1===============
2Pathname lookup
3===============
4
5This write-up is based on three articles published at lwn.net:
6
7- <https://lwn.net/Articles/649115/> Pathname lookup in Linux
8- <https://lwn.net/Articles/649729/> RCU-walk: faster pathname lookup in Linux
9- <https://lwn.net/Articles/650786/> A walk among the symlinks
10
11Written by Neil Brown with help from Al Viro and Jon Corbet.
12It has subsequently been updated to reflect changes in the kernel
13including:
14
15- per-directory parallel name lookup.
16- ``openat2()`` resolution restriction flags.
17
18Introduction to pathname lookup
19===============================
20
21The most obvious aspect of pathname lookup, which very little
22exploration is needed to discover, is that it is complex.  There are
23many rules, special cases, and implementation alternatives that all
24combine to confuse the unwary reader.  Computer science has long been
25acquainted with such complexity and has tools to help manage it.  One
26tool that we will make extensive use of is "divide and conquer".  For
27the early parts of the analysis we will divide off symlinks - leaving
28them until the final part.  Well before we get to symlinks we have
29another major division based on the VFS's approach to locking which
30will allow us to review "REF-walk" and "RCU-walk" separately.  But we
31are getting ahead of ourselves.  There are some important low level
32distinctions we need to clarify first.
33
34There are two sorts of ...
35--------------------------
36
37.. _openat: http://man7.org/linux/man-pages/man2/openat.2.html
38
39Pathnames (sometimes "file names"), used to identify objects in the
40filesystem, will be familiar to most readers.  They contain two sorts
41of elements: "slashes" that are sequences of one or more "``/``"
42characters, and "components" that are sequences of one or more
43non-"``/``" characters.  These form two kinds of paths.  Those that
44start with slashes are "absolute" and start from the filesystem root.
45The others are "relative" and start from the current directory, or
46from some other location specified by a file descriptor given to
47"``*at()``" system calls such as `openat() <openat_>`_.
48
49.. _execveat: http://man7.org/linux/man-pages/man2/execveat.2.html
50
51It is tempting to describe the second kind as starting with a
52component, but that isn't always accurate: a pathname can lack both
53slashes and components, it can be empty, in other words.  This is
54generally forbidden in POSIX, but some of those "``*at()``" system calls
55in Linux permit it when the ``AT_EMPTY_PATH`` flag is given.  For
56example, if you have an open file descriptor on an executable file you
57can execute it by calling `execveat() <execveat_>`_ passing
58the file descriptor, an empty path, and the ``AT_EMPTY_PATH`` flag.
59
60These paths can be divided into two sections: the final component and
61everything else.  The "everything else" is the easy bit.  In all cases
62it must identify a directory that already exists, otherwise an error
63such as ``ENOENT`` or ``ENOTDIR`` will be reported.
64
65The final component is not so simple.  Not only do different system
66calls interpret it quite differently (e.g. some create it, some do
67not), but it might not even exist: neither the empty pathname nor the
68pathname that is just slashes have a final component.  If it does
69exist, it could be "``.``" or "``..``" which are handled quite differently
70from other components.
71
72.. _POSIX: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_12
73
74If a pathname ends with a slash, such as "``/tmp/foo/``" it might be
75tempting to consider that to have an empty final component.  In many
76ways that would lead to correct results, but not always.  In
77particular, ``mkdir()`` and ``rmdir()`` each create or remove a directory named
78by the final component, and they are required to work with pathnames
79ending in "``/``".  According to POSIX_:
80
81  A pathname that contains at least one non-<slash> character and
82  that ends with one or more trailing <slash> characters shall not
83  be resolved successfully unless the last pathname component before
84  the trailing <slash> characters names an existing directory or a
85  directory entry that is to be created for a directory immediately
86  after the pathname is resolved.
87
88The Linux pathname walking code (mostly in ``fs/namei.c``) deals with
89all of these issues: breaking the path into components, handling the
90"everything else" quite separately from the final component, and
91checking that the trailing slash is not used where it isn't
92permitted.  It also addresses the important issue of concurrent
93access.
94
95While one process is looking up a pathname, another might be making
96changes that affect that lookup.  One fairly extreme case is that if
97"a/b" were renamed to "a/c/b" while another process were looking up
98"a/b/..", that process might successfully resolve on "a/c".
99Most races are much more subtle, and a big part of the task of
100pathname lookup is to prevent them from having damaging effects.  Many
101of the possible races are seen most clearly in the context of the
102"dcache" and an understanding of that is central to understanding
103pathname lookup.
