xref: /openbmc/linux/Documentation/gpu/drm-kms.rst (revision 160b8e75)
1=========================
2Kernel Mode Setting (KMS)
3=========================
4
5Drivers must initialize the mode setting core by calling
6:c:func:`drm_mode_config_init()` on the DRM device. The function
7initializes the :c:type:`struct drm_device <drm_device>`
8mode_config field and never fails. Once done, mode configuration must
9be setup by initializing the following fields.
10
11-  int min_width, min_height; int max_width, max_height;
12   Minimum and maximum width and height of the frame buffers in pixel
13   units.
14
15-  struct drm_mode_config_funcs \*funcs;
16   Mode setting functions.
17
18Overview
19========
20
21.. kernel-render:: DOT
22   :alt: KMS Display Pipeline
23   :caption: KMS Display Pipeline Overview
24
25   digraph "KMS" {
26      node [shape=box]
27
28      subgraph cluster_static {
29          style=dashed
30          label="Static Objects"
31
32          node [bgcolor=grey style=filled]
33          "drm_plane A" -> "drm_crtc"
34          "drm_plane B" -> "drm_crtc"
35          "drm_crtc" -> "drm_encoder A"
36          "drm_crtc" -> "drm_encoder B"
37      }
38
39      subgraph cluster_user_created {
40          style=dashed
41          label="Userspace-Created"
42
43          node [shape=oval]
44          "drm_framebuffer 1" -> "drm_plane A"
45          "drm_framebuffer 2" -> "drm_plane B"
46      }
47
48      subgraph cluster_connector {
49          style=dashed
50          label="Hotpluggable"
51
52          "drm_encoder A" -> "drm_connector A"
53          "drm_encoder B" -> "drm_connector B"
54      }
55   }
56
57The basic object structure KMS presents to userspace is fairly simple.
58Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
59see `Frame Buffer Abstraction`_) feed into planes. One or more (or even no)
60planes feed their pixel data into a CRTC (represented by :c:type:`struct
61drm_crtc <drm_crtc>`, see `CRTC Abstraction`_) for blending. The precise
62blending step is explained in more detail in `Plane Composition Properties`_ and
63related chapters.
64
65For the output routing the first step is encoders (represented by
66:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
67are really just internal artifacts of the helper libraries used to implement KMS
68drivers. Besides that they make it unecessarily more complicated for userspace
69to figure out which connections between a CRTC and a connector are possible, and
70what kind of cloning is supported, they serve no purpose in the userspace API.
71Unfortunately encoders have been exposed to userspace, hence can't remove them
72at this point.  Futhermore the exposed restrictions are often wrongly set by
73drivers, and in many cases not powerful enough to express the real restrictions.
74A CRTC can be connected to multiple encoders, and for an active CRTC there must
75be at least one encoder.
76
77The final, and real, endpoint in the display chain is the connector (represented
78by :c:type:`struct drm_connector <drm_connector>`, see `Connector
79Abstraction`_). Connectors can have different possible encoders, but the kernel
80driver selects which encoder to use for each connector. The use case is DVI,
81which could switch between an analog and a digital encoder. Encoders can also
82drive multiple different connectors. There is exactly one active connector for
83every active encoder.
84
85Internally the output pipeline is a bit more complex and matches today's
86hardware more closely:
87
88.. kernel-render:: DOT
89   :alt: KMS Output Pipeline
90   :caption: KMS Output Pipeline
91
92   digraph "Output Pipeline" {
93      node [shape=box]
94
95      subgraph {
96          "drm_crtc" [bgcolor=grey style=filled]
97      }
98
99      subgraph cluster_internal {
100          style=dashed
101          label="Internal Pipeline"
102          {
103              node [bgcolor=grey style=filled]
104              "drm_encoder A";
105              "drm_encoder B";
106              "drm_encoder C";
107          }
108
109          {
110              node [bgcolor=grey style=filled]
111              "drm_encoder B" -> "drm_bridge B"
112              "drm_encoder C" -> "drm_bridge C1"
113              "drm_bridge C1" -> "drm_bridge C2";
114          }
115      }
116
117      "drm_crtc" -> "drm_encoder A"
118      "drm_crtc" -> "drm_encoder B"
119      "drm_crtc" -> "drm_encoder C"
120
121
122      subgraph cluster_output {
123          style=dashed
124          label="Outputs"
125
126          "drm_encoder A" -> "drm_connector A";
127          "drm_bridge B" -> "drm_connector B";
128          "drm_bridge C2" -> "drm_connector C";
129
130          "drm_panel"
131      }
132   }
133
134Internally two additional helper objects come into play. First, to be able to
135share code for encoders (sometimes on the same SoC, sometimes off-chip) one or
136more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge
137<drm_bridge>`) can be linked to an encoder. This link is static and cannot be
138changed, which means the cross-bar (if there is any) needs to be mapped between
139the CRTC and any encoders. Often for drivers with bridges there's no code left
140at the encoder level. Atomic drivers can leave out all the encoder callbacks to
141essentially only leave a dummy routing object behind, which is needed for
142backwards compatibility since encoders are exposed to userspace.
