1========================= 2Kernel Mode Setting (KMS) 3========================= 4 5Drivers must initialize the mode setting core by calling 6:c:func:`drm_mode_config_init()` on the DRM device. The function 7initializes the :c:type:`struct drm_device <drm_device>` 8mode_config field and never fails. Once done, mode configuration must 9be setup by initializing the following fields. 10 11- int min_width, min_height; int max_width, max_height; 12 Minimum and maximum width and height of the frame buffers in pixel 13 units. 14 15- struct drm_mode_config_funcs \*funcs; 16 Mode setting functions. 17 18Overview 19======== 20 21.. kernel-render:: DOT 22 :alt: KMS Display Pipeline 23 :caption: KMS Display Pipeline Overview 24 25 digraph "KMS" { 26 node [shape=box] 27 28 subgraph cluster_static { 29 style=dashed 30 label="Static Objects" 31 32 node [bgcolor=grey style=filled] 33 "drm_plane A" -> "drm_crtc" 34 "drm_plane B" -> "drm_crtc" 35 "drm_crtc" -> "drm_encoder A" 36 "drm_crtc" -> "drm_encoder B" 37 } 38 39 subgraph cluster_user_created { 40 style=dashed 41 label="Userspace-Created" 42 43 node [shape=oval] 44 "drm_framebuffer 1" -> "drm_plane A" 45 "drm_framebuffer 2" -> "drm_plane B" 46 } 47 48 subgraph cluster_connector { 49 style=dashed 50 label="Hotpluggable" 51 52 "drm_encoder A" -> "drm_connector A" 53 "drm_encoder B" -> "drm_connector B" 54 } 55 } 56 57The basic object structure KMS presents to userspace is fairly simple. 58Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`, 59see `Frame Buffer Abstraction`_) feed into planes. One or more (or even no) 60planes feed their pixel data into a CRTC (represented by :c:type:`struct 61drm_crtc <drm_crtc>`, see `CRTC Abstraction`_) for blending. The precise 62blending step is explained in more detail in `Plane Composition Properties`_ and 63related chapters. 64 65For the output routing the first step is encoders (represented by 66:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those 67are really just internal artifacts of the helper libraries used to implement KMS 68drivers. Besides that they make it unecessarily more complicated for userspace 69to figure out which connections between a CRTC and a connector are possible, and 70what kind of cloning is supported, they serve no purpose in the userspace API. 71Unfortunately encoders have been exposed to userspace, hence can't remove them 72at this point. Futhermore the exposed restrictions are often wrongly set by 73drivers, and in many cases not powerful enough to express the real restrictions. 74A CRTC can be connected to multiple encoders, and for an active CRTC there must 75be at least one encoder. 76 77The final, and real, endpoint in the display chain is the connector (represented 78by :c:type:`struct drm_connector <drm_connector>`, see `Connector 79Abstraction`_). Connectors can have different possible encoders, but the kernel 80driver selects which encoder to use for each connector. The use case is DVI, 81which could switch between an analog and a digital encoder. Encoders can also 82drive multiple different connectors. There is exactly one active connector for 83every active encoder. 84 85Internally the output pipeline is a bit more complex and matches today's 86hardware more closely: 87 88.. kernel-render:: DOT 89 :alt: KMS Output Pipeline 90 :caption: KMS Output Pipeline 91 92 digraph "Output Pipeline" { 93 node [shape=box] 94 95 subgraph { 96 "drm_crtc" [bgcolor=grey style=filled] 97 } 98 99 subgraph cluster_internal { 100 style=dashed 101 label="Internal Pipeline" 102 { 103 node [bgcolor=grey style=filled] 104 "drm_encoder A"; 105 "drm_encoder B"; 106 "drm_encoder C"; 107 } 108 109 { 110 node [bgcolor=grey style=filled] 111 "drm_encoder B" -> "drm_bridge B" 112 "drm_encoder C" -> "drm_bridge C1" 113 "drm_bridge C1" -> "drm_bridge C2"; 114 } 115 } 116 117 "drm_crtc" -> "drm_encoder A" 118 "drm_crtc" -> "drm_encoder B" 119 "drm_crtc" -> "drm_encoder C" 120 121 122 subgraph cluster_output { 123 style=dashed 124 label="Outputs" 125 126 "drm_encoder A" -> "drm_connector A"; 127 "drm_bridge B" -> "drm_connector B"; 128 "drm_bridge C2" -> "drm_connector C"; 129 130 "drm_panel" 131 } 132 } 133 134Internally two additional helper objects come into