104
105More than just a cache
106----------------------
107
108The "dcache" caches information about names in each filesystem to
109make them quickly available for lookup.  Each entry (known as a
110"dentry") contains three significant fields: a component name, a
111pointer to a parent dentry, and a pointer to the "inode" which
112contains further information about the object in that parent with
113the given name.  The inode pointer can be ``NULL`` indicating that the
114name doesn't exist in the parent.  While there can be linkage in the
115dentry of a directory to the dentries of the children, that linkage is
116not used for pathname lookup, and so will not be considered here.
117
118The dcache has a number of uses apart from accelerating lookup.  One
119that will be particularly relevant is that it is closely integrated
120with the mount table that records which filesystem is mounted where.
121What the mount table actually stores is which dentry is mounted on top
122of which other dentry.
123
124When considering the dcache, we have another of our "two types"
125distinctions: there are two types of filesystems.
126
127Some filesystems ensure that the information in the dcache is always
128completely accurate (though not necessarily complete).  This can allow
129the VFS to determine if a particular file does or doesn't exist
130without checking with the filesystem, and means that the VFS can
131protect the filesystem against certain races and other problems.
132These are typically "local" filesystems such as ext3, XFS, and Btrfs.
133
134Other filesystems don't provide that guarantee because they cannot.
135These are typically filesystems that are shared across a network,
136whether remote filesystems like NFS and 9P, or cluster filesystems
137like ocfs2 or cephfs.  These filesystems allow the VFS to revalidate
138cached information, and must provide their own protection against
139awkward races.  The VFS can detect these filesystems by the
140``DCACHE_OP_REVALIDATE`` flag being set in the dentry.
141
142REF-walk: simple concurrency management with refcounts and spinlocks
143--------------------------------------------------------------------
144
145With all of those divisions carefully classified, we can now start
146looking at the actual process of walking along a path.  In particular
147we will start with the handling of the "everything else" part of a
148pathname, and focus on the "REF-walk" approach to concurrency
149management.  This code is found in the ``link_path_walk()`` function, if
150you ignore all the places that only run when "``LOOKUP_RCU``"
151(indicating the use of RCU-walk) is set.
152
153.. _Meet the Lockers: https://lwn.net/Articles/453685/
154
155REF-walk is fairly heavy-handed with locks and reference counts.  Not
156as heavy-handed as in the old "big kernel lock" days, but certainly not
157afraid of taking a lock when one is needed.  It uses a variety of
158different concurrency controls.  A background understanding of the
159various primitives is assumed, or can be gleaned from elsewhere such
160as in `Meet the Lockers`_.
161
162The locking mechanisms used by REF-walk include:
163
164dentry->d_lockref
165~~~~~~~~~~~~~~~~~
166
167This uses the lockref primitive to provide both a spinlock and a
168reference count.  The special-sauce of this primitive is that the
169conceptual sequence "lock; inc_ref; unlock;" can often be performed
170with a single atomic memory operation.
171
172Holding a reference on a dentry ensures that the dentry won't suddenly
173be freed and used for something else, so the values in various fields
174will behave as expected.  It also protects the ``->d_inode`` reference
175to the inode to some extent.
176
177The association between a dentry and its inode is fairly permanent.
178For example, when a file is renamed, the dentry and inode move
179together to the new location.  When a file is created the dentry will
180initially be negative (i.e. ``d_inode`` is ``NULL``), and will be assigned
181to the new inode as part of the act of creation.
182
183When a file is deleted, this can be reflected in the cache either by
184setting ``d_inode`` to ``NULL``, or by removing it from the hash table
185(described shortly) used to look up the name in the parent directory.
186If the dentry is still in use the second option is used as it is
187perfectly legal to keep using an open file after it has been deleted
188and having the dentry around helps.  If the dentry is not otherwise in
189use (i.e. if the refcount in ``d_lockref`` is one), only then will
190``d_inode`` be set to ``NULL``.  Doing it this way is more efficient for a
191very common case.
192
193So as long as a counted reference is held to a dentry, a non-``NULL`` ``->d_inode``
194value will never be changed.
195
196dentry->d_lock
197~~~~~~~~~~~~~~
198
199``d_lock`` is a synonym for the spinlock that is part of ``d_lockref`` above.
200For our purposes, holding this lock protects against the dentry being
201renamed or unlinked.  In particular, its parent (``d_parent``), and its
202name (``d_name``) cannot be changed, and it cannot be removed from the
203dentry hash table.
204
205When looking for a name in a directory, REF-walk takes ``d_lock`` on
206each candidate dentry that it finds in the hash table and then checks
207that the parent and name are correct.  So it doesn't lock the parent
208while searching in the cache; it only locks children.
