xref: /openbmc/linux/Documentation/gpu/drm-kms.rst (revision 965f22bc)
1=========================
2Kernel Mode Setting (KMS)
3=========================
4
5Drivers must initialize the mode setting core by calling
6:c:func:`drm_mode_config_init()` on the DRM device. The function
7initializes the :c:type:`struct drm_device <drm_device>`
8mode_config field and never fails. Once done, mode configuration must
9be setup by initializing the following fields.
10
11-  int min_width, min_height; int max_width, max_height;
12   Minimum and maximum width and height of the frame buffers in pixel
13   units.
14
15-  struct drm_mode_config_funcs \*funcs;
16   Mode setting functions.
17
18Overview
19========
20
21.. kernel-render:: DOT
22   :alt: KMS Display Pipeline
23   :caption: KMS Display Pipeline Overview
24
25   digraph "KMS" {
26      node [shape=box]
27
28      subgraph cluster_static {
29          style=dashed
30          label="Static Objects"
31
32          node [bgcolor=grey style=filled]
33          "drm_plane A" -> "drm_crtc"
34          "drm_plane B" -> "drm_crtc"
35          "drm_crtc" -> "drm_encoder A"
36          "drm_crtc" -> "drm_encoder B"
37      }
38
39      subgraph cluster_user_created {
40          style=dashed
41          label="Userspace-Created"
42
43          node [shape=oval]
44          "drm_framebuffer 1" -> "drm_plane A"
45          "drm_framebuffer 2" -> "drm_plane B"
46      }
47
48      subgraph cluster_connector {
49          style=dashed
50          label="Hotpluggable"
51
52          "drm_encoder A" -> "drm_connector A"
53          "drm_encoder B" -> "drm_connector B"
54      }
55   }
56
57The basic object structure KMS presents to userspace is fairly simple.
58Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
59see `Frame Buffer Abstraction`_) feed into planes. Planes are represented by
60:c:type:`struct drm_plane <drm_plane>`, see `Plane Abstraction`_ for more
61details. One or more (or even no) planes feed their pixel data into a CRTC
62(represented by :c:type:`struct drm_crtc <drm_crtc>`, see `CRTC Abstraction`_)
63for blending. The precise blending step is explained in more detail in `Plane
64Composition Properties`_ and related chapters.
65
66For the output routing the first step is encoders (represented by
67:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
68are really just internal artifacts of the helper libraries used to implement KMS
69drivers. Besides that they make it unecessarily more complicated for userspace
70to figure out which connections between a CRTC and a connector are possible, and
71what kind of cloning is supported, they serve no purpose in the userspace API.
72Unfortunately encoders have been exposed to userspace, hence can't remove them
73at this point.  Futhermore the exposed restrictions are often wrongly set by
74drivers, and in many cases not powerful enough to express the real restrictions.
75A CRTC can be connected to multiple encoders, and for an active CRTC there must
76be at least one encoder.
77
78The final, and real, endpoint in the display chain is the connector (represented
79by :c:type:`struct drm_connector <drm_connector>`, see `Connector
80Abstraction`_). Connectors can have different possible encoders, but the kernel
81driver selects which encoder to use for each connector. The use case is DVI,
82which could switch between an analog and a digital encoder. Encoders can also
83drive multiple different connectors. There is exactly one active connector for
84every active encoder.
85
86Internally the output pipeline is a bit more complex and matches today's
87hardware more closely:
88
89.. kernel-render:: DOT
90   :alt: KMS Output Pipeline
91   :caption: KMS Output Pipeline
92
93   digraph "Output Pipeline" {
94      node [shape=box]
95
96      subgraph {
97          "drm_crtc" [bgcolor=grey style=filled]
98      }
99
100      subgraph cluster_internal {
101          style=dashed
102          label="Internal Pipeline"
103          {
104              node [bgcolor=grey style=filled]
105              "drm_encoder A";
106              "drm_encoder B";
107              "drm_encoder C";
108          }
109
110          {
111              node [bgcolor=grey style=filled]
112              "drm_encoder B" -> "drm_bridge B"
113              "drm_encoder C" -> "drm_bridge C1"
114              "drm_bridge C1" -> "drm_bridge C2";
115          }
116      }
117
118      "drm_crtc" -> "drm_encoder A"
119      "drm_crtc" -> "drm_encoder B"
120      "drm_crtc" -> "drm_encoder C"
121
122
123      subgraph cluster_output {
124          style=dashed
125          label="Outputs"
126
127          "drm_encoder A" -> "drm_connector A";
128          "drm_bridge B" -> "drm_connector B";
129          "drm_bridge C2" -> "drm_connector C";
130
131          "drm_panel"
132      }
133   }
134
135Internally two additional helper objects come into play. First, to be able to
136share code for encoders (sometimes on the same SoC, sometimes off-chip) one or
137more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge
138<drm_bridge>`) can be linked to an encoder. This link is static and cannot be
139changed, which means the cross-bar (if there is any) needs to be mapped between
140the CRTC and any encoders. Often for drivers with bridges there's no code left
141at the encoder level. Atomic drivers can leave out all the encoder callbacks to
142essentially only leave a dummy routing object behind, which is needed for
143backwards compatibility since encoders are exposed to userspace.
