xref: /openbmc/linux/Documentation/gpu/drm-kms.rst (revision 82df5b73)
1=========================
2Kernel Mode Setting (KMS)
3=========================
4
5Drivers must initialize the mode setting core by calling
6drmm_mode_config_init() on the DRM device. The function
7initializes the :c:type:`struct drm_device <drm_device>`
8mode_config field and never fails. Once done, mode configuration must
9be setup by initializing the following fields.
10
11-  int min_width, min_height; int max_width, max_height;
12   Minimum and maximum width and height of the frame buffers in pixel
13   units.
14
15-  struct drm_mode_config_funcs \*funcs;
16   Mode setting functions.
17
18Overview
19========
20
21.. kernel-render:: DOT
22   :alt: KMS Display Pipeline
23   :caption: KMS Display Pipeline Overview
24
25   digraph "KMS" {
26      node [shape=box]
27
28      subgraph cluster_static {
29          style=dashed
30          label="Static Objects"
31
32          node [bgcolor=grey style=filled]
33          "drm_plane A" -> "drm_crtc"
34          "drm_plane B" -> "drm_crtc"
35          "drm_crtc" -> "drm_encoder A"
36          "drm_crtc" -> "drm_encoder B"
37      }
38
39      subgraph cluster_user_created {
40          style=dashed
41          label="Userspace-Created"
42
43          node [shape=oval]
44          "drm_framebuffer 1" -> "drm_plane A"
45          "drm_framebuffer 2" -> "drm_plane B"
46      }
47
48      subgraph cluster_connector {
49          style=dashed
50          label="Hotpluggable"
51
52          "drm_encoder A" -> "drm_connector A"
53          "drm_encoder B" -> "drm_connector B"
54      }
55   }
56
57The basic object structure KMS presents to userspace is fairly simple.
58Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
59see `Frame Buffer Abstraction`_) feed into planes. Planes are represented by
60:c:type:`struct drm_plane <drm_plane>`, see `Plane Abstraction`_ for more
61details. One or more (or even no) planes feed their pixel data into a CRTC
62(represented by :c:type:`struct drm_crtc <drm_crtc>`, see `CRTC Abstraction`_)
63for blending. The precise blending step is explained in more detail in `Plane
64Composition Properties`_ and related chapters.
65
66For the output routing the first step is encoders (represented by
67:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
68are really just internal artifacts of the helper libraries used to implement KMS
69drivers. Besides that they make it unecessarily more complicated for userspace
70to figure out which connections between a CRTC and a connector are possible, and
71what kind of cloning is supported, they serve no purpose in the userspace API.
72Unfortunately encoders have been exposed to userspace, hence can't remove them
73at this point.  Futhermore the exposed restrictions are often wrongly set by
74drivers, and in many cases not powerful enough to express the real restrictions.
75A CRTC can be connected to multiple encoders, and for an active CRTC there must
76be at least one encoder.
77
78The final, and real, endpoint in the display chain is the connector (represented
79by :c:type:`struct drm_connector <drm_connector>`, see `Connector
80Abstraction`_). Connectors can have different possible encoders, but the kernel
81driver selects which encoder to use for each connector. The use case is DVI,
82which could switch between an analog and a digital encoder. Encoders can also
83drive multiple different connectors. There is exactly one active connector for
84every active encoder.