209
210When looking for the parent for a given name (to handle "``..``"),
211REF-walk can take ``d_lock`` to get a stable reference to ``d_parent``,
212but it first tries a more lightweight approach.  As seen in
213``dget_parent()``, if a reference can be claimed on the parent, and if
214subsequently ``d_parent`` can be seen to have not changed, then there is
215no need to actually take the lock on the child.
216
217rename_lock
218~~~~~~~~~~~
219
220Looking up a given name in a given directory involves computing a hash
221from the two values (the name and the dentry of the directory),
222accessing that slot in a hash table, and searching the linked list
223that is found there.
224
225When a dentry is renamed, the name and the parent dentry can both
226change so the hash will almost certainly change too.  This would move the
227dentry to a different chain in the hash table.  If a filename search
228happened to be looking at a dentry that was moved in this way,
229it might end up continuing the search down the wrong chain,
230and so miss out on part of the correct chain.
231
232The name-lookup process (``d_lookup()``) does *not* try to prevent this
233from happening, but only to detect when it happens.
234``rename_lock`` is a seqlock that is updated whenever any dentry is
235renamed.  If ``d_lookup`` finds that a rename happened while it
236unsuccessfully scanned a chain in the hash table, it simply tries
237again.
238
239``rename_lock`` is also used to detect and defend against potential attacks
240against ``LOOKUP_BENEATH`` and ``LOOKUP_IN_ROOT`` when resolving ".." (where
241the parent directory is moved outside the root, bypassing the ``path_equal()``
242check). If ``rename_lock`` is updated during the lookup and the path encounters
243a "..", a potential attack occurred and ``handle_dots()`` will bail out with
244``-EAGAIN``.
245
246inode->i_rwsem
247~~~~~~~~~~~~~~
248
249``i_rwsem`` is a read/write semaphore that serializes all changes to a particular
250directory.  This ensures that, for example, an ``unlink()`` and a ``rename()``
251cannot both happen at the same time.  It also keeps the directory
252stable while the filesystem is asked to look up a name that is not
253currently in the dcache or, optionally, when the list of entries in a
254directory is being retrieved with ``readdir()``.
255
256This has a complementary role to that of ``d_lock``: ``i_rwsem`` on a
257directory protects all of the names in that directory, while ``d_lock``
258on a name protects just one name in a directory.  Most changes to the
259dcache hold ``i_rwsem`` on the relevant directory inode and briefly take
260``d_lock`` on one or more the dentries while the change happens.  One
261exception is when idle dentries are removed from the dcache due to
262memory pressure.  This uses ``d_lock``, but ``i_rwsem`` plays no role.
263
264The semaphore affects pathname lookup in two distinct ways.  Firstly it
265prevents changes during lookup of a name in a directory.  ``walk_component()`` uses
266``lookup_fast()`` first which, in turn, checks to see if the name is in the cache,
267using only ``d_lock`` locking.  If the name isn't found, then ``walk_component()``
268falls back to ``lookup_slow()`` which takes a shared lock on ``i_rwsem``, checks again that
269the name isn't in the cache, and then calls in to the filesystem to get a
270definitive answer.  A new dentry will be added to the cache regardless of
271the result.
272
273Secondly, when pathname lookup reaches the final component, it will
274sometimes need to take an exclusive lock on ``i_rwsem`` before performing the last lookup so
275that the required exclusion can be achieved.  How path lookup chooses
276to take, or not take, ``i_rwsem`` is one of the
277issues addressed in a subsequent section.
278
279If two threads attempt to look up the same name at the same time - a
280name that is not yet in the dcache - the shared lock on ``i_rwsem`` will
281not prevent them both adding new dentries with the same name.  As this
282would result in confusion an extra level of interlocking is used,
283based around a secondary hash table (``in_lookup_hashtable``) and a
284per-dentry flag bit (``DCACHE_PAR_LOOKUP``).
285
286To add a new dentry to the cache while only holding a shared lock on
287``i_rwsem``, a thread must call ``d_alloc_parallel()``.  This allocates a
288dentry, stores the required name and parent in it, checks if there
289is already a matching dentry in the primary or secondary hash
290tables, and if not, stores the newly allocated dentry in the secondary
291hash table, with ``DCACHE_PAR_LOOKUP`` set.