play. First, to be able to 135share code for encoders (sometimes on the same SoC, sometimes off-chip) one or 136more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge 137<drm_bridge>`) can be linked to an encoder. This link is static and cannot be 138changed, which means the cross-bar (if there is any) needs to be mapped between 139the CRTC and any encoders. Often for drivers with bridges there's no code left 140at the encoder level. Atomic drivers can leave out all the encoder callbacks to 141essentially only leave a dummy routing object behind, which is needed for 142backwards compatibility since encoders are exposed to userspace. 143 144The second object is for panels, represented by :c:type:`struct drm_panel 145<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding 146point, but are generally linked to the driver private structure that embeds 147:c:type:`struct drm_connector <drm_connector>`. 148 149Note that currently the bridge chaining and interactions with connectors and 150panels are still in-flux and not really fully sorted out yet. 151 152KMS Core Structures and Functions 153================================= 154 155.. kernel-doc:: include/drm/drm_mode_config.h 156 :internal: 157 158.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c 159 :export: 160 161Modeset Base Object Abstraction 162=============================== 163 164.. kernel-render:: DOT 165 :alt: Mode Objects and Properties 166 :caption: Mode Objects and Properties 167 168 digraph { 169 node [shape=box] 170 171 "drm_property A" -> "drm_mode_object A" 172 "drm_property A" -> "drm_mode_object B" 173 "drm_property B" -> "drm_mode_object A" 174 } 175 176The base structure for all KMS objects is :c:type:`struct drm_mode_object 177<drm_mode_object>`. One of the base services it provides is tracking properties, 178which are especially important for the atomic IOCTL (see `Atomic Mode 179Setting`_). The somewhat surprising part here is that properties are not 180directly instantiated on each object, but free-standing mode objects themselves, 181represented by :c:type:`struct drm_property <drm_property>`, which only specify 182the type and value range of a property. Any given property can be attached 183multiple times to different objects using :c:func:`drm_object_attach_property() 184<drm_object_attach_property>`. 185 186.. kernel-doc:: include/drm/drm_mode_object.h 187 :internal: 188 189.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c 190 :export: 191 192Atomic Mode Setting 193=================== 194 195 196.. kernel-render:: DOT 197 :alt: Mode Objects and Properties 198 :caption: Mode Objects and Properties 199 200 digraph { 201 node [shape=box] 202 203 subgraph cluster_state { 204 style=dashed 205 label="Free-standing state" 206 207 "drm_atomic_state" -> "duplicated drm_plane_state A" 208 "drm_atomic_state" -> "duplicated drm_plane_state B" 209 "drm_atomic_state" -> "duplicated drm_crtc_state" 210 "drm_atomic_state" -> "duplicated drm_connector_state" 211 "drm_atomic_state" -> "duplicated driver private state" 212 } 213 214 subgraph cluster_current { 215 style=dashed 216 label="Current state" 217 218 "drm_device" -> "drm_plane A" 219 "drm_device" -> "drm_plane B" 220 "drm_device" -> "drm_crtc" 221 "drm_device" -> "drm_connector" 222 "drm_device" -> "driver private object" 223 224 "drm_plane A" -> "drm_plane_state A" 225 "drm_plane B" -> "drm_plane_state B" 226 "drm_crtc" -> "drm_crtc_state" 227 "drm_connector" -> "drm_connector_state" 228 "driver private object" -> "driver private state" 229 } 230 231 "drm_atomic_state" -> "drm_device" [label="atomic_commit"] 232 "duplicated drm_plane_state A" -> "drm_device"[style=invis] 233 } 234 235Atomic provides transactional modeset (including planes) updates, but a 236bit differently from the usual transactional approach of try-commit and 237rollback: 238 239- Firstly, no hardware changes are allowed when the commit would fail. This 240 allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows 241 userspace to explore whether certain configurations would work or not. 242 243- This would still allow setting and rollback of just the software state, 244 simplifying conversion of existing drivers. But auditing drivers for 245 correctness of the atomic_check code becomes really hard with that: Rolling 246 back changes in data structures all over the place is hard to get right. 