2604	guarantees of readX_relaxed() and writeX_relaxed(), as documented above.
2605
2606 (*) inX(), outX():
2607
2608	The inX() and outX() accessors are intended to access legacy port-mapped
2609	I/O peripherals, which may require special instructions on some
2610	architectures (notably x86). The port number of the peripheral being
2611	accessed is passed as an argument.
2612
2613	Since many CPU architectures ultimately access these peripherals via an
2614	internal virtual memory mapping, the portable ordering guarantees
2615	provided by inX() and outX() are the same as those provided by readX()
2616	and writeX() respectively when accessing a mapping with the default I/O
2617	attributes.
2618
2619	Device drivers may expect outX() to emit a non-posted write transaction
2620	that waits for a completion response from the I/O peripheral before
2621	returning. This is not guaranteed by all architectures and is therefore
2622	not part of the portable ordering semantics.
2623
2624 (*) insX(), outsX():
2625
2626	As above, the insX() and outsX() accessors provide the same ordering
2627	guarantees as readsX() and writesX() respectively when accessing a
2628	mapping with the default I/O attributes.
2629
2630 (*) ioreadX(), iowriteX():
2631
2632	These will perform appropriately for the type of access they're actually
2633	doing, be it inX()/outX() or readX()/writeX().
2634
2635With the exception of the string accessors (insX(), outsX(), readsX() and
2636writesX()), all of the above assume that the underlying peripheral is
2637little-endian and will therefore perform byte-swapping operations on big-endian
2638architectures.
2639
2640
2641========================================
2642ASSUMED MINIMUM EXECUTION ORDERING MODEL
2643========================================
2644
2645It has to be assumed that the conceptual CPU is weakly-ordered but that it will
2646maintain the appearance of program causality with respect to itself.  Some CPUs
2647(such as i386 or x86_64) are more constrained than others (such as powerpc or
2648frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
2649of arch-specific code.
2650
2651This means that it must be considered that the CPU will execute its instruction
2652stream in any order it feels like - or even in parallel - provided that if an
2653instruction in the stream depends on an earlier instruction, then that
2654earlier instruction must be sufficiently complete[*] before the later
2655instruction may proceed; in other words: provided that the appearance of
2656causality is maintained.
2657
2658 [*] Some instructions have more than one effect - such as changing the
2659     condition codes, changing registers or changing memory - and different
2660     instructions may depend on different effects.
2661
2662A CPU may also discard any instruction sequence that winds up having no
2663ultimate effect.  For example, if two adjacent instructions both load an
2664immediate value into the same register, the first may be discarded.
2665
2666
2667Similarly, it has to be assumed that compiler might reorder the instruction
2668stream in any way it sees fit, again provided the appearance of causality is
2669maintained.
2670
2671
2672============================
2673THE EFFECTS OF THE CPU CACHE
2674============================
2675
2676The way cached memory operations are perceived across the system is affected to
2677a certain extent by the caches that lie between CPUs and memory, and by the
2678memory coherence system that maintains the consistency of state in the system.
2679
2680As far as the way a CPU interacts with another part of the system through the
2681caches goes, the memory system has to include the CPU's caches, and memory
2682barriers for the most part act at the interface between the CPU and its cache
2683(memory barriers logically act on the dotted line in the following diagram):
2684
2685	    <--- CPU --->         :       <----------- Memory ----------->
2686	                          :
2687	+--------+    +--------+  :   +--------+    +-----------+
2688	|        |    |        |  :   |        |    |           |    +--------+
2689	|  CPU   |    | Memory |  :   | CPU    |    |           |    |        |
2690	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
2691	|        |    | Queue  |  :   |        |    |           |--->| Memory |
2692	|        |    |        |  :   |        |    |           |    |        |
2693	+--------+    +--------+  :   +--------+    |           |    |        |
2694	                          :                 | Cache     |    +--------+
2695	                          :                 | Coherency |
2696	                          :                 | Mechanism |    +--------+
2697	+--------+    +--------+  :   +--------+    |           |    |	      |
2698	|        |    |        |  :   |        |    |           |    |        |
2699	|  CPU   |    | Memory |  :   | CPU    |    |           |--->| Device |
2700	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
2701	|        |    | Queue  |  :   |        |    |           |    |        |
2702	|        |    |        |  :   |        |    |           |    +--------+
2703	+--------+    +--------+  :   +--------+    +-----------+
2704	                          :
2705	                          :
2706
2707Although any particular load or store may not actually appear outside of the
2708CPU that issued it since it may have been satisfied within the CPU's own cache,
2709it will still appear as if the full memory access had taken place as far as the
2710other CPUs are concerned since the cache coherency mechanisms will migrate the
2711cacheline over to the accessing CPU and propagate the effects upon conflict.
2712
2713The CPU core may execute instructions in any order it deems fit, provided the
2714expected program causality appears to be maintained.  Some of the instructions
2715generate load and store operations which then go into the queue of memory
2716accesses to be performed.  The core may place these in the queue in any order
2717it wishes, and continue execution until it is forced to wait for an instruction
2718to complete.