143
144The second object is for panels, represented by :c:type:`struct drm_panel
145<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding
146point, but are generally linked to the driver private structure that embeds
147:c:type:`struct drm_connector <drm_connector>`.
148
149Note that currently the bridge chaining and interactions with connectors and
150panels are still in-flux and not really fully sorted out yet.
151
152KMS Core Structures and Functions
153=================================
154
155.. kernel-doc:: include/drm/drm_mode_config.h
156   :internal:
157
158.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c
159   :export:
160
161Modeset Base Object Abstraction
162===============================
163
164.. kernel-render:: DOT
165   :alt: Mode Objects and Properties
166   :caption: Mode Objects and Properties
167
168   digraph {
169      node [shape=box]
170
171      "drm_property A" -> "drm_mode_object A"
172      "drm_property A" -> "drm_mode_object B"
173      "drm_property B" -> "drm_mode_object A"
174   }
175
176The base structure for all KMS objects is :c:type:`struct drm_mode_object
177<drm_mode_object>`. One of the base services it provides is tracking properties,
178which are especially important for the atomic IOCTL (see `Atomic Mode
179Setting`_). The somewhat surprising part here is that properties are not
180directly instantiated on each object, but free-standing mode objects themselves,
181represented by :c:type:`struct drm_property <drm_property>`, which only specify
182the type and value range of a property. Any given property can be attached
183multiple times to different objects using :c:func:`drm_object_attach_property()
184<drm_object_attach_property>`.
185
186.. kernel-doc:: include/drm/drm_mode_object.h
187   :internal:
188
189.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
190   :export:
191
192Atomic Mode Setting
193===================
194
195
196.. kernel-render:: DOT
197   :alt: Mode Objects and Properties
198   :caption: Mode Objects and Properties
199
200   digraph {
201      node [shape=box]
202
203      subgraph cluster_state {
204          style=dashed
205          label="Free-standing state"
206
207          "drm_atomic_state" -> "duplicated drm_plane_state A"
208          "drm_atomic_state" -> "duplicated drm_plane_state B"
209          "drm_atomic_state" -> "duplicated drm_crtc_state"
210          "drm_atomic_state" -> "duplicated drm_connector_state"
211          "drm_atomic_state" -> "duplicated driver private state"
212      }
213
214      subgraph cluster_current {
215          style=dashed
216          label="Current state"
217
218          "drm_device" -> "drm_plane A"
219          "drm_device" -> "drm_plane B"
220          "drm_device" -> "drm_crtc"
221          "drm_device" -> "drm_connector"
222          "drm_device" -> "driver private object"
223
224          "drm_plane A" -> "drm_plane_state A"
225          "drm_plane B" -> "drm_plane_state B"
226          "drm_crtc" -> "drm_crtc_state"
227          "drm_connector" -> "drm_connector_state"
228          "driver private object" -> "driver private state"
229      }
230
231      "drm_atomic_state" -> "drm_device" [label="atomic_commit"]
232      "duplicated drm_plane_state A" -> "drm_device"[style=invis]
233   }
234
235Atomic provides transactional modeset (including planes) updates, but a
236bit differently from the usual transactional approach of try-commit and
237rollback:
238
239- Firstly, no hardware changes are allowed when the commit would fail. This
240  allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows
241  userspace to explore whether certain configurations would work or not.