292
293If a matching dentry was found in the primary hash table then that is
294returned and the caller can know that it lost a race with some other
295thread adding the entry.  If no matching dentry is found in either
296cache, the newly allocated dentry is returned and the caller can
297detect this from the presence of ``DCACHE_PAR_LOOKUP``.  In this case it
298knows that it has won any race and now is responsible for asking the
299filesystem to perform the lookup and find the matching inode.  When
300the lookup is complete, it must call ``d_lookup_done()`` which clears
301the flag and does some other house keeping, including removing the
302dentry from the secondary hash table - it will normally have been
303added to the primary hash table already.  Note that a ``struct
304waitqueue_head`` is passed to ``d_alloc_parallel()``, and
305``d_lookup_done()`` must be called while this ``waitqueue_head`` is still
306in scope.
307
308If a matching dentry is found in the secondary hash table,
309``d_alloc_parallel()`` has a little more work to do. It first waits for
310``DCACHE_PAR_LOOKUP`` to be cleared, using a wait_queue that was passed
311to the instance of ``d_alloc_parallel()`` that won the race and that
312will be woken by the call to ``d_lookup_done()``.  It then checks to see
313if the dentry has now been added to the primary hash table.  If it
314has, the dentry is returned and the caller just sees that it lost any
315race.  If it hasn't been added to the primary hash table, the most
316likely explanation is that some other dentry was added instead using
317``d_splice_alias()``.  In any case, ``d_alloc_parallel()`` repeats all the
318look ups from the start and will normally return something from the
319primary hash table.
320
321mnt->mnt_count
322~~~~~~~~~~~~~~
323
324``mnt_count`` is a per-CPU reference counter on "``mount``" structures.
325Per-CPU here means that incrementing the count is cheap as it only
326uses CPU-local memory, but checking if the count is zero is expensive as
327it needs to check with every CPU.  Taking a ``mnt_count`` reference
328prevents the mount structure from disappearing as the result of regular
329unmount operations, but does not prevent a "lazy" unmount.  So holding
330``mnt_count`` doesn't ensure that the mount remains in the namespace and,
331in particular, doesn't stabilize the link to the mounted-on dentry.  It
332does, however, ensure that the ``mount`` data structure remains coherent,
333and it provides a reference to the root dentry of the mounted
334filesystem.  So a reference through ``->mnt_count`` provides a stable
335reference to the mounted dentry, but not the mounted-on dentry.
336
337mount_lock
338~~~~~~~~~~
339
340``mount_lock`` is a global seqlock, a bit like ``rename_lock``.  It can be used to
341check if any change has been made to any mount points.
342
343While walking down the tree (away from the root) this lock is used when
344crossing a mount point to check that the crossing was safe.  That is,
345the value in the seqlock is read, then the code finds the mount that
346is mounted on the current directory, if there is one, and increments
347the ``mnt_count``.  Finally the value in ``mount_lock`` is checked against
348the old value.  If there is no change, then the crossing was safe.  If there
349was a change, the ``mnt_count`` is decremented and the whole process is
350retried.
351
352When walking up the tree (towards the root) by following a ".." link,
353a little more care is needed.  In this case the seqlock (which
354contains both a counter and a spinlock) is fully locked to prevent
355any changes to any mount points while stepping up.  This locking is
356needed to stabilize the link to the mounted-on dentry, which the
357refcount on the mount itself doesn't ensure.
358
359``mount_lock`` is also used to detect and defend against potential attacks
360against ``LOOKUP_BENEATH`` and ``LOOKUP_IN_ROOT`` when resolving ".." (where
361the parent directory is moved outside the root, bypassing the ``path_equal()``
362check). If ``mount_lock`` is updated during the lookup and the path encounters
363a "..", a potential attack occurred and ``handle_dots()`` will bail out with
364``-EAGAIN``.
365
366RCU
367~~~
368
369Finally the global (but extremely lightweight) RCU read lock is held
370from time to time to ensure certain data structures don't get freed
371unexpectedly.
372
373In particular it is held while scanning chains in the dcache hash
374table, and the mount point hash table.
375
376Bringing it together with ``struct nameidata``
377----------------------------------------------
378
379.. _First edition Unix: https://minnie.tuhs.org/cgi-bin/utree.pl?file=V1/u2.s
380
381Throughout the process of walking a path, the current status is stored
382in a ``struct nameidata``, "namei" being the traditional name - dating
383all the way back to `First Edition Unix`_ - of the function that
384converts a "name" to an "inode".  ``struct nameidata`` contains (among
385other fields):
386
387``struct path path``
388~~~~~~~~~~~~~~~~~~~~
389
390A ``path`` contains a ``struct vfsmount`` (which is
391embedded in a ``struct mount``) and a ``struct dentry``.  Together these
392record the current status of the walk.  They start out referring to the
393starting point (the current working directory, the root directory, or some other
394directory identified by a file descriptor), and are updated on each
395step.  A reference through ``d_lockref`` and ``mnt_count`` is always
396held.