247 248- Lastly, for backwards compatibility and to support all use-cases, atomic 249 updates need to be incremental and be able to execute in parallel. Hardware 250 doesn't always allow it, but where possible plane updates on different CRTCs 251 should not interfere, and not get stalled due to output routing changing on 252 different CRTCs. 253 254Taken all together there's two consequences for the atomic design: 255 256- The overall state is split up into per-object state structures: 257 :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct 258 drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct 259 drm_connector_state <drm_connector_state>` for connectors. These are the only 260 objects with userspace-visible and settable state. For internal state drivers 261 can subclass these structures through embeddeding, or add entirely new state 262 structures for their globally shared hardware functions. 263 264- An atomic update is assembled and validated as an entirely free-standing pile 265 of structures within the :c:type:`drm_atomic_state <drm_atomic_state>` 266 container. Again drivers can subclass that container for their own state 267 structure tracking needs. Only when a state is committed is it applied to the 268 driver and modeset objects. This way rolling back an update boils down to 269 releasing memory and unreferencing objects like framebuffers. 270 271Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed 272coverage of specific topics. 273 274Atomic Mode Setting Function Reference 275-------------------------------------- 276 277.. kernel-doc:: include/drm/drm_atomic.h 278 :internal: 279 280.. kernel-doc:: drivers/gpu/drm/drm_atomic.c 281 :export: 282 283CRTC Abstraction 284================ 285 286.. kernel-doc:: drivers/gpu/drm/drm_crtc.c 287 :doc: overview 288 289CRTC Functions Reference 290-------------------------------- 291 292.. kernel-doc:: include/drm/drm_crtc.h 293 :internal: 294 295.. kernel-doc:: drivers/gpu/drm/drm_crtc.c 296 :export: 297 298Frame Buffer Abstraction 299======================== 300 301.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c 302 :doc: overview 303 304Frame Buffer Functions Reference 305-------------------------------- 306 307.. kernel-doc:: include/drm/drm_framebuffer.h 308 :internal: 309 310.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c 311 :export: 312 313DRM Format Handling 314=================== 315 316.. kernel-doc:: include/drm/drm_fourcc.h 317 :internal: 318 319.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c 320 :export: 321 322Dumb Buffer Objects 323=================== 324 325.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c 326 :doc: overview 327 328Plane Abstraction 329================= 330 331.. kernel-doc:: drivers/gpu/drm/drm_plane.c 332 :doc: overview 333 334Plane Functions Reference 335------------------------- 336 337.. kernel-doc:: include/drm/drm_plane.h 338 :internal: 339 340.. kernel-doc:: drivers/gpu/drm/drm_plane.c 341 :export: 342 343Display Modes Function Reference 344================================ 345 346.. kernel-doc:: include/drm/drm_modes.h 347 :internal: 348 349.. kernel-doc:: drivers/gpu/drm/drm_modes.c 350 :export: 351 352Connector Abstraction 353===================== 354 355.. kernel-doc:: drivers/gpu/drm/drm_connector.c 356 :doc: overview 357 358Connector Functions Reference 359----------------------------- 360 361.. kernel-doc:: include/drm/drm_connector.h 362 :internal: 363 364.. kernel-doc:: drivers/gpu/drm/drm_connector.c 365 :export: 366 367Encoder Abstraction 368=================== 369 370.. kernel-doc:: drivers/gpu/drm/drm_encoder.c 371 :doc: overview 372 373Encoder Functions Reference 374--------------------------- 375 376.. kernel-doc:: include/drm/drm_encoder.h 377 :internal: 378 379.. kernel-doc:: drivers/gpu/drm/drm_encoder.c 380 :export: 381 382KMS Initialization and Cleanup 383============================== 384 385A KMS device is abstracted and exposed as a set of planes, CRTCs, 386encoders and connectors. KMS drivers must thus create and initialize all 387those objects at load time after initializing mode setting. 