144
145The second object is for panels, represented by :c:type:`struct drm_panel
146<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding
147point, but are generally linked to the driver private structure that embeds
148:c:type:`struct drm_connector <drm_connector>`.
149
150Note that currently the bridge chaining and interactions with connectors and
151panels are still in-flux and not really fully sorted out yet.
152
153KMS Core Structures and Functions
154=================================
155
156.. kernel-doc:: include/drm/drm_mode_config.h
157   :internal:
158
159.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c
160   :export:
161
162Modeset Base Object Abstraction
163===============================
164
165.. kernel-render:: DOT
166   :alt: Mode Objects and Properties
167   :caption: Mode Objects and Properties
168
169   digraph {
170      node [shape=box]
171
172      "drm_property A" -> "drm_mode_object A"
173      "drm_property A" -> "drm_mode_object B"
174      "drm_property B" -> "drm_mode_object A"
175   }
176
177The base structure for all KMS objects is :c:type:`struct drm_mode_object
178<drm_mode_object>`. One of the base services it provides is tracking properties,
179which are especially important for the atomic IOCTL (see `Atomic Mode
180Setting`_). The somewhat surprising part here is that properties are not
181directly instantiated on each object, but free-standing mode objects themselves,
182represented by :c:type:`struct drm_property <drm_property>`, which only specify
183the type and value range of a property. Any given property can be attached
184multiple times to different objects using :c:func:`drm_object_attach_property()
185<drm_object_attach_property>`.
186
187.. kernel-doc:: include/drm/drm_mode_object.h
188   :internal:
189
190.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
191   :export:
192
193Atomic Mode Setting
194===================
195
196
197.. kernel-render:: DOT
198   :alt: Mode Objects and Properties
199   :caption: Mode Objects and Properties
200
201   digraph {
202      node [shape=box]
203
204      subgraph cluster_state {
205          style=dashed
206          label="Free-standing state"
207
208          "drm_atomic_state" -> "duplicated drm_plane_state A"
209          "drm_atomic_state" -> "duplicated drm_plane_state B"
210          "drm_atomic_state" -> "duplicated drm_crtc_state"
211          "drm_atomic_state" -> "duplicated drm_connector_state"
212          "drm_atomic_state" -> "duplicated driver private state"
213      }
214
215      subgraph cluster_current {
216          style=dashed
217          label="Current state"
218
219          "drm_device" -> "drm_plane A"
220          "drm_device" -> "drm_plane B"
221          "drm_device" -> "drm_crtc"
222          "drm_device" -> "drm_connector"
223          "drm_device" -> "driver private object"
224
225          "drm_plane A" -> "drm_plane_state A"
226          "drm_plane B" -> "drm_plane_state B"
227          "drm_crtc" -> "drm_crtc_state"
228          "drm_connector" -> "drm_connector_state"
229          "driver private object" -> "driver private state"
230      }
231
232      "drm_atomic_state" -> "drm_device" [label="atomic_commit"]
233      "duplicated drm_plane_state A" -> "drm_device"[style=invis]
234   }
235
236Atomic provides transactional modeset (including planes) updates, but a
237bit differently from the usual transactional approach of try-commit and
238rollback:
239
240- Firstly, no hardware changes are allowed when the commit would fail. This
241  allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows
242  userspace to explore whether certain configurations would work or not.
243
244- This would still allow setting and rollback of just the software state,
245  simplifying conversion of existing drivers. But auditing drivers for
246  correctness of the atomic_check code becomes really hard with that: Rolling
247  back changes in data structures all over the place is hard to get right.