85
86Internally the output pipeline is a bit more complex and matches today's
87hardware more closely:
88
89.. kernel-render:: DOT
90   :alt: KMS Output Pipeline
91   :caption: KMS Output Pipeline
92
93   digraph "Output Pipeline" {
94      node [shape=box]
95
96      subgraph {
97          "drm_crtc" [bgcolor=grey style=filled]
98      }
99
100      subgraph cluster_internal {
101          style=dashed
102          label="Internal Pipeline"
103          {
104              node [bgcolor=grey style=filled]
105              "drm_encoder A";
106              "drm_encoder B";
107              "drm_encoder C";
108          }
109
110          {
111              node [bgcolor=grey style=filled]
112              "drm_encoder B" -> "drm_bridge B"
113              "drm_encoder C" -> "drm_bridge C1"
114              "drm_bridge C1" -> "drm_bridge C2";
115          }
116      }
117
118      "drm_crtc" -> "drm_encoder A"
119      "drm_crtc" -> "drm_encoder B"
120      "drm_crtc" -> "drm_encoder C"
121
122
123      subgraph cluster_output {
124          style=dashed
125          label="Outputs"
126
127          "drm_encoder A" -> "drm_connector A";
128          "drm_bridge B" -> "drm_connector B";
129          "drm_bridge C2" -> "drm_connector C";
130
131          "drm_panel"
132      }
133   }
134
135Internally two additional helper objects come into play. First, to be able to
136share code for encoders (sometimes on the same SoC, sometimes off-chip) one or
137more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge
138<drm_bridge>`) can be linked to an encoder. This link is static and cannot be
139changed, which means the cross-bar (if there is any) needs to be mapped between
140the CRTC and any encoders. Often for drivers with bridges there's no code left
141at the encoder level. Atomic drivers can leave out all the encoder callbacks to
142essentially only leave a dummy routing object behind, which is needed for
143backwards compatibility since encoders are exposed to userspace.
144
145The second object is for panels, represented by :c:type:`struct drm_panel
146<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding
147point, but are generally linked to the driver private structure that embeds
148:c:type:`struct drm_connector <drm_connector>`.
149
150Note that currently the bridge chaining and interactions with connectors and
151panels are still in-flux and not really fully sorted out yet.
152
153KMS Core Structures and Functions
154=================================
155
156.. kernel-doc:: include/drm/drm_mode_config.h
157   :internal:
158
159.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c
160   :export:
161
162Modeset Base Object Abstraction
163===============================
164
165.. kernel-render:: DOT
166   :alt: Mode Objects and Properties
167   :caption: Mode Objects and Properties
168
169   digraph {
170      node [shape=box]
171
172      "drm_property A" -> "drm_mode_object A"
173      "drm_property A" -> "drm_mode_object B"
174      "drm_property B" -> "drm_mode_object A"
175   }
176
177The base structure for all KMS objects is :c:type:`struct drm_mode_object
178<drm_mode_object>`. One of the base services it provides is tracking properties,
179which are especially important for the atomic IOCTL (see `Atomic Mode
180Setting`_). The somewhat surprising part here is that properties are not
181directly instantiated on each object, but free-standing mode objects themselves,
182represented by :c:type:`struct drm_property <drm_property>`, which only specify
183the type and value range of a property. Any given property can be attached
184multiple times to different objects using drm_object_attach_property().
185
186.. kernel-doc:: include/drm/drm_mode_object.h
187   :internal:
188
189.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
190   :export:
191
192Atomic Mode Setting
193===================
194
195
196.. kernel-render:: DOT
197   :alt: Mode Objects and Properties
198   :caption: Mode Objects and Properties
199
200   digraph {
201      node [shape=box]
202
203      subgraph cluster_state {
204          style=dashed
205          label="Free-standing state"
206
207          "drm_atomic_state" -> "duplicated drm_plane_state A"
208          "drm_atomic_state" -> "duplicated drm_plane_state B"
209          "drm_atomic_state" -> "duplicated drm_crtc_state"
210          "drm_atomic_state" -> "duplicated drm_connector_state"
211          "drm_atomic_state" -> "duplicated driver private state"
212      }
213
214      subgraph cluster_current {
215          style=dashed
216          label="Current state"
217
218          "drm_device" -> "drm_plane A"
219          "drm_device" -> "drm_plane B"
220          "drm_device" -> "drm_crtc"
221          "drm_device" -> "drm_connector"
222          "drm_device" -> "driver private object"
223
224          "drm_plane A" -> "drm_plane_state A"
225          "drm_plane B" -> "drm_plane_state B"
226          "drm_crtc" -> "drm_crtc_state"
227          "drm_connector" -> "drm_connector_state"
228          "driver private object" -> "driver private state"
229      }
230
231      "drm_atomic_state" -> "drm_device" [label="atomic_commit"]
232      "duplicated drm_plane_state A" -> "drm_device"[style=invis]
233   }
234
235Atomic provides transactional modeset (including planes) updates, but a
236bit differently from the usual transactional approach of try-commit and
237rollback:
238
239- Firstly, no hardware changes are allowed when the commit would fail. This
240  allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows
241  userspace to explore whether certain configurations would work or not.