388 389CRTCs (:c:type:`struct drm_crtc <drm_crtc>`) 390-------------------------------------------- 391 392A CRTC is an abstraction representing a part of the chip that contains a 393pointer to a scanout buffer. Therefore, the number of CRTCs available 394determines how many independent scanout buffers can be active at any 395given time. The CRTC structure contains several fields to support this: 396a pointer to some video memory (abstracted as a frame buffer object), a 397display mode, and an (x, y) offset into the video memory to support 398panning or configurations where one piece of video memory spans multiple 399CRTCs. 400 401CRTC Initialization 402~~~~~~~~~~~~~~~~~~~ 403 404A KMS device must create and register at least one struct 405:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is 406allocated and zeroed by the driver, possibly as part of a larger 407structure, and registered with a call to :c:func:`drm_crtc_init()` 408with a pointer to CRTC functions. 409 410 411Cleanup 412------- 413 414The DRM core manages its objects' lifetime. When an object is not needed 415anymore the core calls its destroy function, which must clean up and 416free every resource allocated for the object. Every 417:c:func:`drm_\*_init()` call must be matched with a corresponding 418:c:func:`drm_\*_cleanup()` call to cleanup CRTCs 419(:c:func:`drm_crtc_cleanup()`), planes 420(:c:func:`drm_plane_cleanup()`), encoders 421(:c:func:`drm_encoder_cleanup()`) and connectors 422(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that 423have been added to sysfs must be removed by a call to 424:c:func:`drm_connector_unregister()` before calling 425:c:func:`drm_connector_cleanup()`. 426 427Connectors state change detection must be cleanup up with a call to 428:c:func:`drm_kms_helper_poll_fini()`. 429 430Output discovery and initialization example 431------------------------------------------- 432 433.. code-block:: c 434 435 void intel_crt_init(struct drm_device *dev) 436 { 437 struct drm_connector *connector; 438 struct intel_output *intel_output; 439 440 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL); 441 if (!intel_output) 442 return; 443 444 connector = &intel_output->base; 445 drm_connector_init(dev, &intel_output->base, 446 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA); 447 448 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs, 449 DRM_MODE_ENCODER_DAC); 450 451 drm_mode_connector_attach_encoder(&intel_output->base, 452 &intel_output->enc); 453 454 /* Set up the DDC bus. */ 455 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A"); 456 if (!intel_output->ddc_bus) { 457 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration " 458 "failed.\n"); 459 return; 460 } 461 462 intel_output->type = INTEL_OUTPUT_ANALOG; 463 connector->interlace_allowed = 0; 464 connector->doublescan_allowed = 0; 465 466 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs); 467 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs); 468 469 drm_connector_register(connector); 470 } 471 472In the example above (taken from the i915 driver), a CRTC, connector and 473encoder combination is created. A device-specific i2c bus is also 474created for fetching EDID data and performing monitor detection. Once 475the process is complete, the new connector is registered with sysfs to 476make its properties available to applications. 477 478KMS Locking 479=========== 480 481.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c 482 :doc: kms locking 483 484.. kernel-doc:: include/drm/drm_modeset_lock.h 485 :internal: 486 487.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c 488 :export: 489 490KMS Properties 491============== 492 493Property Types and Blob Property Support 494---------------------------------------- 495 496.. kernel-doc:: drivers/gpu/drm/drm_property.c 497 :doc: overview 498 499.. kernel-doc:: include/drm/drm_property.h 500 :internal: 501 502.. kernel-doc:: drivers/gpu/drm/drm_property.c 503 :export: 504 505Standard Connector Properties 506----------------------------- 507 508.. kernel-doc:: drivers/gpu/drm/drm_connector.c 509 :doc: standard connector properties 510 511Plane Composition Properties 512---------------------------- 513 514.. kernel-doc:: drivers/gpu/drm/drm_blend.c 515 :doc: overview 516 517.. kernel-doc:: drivers/gpu/drm/drm_blend.c 518 :export: 519 520Color Management Properties 521--------------------------- 522 523.