242
243- This would still allow setting and rollback of just the software state,
244  simplifying conversion of existing drivers. But auditing drivers for
245  correctness of the atomic_check code becomes really hard with that: Rolling
246  back changes in data structures all over the place is hard to get right.
247
248- Lastly, for backwards compatibility and to support all use-cases, atomic
249  updates need to be incremental and be able to execute in parallel. Hardware
250  doesn't always allow it, but where possible plane updates on different CRTCs
251  should not interfere, and not get stalled due to output routing changing on
252  different CRTCs.
253
254Taken all together there's two consequences for the atomic design:
255
256- The overall state is split up into per-object state structures:
257  :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct
258  drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct
259  drm_connector_state <drm_connector_state>` for connectors. These are the only
260  objects with userspace-visible and settable state. For internal state drivers
261  can subclass these structures through embeddeding, or add entirely new state
262  structures for their globally shared hardware functions.
263
264- An atomic update is assembled and validated as an entirely free-standing pile
265  of structures within the :c:type:`drm_atomic_state <drm_atomic_state>`
266  container. Driver private state structures are also tracked in the same
267  structure; see the next chapter.  Only when a state is committed is it applied
268  to the driver and modeset objects. This way rolling back an update boils down
269  to releasing memory and unreferencing objects like framebuffers.
270
271Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed
272coverage of specific topics.
273
274Handling Driver Private State
275-----------------------------
276
277.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
278   :doc: handling driver private state
279
280Atomic Mode Setting Function Reference
281--------------------------------------
282
283.. kernel-doc:: include/drm/drm_atomic.h
284   :internal:
285
286.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
287   :export:
288
289CRTC Abstraction
290================
291
292.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
293   :doc: overview
294
295CRTC Functions Reference
296--------------------------------
297
298.. kernel-doc:: include/drm/drm_crtc.h
299   :internal:
300
301.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
302   :export:
303
304Frame Buffer Abstraction
305========================
306
307.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
308   :doc: overview
309
310Frame Buffer Functions Reference
311--------------------------------
312
313.. kernel-doc:: include/drm/drm_framebuffer.h
314   :internal:
315
316.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
317   :export:
318
319DRM Format Handling
320===================
321
322.. kernel-doc:: include/drm/drm_fourcc.h
323   :internal:
324
325.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
326   :export:
327
328Dumb Buffer Objects
329===================
330
331.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c
332   :doc: overview
333
334Plane Abstraction
335=================
336
337.. kernel-doc:: drivers/gpu/drm/drm_plane.c
338   :doc: overview
339
340Plane Functions Reference
341-------------------------
342
343.. kernel-doc:: include/drm/drm_plane.h
344   :internal:
345
346.. kernel-doc:: drivers/gpu/drm/drm_plane.c
347   :export:
348
349Display Modes Function Reference
350================================
351
352.. kernel-doc:: include/drm/drm_modes.h
353   :internal:
354
355.. kernel-doc:: drivers/gpu/drm/drm_modes.c
356   :export:
357
358Connector Abstraction
359=====================
360
361.. kernel-doc:: drivers/gpu/drm/drm_connector.c
362   :doc: overview
363
364Connector Functions Reference
365-----------------------------
366
367.. kernel-doc:: include/drm/drm_connector.h
368   :internal:
369
370.. kernel-doc:: drivers/gpu/drm/drm_connector.c
371   :export:
372
373Encoder Abstraction
374===================
375
376.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
377   :doc: overview
378
379Encoder Functions Reference
380---------------------------
381
382.. kernel-doc:: include/drm/drm_encoder.h
383   :internal:
384
385.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
386   :export:
387
388KMS Initialization and Cleanup
389==============================
390
391A KMS device is abstracted and exposed as a set of planes, CRTCs,
392encoders and connectors. KMS drivers must thus create and initialize all
393those objects at load time after initializing mode setting.
394
395CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
396--------------------------------------------
397
398A CRTC is an abstraction representing a part of the chip that contains a
399pointer to a scanout buffer. Therefore, the number of CRTCs available
400determines how many independent scanout buffers can be active at any
401given time. The CRTC structure contains several fields to support this:
402a pointer to some video memory (abstracted as a frame buffer object), a
403display mode, and an (x, y) offset into the video memory to support
404panning or configurations where one piece of video memory spans multiple
405CRTCs.