2719
2720What memory barriers are concerned with is controlling the order in which
2721accesses cross from the CPU side of things to the memory side of things, and
2722the order in which the effects are perceived to happen by the other observers
2723in the system.
2724
2725[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
2726their own loads and stores as if they had happened in program order.
2727
2728[!] MMIO or other device accesses may bypass the cache system.  This depends on
2729the properties of the memory window through which devices are accessed and/or
2730the use of any special device communication instructions the CPU may have.
2731
2732
2733CACHE COHERENCY VS DMA
2734----------------------
2735
2736Not all systems maintain cache coherency with respect to devices doing DMA.  In
2737such cases, a device attempting DMA may obtain stale data from RAM because
2738dirty cache lines may be resident in the caches of various CPUs, and may not
2739have been written back to RAM yet.  To deal with this, the appropriate part of
2740the kernel must flush the overlapping bits of cache on each CPU (and maybe
2741invalidate them as well).
2742
2743In addition, the data DMA'd to RAM by a device may be overwritten by dirty
2744cache lines being written back to RAM from a CPU's cache after the device has
2745installed its own data, or cache lines present in the CPU's cache may simply
2746obscure the fact that RAM has been updated, until at such time as the cacheline
2747is discarded from the CPU's cache and reloaded.  To deal with this, the
2748appropriate part of the kernel must invalidate the overlapping bits of the
2749cache on each CPU.
2750
2751See Documentation/core-api/cachetlb.rst for more information on cache management.
2752
2753
2754CACHE COHERENCY VS MMIO
2755-----------------------
2756
2757Memory mapped I/O usually takes place through memory locations that are part of
2758a window in the CPU's memory space that has different properties assigned than
2759the usual RAM directed window.
2760
2761Amongst these properties is usually the fact that such accesses bypass the
2762caching entirely and go directly to the device buses.  This means MMIO accesses
2763may, in effect, overtake accesses to cached memory that were emitted earlier.
2764A memory barrier isn't sufficient in such a case, but rather the cache must be
2765flushed between the cached memory write and the MMIO access if the two are in
2766any way dependent.
2767
2768
2769=========================
2770THE THINGS CPUS GET UP TO
2771=========================
2772
2773A programmer might take it for granted that the CPU will perform memory
2774operations in exactly the order specified, so that if the CPU is, for example,
2775given the following piece of code to execute:
2776
2777	a = READ_ONCE(*A);
2778	WRITE_ONCE(*B, b);
2779	c = READ_ONCE(*C);
2780	d = READ_ONCE(*D);
2781	WRITE_ONCE(*E, e);
2782
2783they would then expect that the CPU will complete the memory operation for each
2784instruction before moving on to the next one, leading to a definite sequence of
2785operations as seen by external observers in the system:
2786
2787	LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
2788
2789
2790Reality is, of course, much messier.  With many CPUs and compilers, the above
2791assumption doesn't hold because:
2792
2793 (*) loads are more likely to need to be completed immediately to permit
2794     execution progress, whereas stores can often be deferred without a
2795     problem;
2796
2797 (*) loads may be done speculatively, and the result discarded should it prove
2798     to have been unnecessary;
2799
2800 (*) loads may be done speculatively, leading to the result having been fetched
2801     at the wrong time in the expected sequence of events;
2802
2803 (*) the order of the memory accesses may be rearranged to promote better use
2804     of the CPU buses and caches;
2805
2806 (*) loads and stores may be combined to improve performance when talking to
2807     memory or I/O hardware that can do batched accesses of adjacent locations,
2808     thus cutting down on transaction setup costs (memory and PCI devices may
2809     both be able to do this); and
2810
2811 (*) the CPU's data cache may affect the ordering, and while cache-coherency
2812     mechanisms may alleviate this - once the store has actually hit the cache
2813     - there's no guarantee that the coherency management will be propagated in
2814     order to other CPUs.
2815
2816So what another CPU, say, might actually observe from the above piece of code
2817is:
2818
2819	LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
2820
2821	(Where "LOAD {*C,*D}" is a combined load)
2822
2823
2824However, it is guaranteed that a CPU will be self-consistent: it will see its
2825_own_ accesses appear to be correctly ordered, without the need for a memory
2826barrier.  For instance with the following code:
2827
2828	U = READ_ONCE(*A);
2829	WRITE_ONCE(*A, V);
2830	WRITE_ONCE(*A, W);
2831	X = READ_ONCE(*A);
2832	WRITE_ONCE(*A, Y);
2833	Z = READ_ONCE(*A);
2834
2835and assuming no intervention by an external influence, it can be assumed that
2836the final result will appear to be:
2837
2838	U == the original value of *A
2839	X == W
2840	Z == Y
2841	*A == Y
2842
2843The code above may cause the CPU to generate the full sequence of memory
2844accesses:
2845
2846	U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A
2847
2848in that order, but, without intervention, the sequence may have almost any
2849combination of elements combined or discarded, provided the program's view
2850of the world remains consistent.  Note that READ_ONCE() and WRITE_ONCE()
2851are -not- optional in the above example, as there are architectures
2852where a given CPU might reorder successive loads to the same location.