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c 524 :doc: overview 525 526.. kernel-doc:: include/drm/drm_color_mgmt.h 527 :internal: 528 529.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c 530 :export: 531 532Tile Group Property 533------------------- 534 535.. kernel-doc:: drivers/gpu/drm/drm_connector.c 536 :doc: Tile group 537 538Explicit Fencing Properties 539--------------------------- 540 541.. kernel-doc:: drivers/gpu/drm/drm_atomic.c 542 :doc: explicit fencing properties 543 544Existing KMS Properties 545----------------------- 546 547The following table gives description of drm properties exposed by 548various modules/drivers. 549 550.. csv-table:: 551 :header-rows: 1 552 :file: kms-properties.csv 553 554Vertical Blanking 555================= 556 557Vertical blanking plays a major role in graphics rendering. To achieve 558tear-free display, users must synchronize page flips and/or rendering to 559vertical blanking. The DRM API offers ioctls to perform page flips 560synchronized to vertical blanking and wait for vertical blanking. 561 562The DRM core handles most of the vertical blanking management logic, 563which involves filtering out spurious interrupts, keeping race-free 564blanking counters, coping with counter wrap-around and resets and 565keeping use counts. It relies on the driver to generate vertical 566blanking interrupts and optionally provide a hardware vertical blanking 567counter. Drivers must implement the following operations. 568 569- int (\*enable_vblank) (struct drm_device \*dev, int crtc); void 570 (\*disable_vblank) (struct drm_device \*dev, int crtc); 571 Enable or disable vertical blanking interrupts for the given CRTC. 572 573- u32 (\*get_vblank_counter) (struct drm_device \*dev, int crtc); 574 Retrieve the value of the vertical blanking counter for the given 575 CRTC. If the hardware maintains a vertical blanking counter its value 576 should be returned. Otherwise drivers can use the 577 :c:func:`drm_vblank_count()` helper function to handle this 578 operation. 579 580Drivers must initialize the vertical blanking handling core with a call 581to :c:func:`drm_vblank_init()` in their load operation. 582 583Vertical blanking interrupts can be enabled by the DRM core or by 584drivers themselves (for instance to handle page flipping operations). 585The DRM core maintains a vertical blanking use count to ensure that the 586interrupts are not disabled while a user still needs them. To increment 587the use count, drivers call :c:func:`drm_vblank_get()`. Upon 588return vertical blanking interrupts are guaranteed to be enabled. 589 590To decrement the use count drivers call 591:c:func:`drm_vblank_put()`. Only when the use count drops to zero 592will the DRM core disable the vertical blanking interrupts after a delay 593by scheduling a timer. The delay is accessible through the 594vblankoffdelay module parameter or the ``drm_vblank_offdelay`` global 595variable and expressed in milliseconds. Its default value is 5000 ms. 596Zero means never disable, and a negative value means disable 597immediately. Drivers may override the behaviour by setting the 598:c:type:`struct drm_device <drm_device>` 599vblank_disable_immediate flag, which when set causes vblank interrupts 600to be disabled immediately regardless of the drm_vblank_offdelay 601value. The flag should only be set if there's a properly working 602hardware vblank counter present. 603 604When a vertical blanking interrupt occurs drivers only need to call the 605:c:func:`drm_handle_vblank()` function to account for the 606interrupt. 607 608Resources allocated by :c:func:`drm_vblank_init()` must be freed 609with a call to :c:func:`drm_vblank_cleanup()` in the driver unload 610operation handler. 611 612Vertical Blanking and Interrupt Handling Functions Reference 613------------------------------------------------------------ 614 615.. kernel-doc:: include/drm/drm_vblank.h 616 :internal: 617 618.. kernel-doc:: drivers/gpu/drm/drm_vblank.c 619 :export: 620