xref: /openbmc/linux/Documentation/gpu/drm-kms.rst (revision 176f011b)
1=========================
2Kernel Mode Setting (KMS)
3=========================
4
5Drivers must initialize the mode setting core by calling
6:c:func:`drm_mode_config_init()` on the DRM device. The function
7initializes the :c:type:`struct drm_device <drm_device>`
8mode_config field and never fails. Once done, mode configuration must
9be setup by initializing the following fields.
10
11-  int min_width, min_height; int max_width, max_height;
12   Minimum and maximum width and height of the frame buffers in pixel
13   units.
14
15-  struct drm_mode_config_funcs \*funcs;
16   Mode setting functions.
17
18Overview
19========
20
21.. kernel-render:: DOT
22   :alt: KMS Display Pipeline
23   :caption: KMS Display Pipeline Overview
24
25   digraph "KMS" {
26      node [shape=box]
27
28      subgraph cluster_static {
29          style=dashed
30          label="Static Objects"
31
32          node [bgcolor=grey style=filled]
33          "drm_plane A" -> "drm_crtc"
34          "drm_plane B" -> "drm_crtc"
35          "drm_crtc" -> "drm_encoder A"
36          "drm_crtc" -> "drm_encoder B"
37      }
38
39      subgraph cluster_user_created {
40          style=dashed
41          label="Userspace-Created"
42
43          node [shape=oval]
44          "drm_framebuffer 1" -> "drm_plane A"
45          "drm_framebuffer 2" -> "drm_plane B"
46      }
47
48      subgraph cluster_connector {
49          style=dashed
50          label="Hotpluggable"
51
52          "drm_encoder A" -> "drm_connector A"
53          "drm_encoder B" -> "drm_connector B"
54      }
55   }
56
57The basic object structure KMS presents to userspace is fairly simple.
58Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
59see `Frame Buffer Abstraction`_) feed into planes. Planes are represented by
60:c:type:`struct drm_plane <drm_plane>`, see `Plane Abstraction`_ for more
61details. One or more (or even no) planes feed their pixel data into a CRTC
62(represented by :c:type:`struct drm_crtc <drm_crtc>`, see `CRTC Abstraction`_)
63for blending. The precise blending step is explained in more detail in `Plane
64Composition Properties`_ and related chapters.
65
66For the output routing the first step is encoders (represented by
67:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
68are really just internal artifacts of the helper libraries used to implement KMS
69drivers. Besides that they make it unecessarily more complicated for userspace
70to figure out which connections between a CRTC and a connector are possible, and
71what kind of cloning is supported, they serve no purpose in the userspace API.
72Unfortunately encoders have been exposed to userspace, hence can't remove them
73at this point.  Futhermore the exposed restrictions are often wrongly set by
74drivers, and in many cases not powerful enough to express the real restrictions.
75A CRTC can be connected to multiple encoders, and for an active CRTC there must
76be at least one encoder.
77
78The final, and real, endpoint in the display chain is the connector (represented
79by :c:type:`struct drm_connector <drm_connector>`, see `Connector
80Abstraction`_). Connectors can have different possible encoders, but the kernel
81driver selects which encoder to use for each connector. The use case is DVI,
82which could switch between an analog and a digital encoder. Encoders can also
83drive multiple different connectors. There is exactly one active connector for
84every active encoder.
85
86Internally the output pipeline is a bit more complex and matches today's
87hardware more closely:
88
89.. kernel-render:: DOT
90   :alt: KMS Output Pipeline
91   :caption: KMS Output Pipeline
92
93   digraph "Output Pipeline" {
94      node [shape=box]
95
96      subgraph {
97          "drm_crtc" [bgcolor=grey style=filled]
98      }
99
100      subgraph cluster_internal {
101          style=dashed
102          label="Internal Pipeline"
103          {
104              node [bgcolor=grey style=filled]
105              "drm_encoder A";
106              "drm_encoder B";
107              "drm_encoder C";
108          }
109
110          {
111              node [bgcolor=grey style=filled]
112              "drm_encoder B" -> "drm_bridge B"
113              "drm_encoder C" -> "drm_bridge C1"
114              "drm_bridge C1" -> "drm_bridge C2";
115          }
116      }
117
118      "drm_crtc" -> "drm_encoder A"
119      "drm_crtc" -> "drm_encoder B"
120      "drm_crtc" -> "drm_encoder C"
121
122
123      subgraph cluster_output {
124          style=dashed
125          label="Outputs"
126
127          "drm_encoder A" -> "drm_connector A";
128          "drm_bridge B" -> "drm_connector B";
129          "drm_bridge C2" -> "drm_connector C";
130
131          "drm_panel"
132      }
133   }
134
135Internally two additional helper objects come into play. First, to be able to
136share code for encoders (sometimes on the same SoC, sometimes off-chip) one or
137more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge
138<drm_bridge>`) can be linked to an encoder. This link is static and cannot be
139changed, which means the cross-bar (if there is any) needs to be mapped between
140the CRTC and any encoders. Often for drivers with bridges there's no code left
141at the encoder level. Atomic drivers can leave out all the encoder callbacks to
142essentially only leave a dummy routing object behind, which is needed for
143backwards compatibility since encoders are exposed to userspace.