248
249- Lastly, for backwards compatibility and to support all use-cases, atomic
250  updates need to be incremental and be able to execute in parallel. Hardware
251  doesn't always allow it, but where possible plane updates on different CRTCs
252  should not interfere, and not get stalled due to output routing changing on
253  different CRTCs.
254
255Taken all together there's two consequences for the atomic design:
256
257- The overall state is split up into per-object state structures:
258  :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct
259  drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct
260  drm_connector_state <drm_connector_state>` for connectors. These are the only
261  objects with userspace-visible and settable state. For internal state drivers
262  can subclass these structures through embeddeding, or add entirely new state
263  structures for their globally shared hardware functions.
264
265- An atomic update is assembled and validated as an entirely free-standing pile
266  of structures within the :c:type:`drm_atomic_state <drm_atomic_state>`
267  container. Driver private state structures are also tracked in the same
268  structure; see the next chapter.  Only when a state is committed is it applied
269  to the driver and modeset objects. This way rolling back an update boils down
270  to releasing memory and unreferencing objects like framebuffers.
271
272Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed
273coverage of specific topics.
274
275Handling Driver Private State
276-----------------------------
277
278.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
279   :doc: handling driver private state
280
281Atomic Mode Setting Function Reference
282--------------------------------------
283
284.. kernel-doc:: include/drm/drm_atomic.h
285   :internal:
286
287.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
288   :export:
289
290.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
291   :internal:
292
293CRTC Abstraction
294================
295
296.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
297   :doc: overview
298
299CRTC Functions Reference
300--------------------------------
301
302.. kernel-doc:: include/drm/drm_crtc.h
303   :internal:
304
305.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
306   :export:
307
308Frame Buffer Abstraction
309========================
310
311.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
312   :doc: overview
313
314Frame Buffer Functions Reference
315--------------------------------
316
317.. kernel-doc:: include/drm/drm_framebuffer.h
318   :internal:
319
320.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
321   :export:
322
323DRM Format Handling
324===================
325
326.. kernel-doc:: include/drm/drm_fourcc.h
327   :internal:
328
329.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
330   :export:
331
332Dumb Buffer Objects
333===================
334
335.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c
336   :doc: overview
337
338Plane Abstraction
339=================
340
341.. kernel-doc:: drivers/gpu/drm/drm_plane.c
342   :doc: overview
343
344Plane Functions Reference
345-------------------------
346
347.. kernel-doc:: include/drm/drm_plane.h
348   :internal:
349
350.. kernel-doc:: drivers/gpu/drm/drm_plane.c
351   :export:
352
353Display Modes Function Reference
354================================
355
356.. kernel-doc:: include/drm/drm_modes.h
357   :internal:
358
359.. kernel-doc:: drivers/gpu/drm/drm_modes.c
360   :export:
361
362Connector Abstraction
363=====================
364
365.. kernel-doc:: drivers/gpu/drm/drm_connector.c
366   :doc: overview
367
368Connector Functions Reference
369-----------------------------
370
371.. kernel-doc:: include/drm/drm_connector.h
372   :internal:
373
374.. kernel-doc:: drivers/gpu/drm/drm_connector.c
375   :export:
376
377Writeback Connectors
378--------------------
379
380.. kernel-doc:: drivers/gpu/drm/drm_writeback.c
381  :doc: overview
382
383.. kernel-doc:: drivers/gpu/drm/drm_writeback.c
384  :export:
385
386Encoder Abstraction
387===================
388
389.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
390   :doc: overview
391
392Encoder Functions Reference
393---------------------------
394
395.. kernel-doc:: include/drm/drm_encoder.h
396   :internal:
397
398.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
399   :export:
400
401KMS Initialization and Cleanup
402==============================
403
404A KMS device is abstracted and exposed as a set of planes, CRTCs,
405encoders and connectors. KMS drivers must thus create and initialize all
406those objects at load time after initializing mode setting.
407
408CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
409--------------------------------------------
410
411A CRTC is an abstraction representing a part of the chip that contains a
412pointer to a scanout buffer. Therefore, the number of CRTCs available
413determines how many independent scanout buffers can be active at any
414given time. The CRTC structure contains several fields to support this:
415a pointer to some video memory (abstracted as a frame buffer object), a
416display mode, and an (x, y) offset into the video memory to support
417panning or configurations where one piece of video memory spans multiple
418CRTCs.