406
407CRTC Initialization
408~~~~~~~~~~~~~~~~~~~
409
410A KMS device must create and register at least one struct
411:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
412allocated and zeroed by the driver, possibly as part of a larger
413structure, and registered with a call to :c:func:`drm_crtc_init()`
414with a pointer to CRTC functions.
415
416
417Cleanup
418-------
419
420The DRM core manages its objects' lifetime. When an object is not needed
421anymore the core calls its destroy function, which must clean up and
422free every resource allocated for the object. Every
423:c:func:`drm_\*_init()` call must be matched with a corresponding
424:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
425(:c:func:`drm_crtc_cleanup()`), planes
426(:c:func:`drm_plane_cleanup()`), encoders
427(:c:func:`drm_encoder_cleanup()`) and connectors
428(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
429have been added to sysfs must be removed by a call to
430:c:func:`drm_connector_unregister()` before calling
431:c:func:`drm_connector_cleanup()`.
432
433Connectors state change detection must be cleanup up with a call to
434:c:func:`drm_kms_helper_poll_fini()`.
435
436Output discovery and initialization example
437-------------------------------------------
438
439.. code-block:: c
440
441    void intel_crt_init(struct drm_device *dev)
442    {
443        struct drm_connector *connector;
444        struct intel_output *intel_output;
445
446        intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
447        if (!intel_output)
448            return;
449
450        connector = &intel_output->base;
451        drm_connector_init(dev, &intel_output->base,
452                   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
453
454        drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
455                 DRM_MODE_ENCODER_DAC);
456
457        drm_mode_connector_attach_encoder(&intel_output->base,
458                          &intel_output->enc);
459
460        /* Set up the DDC bus. */
461        intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
462        if (!intel_output->ddc_bus) {
463            dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
464                   "failed.\n");
465            return;
466        }
467
468        intel_output->type = INTEL_OUTPUT_ANALOG;
469        connector->interlace_allowed = 0;
470        connector->doublescan_allowed = 0;
471
472        drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
473        drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
474
475        drm_connector_register(connector);
476    }
477
478In the example above (taken from the i915 driver), a CRTC, connector and
479encoder combination is created. A device-specific i2c bus is also
480created for fetching EDID data and performing monitor detection. Once
481the process is complete, the new connector is registered with sysfs to
482make its properties available to applications.
483
484KMS Locking
485===========
486
487.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
488   :doc: kms locking
489
490.. kernel-doc:: include/drm/drm_modeset_lock.h
491   :internal:
492
493.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
494   :export:
495
496KMS Properties
497==============
498
499Property Types and Blob Property Support
500----------------------------------------
501
502.. kernel-doc:: drivers/gpu/drm/drm_property.c
503   :doc: overview
504
505.. kernel-doc:: include/drm/drm_property.h
506   :internal:
507
508.. kernel-doc:: drivers/gpu/drm/drm_property.c
509   :export:
510
511Standard Connector Properties
512-----------------------------
513
514.. kernel-doc:: drivers/gpu/drm/drm_connector.c
515   :doc: standard connector properties
516
517Plane Composition Properties
518----------------------------
519
520.. kernel-doc:: drivers/gpu/drm/drm_blend.c
521   :doc: overview
522
523.. kernel-doc:: drivers/gpu/drm/drm_blend.c
524   :export:
525
526Color Management Properties
527---------------------------
528
529.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
530   :doc: overview
531
532.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
533   :export:
534
535Tile Group Property
536-------------------
537
538.. kernel-doc:: drivers/gpu/drm/drm_connector.c
539   :doc: Tile group
540
541Explicit Fencing Properties
542---------------------------
543
544.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
545   :doc: explicit fencing properties
546
547Existing KMS Properties
548-----------------------
549
550The following table gives description of drm properties exposed by various
551modules/drivers. Because this table is very unwieldy, do not add any new
552properties here. Instead document them in a section above.
553
554.. csv-table::
555   :header-rows: 1
556   :file: kms-properties.csv
557
558Vertical Blanking
559=================
560
561.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
562   :doc: vblank handling
563
564Vertical Blanking and Interrupt Handling Functions Reference
565------------------------------------------------------------
566
567.. kernel-doc:: include/drm/drm_vblank.h
568   :internal:
569
570.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
571   :export:
572