144
145The second object is for panels, represented by :c:type:`struct drm_panel
146<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding
147point, but are generally linked to the driver private structure that embeds
148:c:type:`struct drm_connector <drm_connector>`.
149
150Note that currently the bridge chaining and interactions with connectors and
151panels are still in-flux and not really fully sorted out yet.
152
153KMS Core Structures and Functions
154=================================
155
156.. kernel-doc:: include/drm/drm_mode_config.h
157   :internal:
158
159.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c
160   :export:
161
162Modeset Base Object Abstraction
163===============================
164
165.. kernel-render:: DOT
166   :alt: Mode Objects and Properties
167   :caption: Mode Objects and Properties
168
169   digraph {
170      node [shape=box]
171
172      "drm_property A" -> "drm_mode_object A"
173      "drm_property A" -> "drm_mode_object B"
174      "drm_property B" -> "drm_mode_object A"
175   }
176
177The base structure for all KMS objects is :c:type:`struct drm_mode_object
178<drm_mode_object>`. One of the base services it provides is tracking properties,
179which are especially important for the atomic IOCTL (see `Atomic Mode
180Setting`_). The somewhat surprising part here is that properties are not
181directly instantiated on each object, but free-standing mode objects themselves,
182represented by :c:type:`struct drm_property <drm_property>`, which only specify
183the type and value range of a property. Any given property can be attached
184multiple times to different objects using :c:func:`drm_object_attach_property()
185<drm_object_attach_property>`.
186
187.. kernel-doc:: include/drm/drm_mode_object.h
188   :internal:
189
190.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
191   :export:
192
193Atomic Mode Setting
194===================
195
196
197.. kernel-render:: DOT
198   :alt: Mode Objects and Properties
199   :caption: Mode Objects and Properties
200
201   digraph {
202      node [shape=box]
203
204      subgraph cluster_state {
205          style=dashed
206          label="Free-standing state"
207
208          "drm_atomic_state" -> "duplicated drm_plane_state A"
209          "drm_atomic_state" -> "duplicated drm_plane_state B"
210          "drm_atomic_state" -> "duplicated drm_crtc_state"
211          "drm_atomic_state" -> "duplicated drm_connector_state"
212          "drm_atomic_state" -> "duplicated driver private state"
213      }
214
215      subgraph cluster_current {
216          style=dashed
217          label="Current state"
218
219          "drm_device" -> "drm_plane A"
220          "drm_device" -> "drm_plane B"
221          "drm_device" -> "drm_crtc"
222          "drm_device" -> "drm_connector"
223          "drm_device" -> "driver private object"
224
225          "drm_plane A" -> "drm_plane_state A"
226          "drm_plane B" -> "drm_plane_state B"
227          "drm_crtc" -> "drm_crtc_state"
228          "drm_connector" -> "drm_connector_state"
229          "driver private object" -> "driver private state"
230      }
231
232      "drm_atomic_state" -> "drm_device" [label="atomic_commit"]
233      "duplicated drm_plane_state A" -> "drm_device"[style=invis]
234   }
235
236Atomic provides transactional modeset (including planes) updates, but a
237bit differently from the usual transactional approach of try-commit and
238rollback:
239
240- Firstly, no hardware changes are allowed when the commit would fail. This
241  allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows
242  userspace to explore whether certain configurations would work or not.
243
244- This would still allow setting and rollback of just the software state,
245  simplifying conversion of existing drivers. But auditing drivers for
246  correctness of the atomic_check code becomes really hard with that: Rolling
247  back changes in data structures all over the place is hard to get right.
248
249- Lastly, for backwards compatibility and to support all use-cases, atomic
250  updates need to be incremental and be able to execute in parallel. Hardware
251  doesn't always allow it, but where possible plane updates on different CRTCs
252  should not interfere, and not get stalled due to output routing changing on
253  different CRTCs.
254
255Taken all together there's two consequences for the atomic design:
256
257- The overall state is split up into per-object state structures:
258  :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct
259  drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct
260  drm_connector_state <drm_connector_state>` for connectors. These are the only
261  objects with userspace-visible and settable state. For internal state drivers
262  can subclass these structures through embeddeding, or add entirely new state
263  structures for their globally shared hardware functions.