419
420CRTC Initialization
421~~~~~~~~~~~~~~~~~~~
422
423A KMS device must create and register at least one struct
424:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
425allocated and zeroed by the driver, possibly as part of a larger
426structure, and registered with a call to :c:func:`drm_crtc_init()`
427with a pointer to CRTC functions.
428
429
430Cleanup
431-------
432
433The DRM core manages its objects' lifetime. When an object is not needed
434anymore the core calls its destroy function, which must clean up and
435free every resource allocated for the object. Every
436:c:func:`drm_\*_init()` call must be matched with a corresponding
437:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
438(:c:func:`drm_crtc_cleanup()`), planes
439(:c:func:`drm_plane_cleanup()`), encoders
440(:c:func:`drm_encoder_cleanup()`) and connectors
441(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
442have been added to sysfs must be removed by a call to
443:c:func:`drm_connector_unregister()` before calling
444:c:func:`drm_connector_cleanup()`.
445
446Connectors state change detection must be cleanup up with a call to
447:c:func:`drm_kms_helper_poll_fini()`.
448
449Output discovery and initialization example
450-------------------------------------------
451
452.. code-block:: c
453
454    void intel_crt_init(struct drm_device *dev)
455    {
456        struct drm_connector *connector;
457        struct intel_output *intel_output;
458
459        intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
460        if (!intel_output)
461            return;
462
463        connector = &intel_output->base;
464        drm_connector_init(dev, &intel_output->base,
465                   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
466
467        drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
468                 DRM_MODE_ENCODER_DAC);
469
470        drm_connector_attach_encoder(&intel_output->base,
471                          &intel_output->enc);
472
473        /* Set up the DDC bus. */
474        intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
475        if (!intel_output->ddc_bus) {
476            dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
477                   "failed.\n");
478            return;
479        }
480
481        intel_output->type = INTEL_OUTPUT_ANALOG;
482        connector->interlace_allowed = 0;
483        connector->doublescan_allowed = 0;
484
485        drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
486        drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
487
488        drm_connector_register(connector);
489    }
490
491In the example above (taken from the i915 driver), a CRTC, connector and
492encoder combination is created. A device-specific i2c bus is also
493created for fetching EDID data and performing monitor detection. Once
494the process is complete, the new connector is registered with sysfs to
495make its properties available to applications.
496
497KMS Locking
498===========
499
500.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
501   :doc: kms locking
502
503.. kernel-doc:: include/drm/drm_modeset_lock.h
504   :internal:
505
506.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
507   :export:
508
509KMS Properties
510==============
511
512Property Types and Blob Property Support
513----------------------------------------
514
515.. kernel-doc:: drivers/gpu/drm/drm_property.c
516   :doc: overview
517
518.. kernel-doc:: include/drm/drm_property.h
519   :internal:
520
521.. kernel-doc:: drivers/gpu/drm/drm_property.c
522   :export:
523
524Standard Connector Properties
525-----------------------------
526
527.. kernel-doc:: drivers/gpu/drm/drm_connector.c
528   :doc: standard connector properties
529
530HDMI Specific Connector Properties
531----------------------------------
532
533.. kernel-doc:: drivers/gpu/drm/drm_connector.c
534   :doc: HDMI connector properties
535
536Plane Composition Properties
537----------------------------
538
539.. kernel-doc:: drivers/gpu/drm/drm_blend.c
540   :doc: overview
541
542.. kernel-doc:: drivers/gpu/drm/drm_blend.c
543   :export:
544
545Color Management Properties
546---------------------------
547
548.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
549   :doc: overview
550
551.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
552   :export:
553
554Tile Group Property
555-------------------
556
557.. kernel-doc:: drivers/gpu/drm/drm_connector.c
558   :doc: Tile group
559
560Explicit Fencing Properties
561---------------------------
562
563.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
564   :doc: explicit fencing properties
565
566Existing KMS Properties
567-----------------------
568
569The following table gives description of drm properties exposed by various
570modules/drivers. Because this table is very unwieldy, do not add any new
571properties here. Instead document them in a section above.
572
573.. csv-table::
574   :header-rows: 1
575   :file: kms-properties.csv
576
577Vertical Blanking
578=================
579
580.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
581   :doc: vblank handling
582
583Vertical Blanking and Interrupt Handling Functions Reference
584------------------------------------------------------------
585
586.. kernel-doc:: include/drm/drm_vblank.h
587   :internal:
588
589.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
590   :export:
591