242
243- This would still allow setting and rollback of just the software state,
244  simplifying conversion of existing drivers. But auditing drivers for
245  correctness of the atomic_check code becomes really hard with that: Rolling
246  back changes in data structures all over the place is hard to get right.
247
248- Lastly, for backwards compatibility and to support all use-cases, atomic
249  updates need to be incremental and be able to execute in parallel. Hardware
250  doesn't always allow it, but where possible plane updates on different CRTCs
251  should not interfere, and not get stalled due to output routing changing on
252  different CRTCs.
253
254Taken all together there's two consequences for the atomic design:
255
256- The overall state is split up into per-object state structures:
257  :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct
258  drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct
259  drm_connector_state <drm_connector_state>` for connectors. These are the only
260  objects with userspace-visible and settable state. For internal state drivers
261  can subclass these structures through embeddeding, or add entirely new state
262  structures for their globally shared hardware functions, see :c:type:`struct
263  drm_private_state<drm_private_state>`.
264
265- An atomic update is assembled and validated as an entirely free-standing pile
266  of structures within the :c:type:`drm_atomic_state <drm_atomic_state>`
267  container. Driver private state structures are also tracked in the same
268  structure; see the next chapter.  Only when a state is committed is it applied
269  to the driver and modeset objects. This way rolling back an update boils down
270  to releasing memory and unreferencing objects like framebuffers.
271
272Locking of atomic state structures is internally using :c:type:`struct
273drm_modeset_lock <drm_modeset_lock>`. As a general rule the locking shouldn't be
274exposed to drivers, instead the right locks should be automatically acquired by
275any function that duplicates or peeks into a state, like e.g.
276drm_atomic_get_crtc_state().  Locking only protects the software data
277structure, ordering of committing state changes to hardware is sequenced using
278:c:type:`struct drm_crtc_commit <drm_crtc_commit>`.
279
280Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed
281coverage of specific topics.
282
283Handling Driver Private State
284-----------------------------
285
286.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
287   :doc: handling driver private state
288
289Atomic Mode Setting Function Reference
290--------------------------------------
291
292.. kernel-doc:: include/drm/drm_atomic.h
293   :internal:
294
295.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
296   :export:
297
298Atomic Mode Setting IOCTL and UAPI Functions
299--------------------------------------------
300
301.. kernel-doc:: drivers/gpu/drm/drm_atomic_uapi.c
302   :doc: overview
303
304.. kernel-doc:: drivers/gpu/drm/drm_atomic_uapi.c
305   :export:
306
307CRTC Abstraction
308================
309
310.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
311   :doc: overview
312
313CRTC Functions Reference
314--------------------------------
315
316.. kernel-doc:: include/drm/drm_crtc.h
317   :internal:
318
319.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
320   :export:
321
322Frame Buffer Abstraction
323========================
324
325.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
326   :doc: overview
327
328Frame Buffer Functions Reference
329--------------------------------
330
331.. kernel-doc:: include/drm/drm_framebuffer.h
332   :internal:
333
334.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
335   :export:
336
337DRM Format Handling
338===================
339
340.. kernel-doc:: include/uapi/drm/drm_fourcc.h
341   :doc: overview
342
343Format Functions Reference
344--------------------------
345
346.. kernel-doc:: include/drm/drm_fourcc.h
347   :internal:
348
349.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
350   :export:
351
352Dumb Buffer Objects
353===================
354
355.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c
356   :doc: overview
357
358Plane Abstraction
359=================
360
361.. kernel-doc:: drivers/gpu/drm/drm_plane.c