264
265- An atomic update is assembled and validated as an entirely free-standing pile
266  of structures within the :c:type:`drm_atomic_state <drm_atomic_state>`
267  container. Driver private state structures are also tracked in the same
268  structure; see the next chapter.  Only when a state is committed is it applied
269  to the driver and modeset objects. This way rolling back an update boils down
270  to releasing memory and unreferencing objects like framebuffers.
271
272Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed
273coverage of specific topics.
274
275Handling Driver Private State
276-----------------------------
277
278.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
279   :doc: handling driver private state
280
281Atomic Mode Setting Function Reference
282--------------------------------------
283
284.. kernel-doc:: include/drm/drm_atomic.h
285   :internal:
286
287.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
288   :export:
289
290Atomic Mode Setting IOCTL and UAPI Functions
291--------------------------------------------
292
293.. kernel-doc:: drivers/gpu/drm/drm_atomic_uapi.c
294   :doc: overview
295
296.. kernel-doc:: drivers/gpu/drm/drm_atomic_uapi.c
297   :export:
298
299CRTC Abstraction
300================
301
302.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
303   :doc: overview
304
305CRTC Functions Reference
306--------------------------------
307
308.. kernel-doc:: include/drm/drm_crtc.h
309   :internal:
310
311.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
312   :export:
313
314Frame Buffer Abstraction
315========================
316
317.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
318   :doc: overview
319
320Frame Buffer Functions Reference
321--------------------------------
322
323.. kernel-doc:: include/drm/drm_framebuffer.h
324   :internal:
325
326.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
327   :export:
328
329DRM Format Handling
330===================
331
332.. kernel-doc:: include/uapi/drm/drm_fourcc.h
333   :doc: overview
334
335Format Functions Reference
336--------------------------
337
338.. kernel-doc:: include/drm/drm_fourcc.h
339   :internal:
340
341.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
342   :export:
343
344Dumb Buffer Objects
345===================
346
347.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c
348   :doc: overview
349
350Plane Abstraction
351=================
352
353.. kernel-doc:: drivers/gpu/drm/drm_plane.c
354   :doc: overview
355
356Plane Functions Reference
357-------------------------
358
359.. kernel-doc:: include/drm/drm_plane.h
360   :internal:
361
362.. kernel-doc:: drivers/gpu/drm/drm_plane.c
363   :export:
364
365Display Modes Function Reference
366================================
367
368.. kernel-doc:: include/drm/drm_modes.h
369   :internal:
370
371.. kernel-doc:: drivers/gpu/drm/drm_modes.c
372   :export:
373
374Connector Abstraction
375=====================
376
377.. kernel-doc:: drivers/gpu/drm/drm_connector.c
378   :doc: overview
379
380Connector Functions Reference
381-----------------------------
382
383.. kernel-doc:: include/drm/drm_connector.h
384   :internal:
385
386.. kernel-doc:: drivers/gpu/drm/drm_connector.c
387   :export:
388
389Writeback Connectors
390--------------------
391
392.. kernel-doc:: drivers/gpu/drm/drm_writeback.c
393  :doc: overview
394
395.. kernel-doc:: drivers/gpu/drm/drm_writeback.c
396  :export:
397
398Encoder Abstraction
399===================
400
401.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
402   :doc: overview
403
404Encoder Functions Reference
405---------------------------
406
407.. kernel-doc:: include/drm/drm_encoder.h
408   :internal:
409
410.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
411   :export:
412
413KMS Initialization and Cleanup
414==============================
415
416A KMS device is abstracted and exposed as a set of planes, CRTCs,
417encoders and connectors. KMS drivers must thus create and initialize all
418those objects at load time after initializing mode setting.
419
420CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
421--------------------------------------------
422
423A CRTC is an abstraction representing a part of the chip that contains a
424pointer to a scanout buffer. Therefore, the number of CRTCs available
425determines how many independent scanout buffers can be active at any
426given time. The CRTC structure contains several fields to support this:
427a pointer to some video memory (abstracted as a frame buffer object), a
428display mode, and an (x, y) offset into the video memory to support
429panning or configurations where one piece of video memory spans multiple
430CRTCs.
431
432CRTC Initialization
433~~~~~~~~~~~~~~~~~~~
434
435A KMS device must create and register at least one struct
436:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
437allocated and zeroed by the driver, possibly as part of a larger
438structure, and registered with a call to :c:func:`drm_crtc_init()`
439with a pointer to CRTC functions.