2853On such architectures, READ_ONCE() and WRITE_ONCE() do whatever is
2854necessary to prevent this, for example, on Itanium the volatile casts
2855used by READ_ONCE() and WRITE_ONCE() cause GCC to emit the special ld.acq
2856and st.rel instructions (respectively) that prevent such reordering.
2857
2858The compiler may also combine, discard or defer elements of the sequence before
2859the CPU even sees them.
2860
2861For instance:
2862
2863	*A = V;
2864	*A = W;
2865
2866may be reduced to:
2867
2868	*A = W;
2869
2870since, without either a write barrier or an WRITE_ONCE(), it can be
2871assumed that the effect of the storage of V to *A is lost.  Similarly:
2872
2873	*A = Y;
2874	Z = *A;
2875
2876may, without a memory barrier or an READ_ONCE() and WRITE_ONCE(), be
2877reduced to:
2878
2879	*A = Y;
2880	Z = Y;
2881
2882and the LOAD operation never appear outside of the CPU.
2883
2884
2885AND THEN THERE'S THE ALPHA
2886--------------------------
2887
2888The DEC Alpha CPU is one of the most relaxed CPUs there is.  Not only that,
2889some versions of the Alpha CPU have a split data cache, permitting them to have
2890two semantically-related cache lines updated at separate times.  This is where
2891the data dependency barrier really becomes necessary as this synchronises both
2892caches with the memory coherence system, thus making it seem like pointer
2893changes vs new data occur in the right order.
2894
2895The Alpha defines the Linux kernel's memory model, although as of v4.15
2896the Linux kernel's addition of smp_mb() to READ_ONCE() on Alpha greatly
2897reduced its impact on the memory model.
2898
2899
2900VIRTUAL MACHINE GUESTS
2901----------------------
2902
2903Guests running within virtual machines might be affected by SMP effects even if
2904the guest itself is compiled without SMP support.  This is an artifact of
2905interfacing with an SMP host while running an UP kernel.  Using mandatory
2906barriers for this use-case would be possible but is often suboptimal.
2907
2908To handle this case optimally, low-level virt_mb() etc macros are available.
2909These have the same effect as smp_mb() etc when SMP is enabled, but generate
2910identical code for SMP and non-SMP systems.  For example, virtual machine guests
2911should use virt_mb() rather than smp_mb() when synchronizing against a
2912(possibly SMP) host.
2913
2914These are equivalent to smp_mb() etc counterparts in all other respects,
2915in particular, they do not control MMIO effects: to control
2916MMIO effects, use mandatory barriers.
2917
2918
2919============
2920EXAMPLE USES
2921============
2922
2923CIRCULAR BUFFERS
2924----------------
2925
2926Memory barriers can be used to implement circular buffering without the need
2927of a lock to serialise the producer with the consumer.  See:
2928
2929	Documentation/core-api/circular-buffers.rst
2930
2931for details.
2932
2933
2934==========
2935REFERENCES
2936==========
2937
2938Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
2939Digital Press)
2940	Chapter 5.2: Physical Address Space Characteristics
2941	Chapter 5.4: Caches and Write Buffers
2942	Chapter 5.5: Data Sharing
2943	Chapter 5.6: Read/Write Ordering
2944
2945AMD64 Architecture Programmer's Manual Volume 2: System Programming
2946	Chapter 7.1: Memory-Access Ordering
2947	Chapter 7.4: Buffering and Combining Memory Writes
2948
2949ARM Architecture Reference Manual (ARMv8, for ARMv8-A architecture profile)
2950	Chapter B2: The AArch64 Application Level Memory Model
2951
2952IA-32 Intel Architecture Software Developer's Manual, Volume 3:
2953System Programming Guide
2954	Chapter 7.1: Locked Atomic Operations
2955	Chapter 7.2: Memory Ordering
2956	Chapter 7.4: Serializing Instructions
2957
2958The SPARC Architecture Manual, Version 9
2959	Chapter 8: Memory Models
2960	Appendix D: Formal Specification of the Memory Models
2961	Appendix J: Programming with the Memory Models
2962
2963Storage in the PowerPC (Stone and Fitzgerald)
2964
2965UltraSPARC Programmer Reference Manual
2966	Chapter 5: Memory Accesses and Cacheability
2967	Chapter 15: Sparc-V9 Memory Models
2968
2969UltraSPARC III Cu User's Manual
2970	Chapter 9: Memory Models
2971
2972UltraSPARC IIIi Processor User's Manual
2973	Chapter 8: Memory Models
2974
2975UltraSPARC Architecture 2005
2976	Chapter 9: Memory
2977	Appendix D: Formal Specifications of the Memory Models
2978
2979UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
2980	Chapter 8: Memory Models
2981	Appendix F: Caches and Cache Coherency
2982
2983Solaris Internals, Core Kernel Architecture, p63-68:
2984	Chapter 3.3: Hardware Considerations for Locks and
2985			Synchronization
2986
2987Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
2988for Kernel Programmers:
2989	Chapter 13: Other Memory Models
2990
2991Intel Itanium Architecture Software Developer's Manual: Volume 1:
2992	Section 2.6: Speculation
2993	Section 4.4: Memory Access
2994