362   :doc: overview
363
364Plane Functions Reference
365-------------------------
366
367.. kernel-doc:: include/drm/drm_plane.h
368   :internal:
369
370.. kernel-doc:: drivers/gpu/drm/drm_plane.c
371   :export:
372
373Display Modes Function Reference
374================================
375
376.. kernel-doc:: include/drm/drm_modes.h
377   :internal:
378
379.. kernel-doc:: drivers/gpu/drm/drm_modes.c
380   :export:
381
382Connector Abstraction
383=====================
384
385.. kernel-doc:: drivers/gpu/drm/drm_connector.c
386   :doc: overview
387
388Connector Functions Reference
389-----------------------------
390
391.. kernel-doc:: include/drm/drm_connector.h
392   :internal:
393
394.. kernel-doc:: drivers/gpu/drm/drm_connector.c
395   :export:
396
397Writeback Connectors
398--------------------
399
400.. kernel-doc:: include/drm/drm_writeback.h
401  :internal:
402
403.. kernel-doc:: drivers/gpu/drm/drm_writeback.c
404  :doc: overview
405
406.. kernel-doc:: drivers/gpu/drm/drm_writeback.c
407  :export:
408
409Encoder Abstraction
410===================
411
412.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
413   :doc: overview
414
415Encoder Functions Reference
416---------------------------
417
418.. kernel-doc:: include/drm/drm_encoder.h
419   :internal:
420
421.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
422   :export:
423
424KMS Locking
425===========
426
427.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
428   :doc: kms locking
429
430.. kernel-doc:: include/drm/drm_modeset_lock.h
431   :internal:
432
433.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
434   :export:
435
436KMS Properties
437==============
438
439Property Types and Blob Property Support
440----------------------------------------
441
442.. kernel-doc:: drivers/gpu/drm/drm_property.c
443   :doc: overview
444
445.. kernel-doc:: include/drm/drm_property.h
446   :internal:
447
448.. kernel-doc:: drivers/gpu/drm/drm_property.c
449   :export:
450
451Standard Connector Properties
452-----------------------------
453
454.. kernel-doc:: drivers/gpu/drm/drm_connector.c
455   :doc: standard connector properties
456
457HDMI Specific Connector Properties
458----------------------------------
459
460.. kernel-doc:: drivers/gpu/drm/drm_connector.c
461   :doc: HDMI connector properties
462
463Plane Composition Properties
464----------------------------
465
466.. kernel-doc:: drivers/gpu/drm/drm_blend.c
467   :doc: overview
468
469.. kernel-doc:: drivers/gpu/drm/drm_blend.c
470   :export:
471
472FB_DAMAGE_CLIPS
473~~~~~~~~~~~~~~~
474
475.. kernel-doc:: drivers/gpu/drm/drm_damage_helper.c
476   :doc: overview
477
478.. kernel-doc:: drivers/gpu/drm/drm_damage_helper.c
479   :export:
480
481.. kernel-doc:: include/drm/drm_damage_helper.h
482   :internal:
483
484Color Management Properties
485---------------------------
486
487.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
488   :doc: overview
489
490.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
491   :export:
492
493.. kernel-doc:: include/drm/drm_color_mgmt.h
494   :internal:
495
496Tile Group Property
497-------------------
498
499.. kernel-doc:: drivers/gpu/drm/drm_connector.c
500   :doc: Tile group
501
502Explicit Fencing Properties
503---------------------------
504
505.. kernel-doc:: drivers/gpu/drm/drm_atomic_uapi.c
506   :doc: explicit fencing properties
507
508
509Variable Refresh Properties
510---------------------------
511
512.. kernel-doc:: drivers/gpu/drm/drm_connector.c
513   :doc: Variable refresh properties
514
515Existing KMS Properties
516-----------------------
517
518The following table gives description of drm properties exposed by various
519modules/drivers. Because this table is very unwieldy, do not add any new
520properties here. Instead document them in a section above.
521
522.. csv-table::
523   :header-rows: 1
524   :file: kms-properties.csv
525
526Vertical Blanking
527=================
528
529.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
530   :doc: vblank handling
531
532Vertical Blanking and Interrupt Handling Functions Reference
533------------------------------------------------------------
534
535.. kernel-doc:: include/drm/drm_vblank.h
536   :internal:
537
538.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
539   :export:
540