440
441
442Cleanup
443-------
444
445The DRM core manages its objects' lifetime. When an object is not needed
446anymore the core calls its destroy function, which must clean up and
447free every resource allocated for the object. Every
448:c:func:`drm_\*_init()` call must be matched with a corresponding
449:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
450(:c:func:`drm_crtc_cleanup()`), planes
451(:c:func:`drm_plane_cleanup()`), encoders
452(:c:func:`drm_encoder_cleanup()`) and connectors
453(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
454have been added to sysfs must be removed by a call to
455:c:func:`drm_connector_unregister()` before calling
456:c:func:`drm_connector_cleanup()`.
457
458Connectors state change detection must be cleanup up with a call to
459:c:func:`drm_kms_helper_poll_fini()`.
460
461Output discovery and initialization example
462-------------------------------------------
463
464.. code-block:: c
465
466    void intel_crt_init(struct drm_device *dev)
467    {
468        struct drm_connector *connector;
469        struct intel_output *intel_output;
470
471        intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
472        if (!intel_output)
473            return;
474
475        connector = &intel_output->base;
476        drm_connector_init(dev, &intel_output->base,
477                   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
478
479        drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
480                 DRM_MODE_ENCODER_DAC);
481
482        drm_connector_attach_encoder(&intel_output->base,
483                          &intel_output->enc);
484
485        /* Set up the DDC bus. */
486        intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
487        if (!intel_output->ddc_bus) {
488            dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
489                   "failed.\n");
490            return;
491        }
492
493        intel_output->type = INTEL_OUTPUT_ANALOG;
494        connector->interlace_allowed = 0;
495        connector->doublescan_allowed = 0;
496
497        drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
498        drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
499
500        drm_connector_register(connector);
501    }
502
503In the example above (taken from the i915 driver), a CRTC, connector and
504encoder combination is created. A device-specific i2c bus is also
505created for fetching EDID data and performing monitor detection. Once
506the process is complete, the new connector is registered with sysfs to
507make its properties available to applications.
508
509KMS Locking
510===========
511
512.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
513   :doc: kms locking
514
515.. kernel-doc:: include/drm/drm_modeset_lock.h
516   :internal:
517
518.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
519   :export:
520
521KMS Properties
522==============
523
524Property Types and Blob Property Support
525----------------------------------------
526
527.. kernel-doc:: drivers/gpu/drm/drm_property.c
528   :doc: overview
529
530.. kernel-doc:: include/drm/drm_property.h
531   :internal:
532
533.. kernel-doc:: drivers/gpu/drm/drm_property.c
534   :export:
535
536Standard Connector Properties
537-----------------------------
538
539.. kernel-doc:: drivers/gpu/drm/drm_connector.c
540   :doc: standard connector properties
541
542HDMI Specific Connector Properties
543----------------------------------
544
545.. kernel-doc:: drivers/gpu/drm/drm_connector.c
546   :doc: HDMI connector properties
547
548Plane Composition Properties
549----------------------------
550
551.. kernel-doc:: drivers/gpu/drm/drm_blend.c
552   :doc: overview
553
554.. kernel-doc:: drivers/gpu/drm/drm_blend.c
555   :export:
556
557FB_DAMAGE_CLIPS
558~~~~~~~~~~~~~~~
559
560.. kernel-doc:: drivers/gpu/drm/drm_damage_helper.c
561   :doc: overview
562
563.. kernel-doc:: drivers/gpu/drm/drm_damage_helper.c
564   :export:
565
566.. kernel-doc:: include/drm/drm_damage_helper.h
567   :internal:
568
569Color Management Properties
570---------------------------
571
572.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
573   :doc: overview
574
575.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
576   :export:
577
578Tile Group Property
579-------------------
580
581.. kernel-doc:: drivers/gpu/drm/drm_connector.c
582   :doc: Tile group
583
584Explicit Fencing Properties
585---------------------------
586
587.. kernel-doc:: drivers/gpu/drm/drm_atomic_uapi.c
588   :doc: explicit fencing properties
589
590
591Variable Refresh Properties
592---------------------------
593
594.. kernel-doc:: drivers/gpu/drm/drm_connector.c
595   :doc: Variable refresh properties
596
597Existing KMS Properties
598-----------------------
599
600The following table gives description of drm properties exposed by various
601modules/drivers. Because this table is very unwieldy, do not add any new
602properties here. Instead document them in a section above.
603
604.. csv-table::
605   :header-rows: 1
606   :file: kms-properties.csv
607
608Vertical Blanking
609=================
610
611.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
612   :doc: vblank handling
613
614Vertical Blanking and Interrupt Handling Functions Reference
615------------------------------------------------------------
616
617.. kernel-doc:: include/drm/drm_vblank.h
618   :internal:
619
620.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
621   :export:
622