397
398``struct qstr last``
399~~~~~~~~~~~~~~~~~~~~
400
401This is a string together with a length (i.e. *not* ``nul`` terminated)
402that is the "next" component in the pathname.
403
404``int last_type``
405~~~~~~~~~~~~~~~~~
406
407This is one of ``LAST_NORM``, ``LAST_ROOT``, ``LAST_DOT`` or ``LAST_DOTDOT``.
408The ``last`` field is only valid if the type is ``LAST_NORM``.
409
410``struct path root``
411~~~~~~~~~~~~~~~~~~~~
412
413This is used to hold a reference to the effective root of the
414filesystem.  Often that reference won't be needed, so this field is
415only assigned the first time it is used, or when a non-standard root
416is requested.  Keeping a reference in the ``nameidata`` ensures that
417only one root is in effect for the entire path walk, even if it races
418with a ``chroot()`` system call.
419
420It should be noted that in the case of ``LOOKUP_IN_ROOT`` or
421``LOOKUP_BENEATH``, the effective root becomes the directory file descriptor
422passed to ``openat2()`` (which exposes these ``LOOKUP_`` flags).
423
424The root is needed when either of two conditions holds: (1) either the
425pathname or a symbolic link starts with a "'/'", or (2) a "``..``"
426component is being handled, since "``..``" from the root must always stay
427at the root.  The value used is usually the current root directory of
428the calling process.  An alternate root can be provided as when
429``sysctl()`` calls ``file_open_root()``, and when NFSv4 or Btrfs call
430``mount_subtree()``.  In each case a pathname is being looked up in a very
431specific part of the filesystem, and the lookup must not be allowed to
432escape that subtree.  It works a bit like a local ``chroot()``.
433
434Ignoring the handling of symbolic links, we can now describe the
435"``link_path_walk()``" function, which handles the lookup of everything
436except the final component as:
437
438   Given a path (``name``) and a nameidata structure (``nd``), check that the
439   current directory has execute permission and then advance ``name``
440   over one component while updating ``last_type`` and ``last``.  If that
441   was the final component, then return, otherwise call
442   ``walk_component()`` and repeat from the top.
443
444``walk_component()`` is even easier.  If the component is ``LAST_DOTS``,
445it calls ``handle_dots()`` which does the necessary locking as already
446described.  If it finds a ``LAST_NORM`` component it first calls
447"``lookup_fast()``" which only looks in the dcache, but will ask the
448filesystem to revalidate the result if it is that sort of filesystem.
449If that doesn't get a good result, it calls "``lookup_slow()``" which
450takes ``i_rwsem``, rechecks the cache, and then asks the filesystem
451to find a definitive answer.
452
453As the last step of ``walk_component()``, ``step_into()`` will be called either
454directly from walk_component() or from handle_dots().  It calls
455``handle_mounts()``, to check and handle mount points, in which a new
456``struct path`` is created containing a counted reference to the new dentry and
457a reference to the new ``vfsmount`` which is only counted if it is
458different from the previous ``vfsmount``. Then if there is
459a symbolic link, ``step_into()`` calls ``pick_link()`` to deal with it,
460otherwise it installs the new ``struct path`` in the ``struct nameidata``, and
461drops the unneeded references.
462
463This "hand-over-hand" sequencing of getting a reference to the new
464dentry before dropping the reference to the previous dentry may
465seem obvious, but is worth pointing out so that we will recognize its
466analogue in the "RCU-walk" version.
467
468Handling the final component
469----------------------------
470
471``link_path_walk()`` only walks as far as setting ``nd->last`` and
472``nd->last_type`` to refer to the final component of the path.  It does
473not call ``walk_component()`` that last time.  Handling that final
474component remains for the caller to sort out. Those callers are
475``path_lookupat()``, ``path_parentat()`` and
476``path_openat()`` each of which handles the differing requirements of
477different system calls.
478
479``path_parentat()`` is clearly the simplest - it just wraps a little bit
480of housekeeping around ``link_path_walk()`` and returns the parent
481directory and final component to the caller.  The caller will be either
482aiming to create a name (via ``filename_create()``) or remove or rename
483a name (in which case ``user_path_parent()`` is used).  They will use
484``i_rwsem`` to exclude other changes while they validate and then
485perform their operation.
486
487``path_lookupat()`` is nearly as simple - it is used when an existing
488object is wanted such as by ``stat()`` or ``chmod()``.  It essentially just
489calls ``walk_component()`` on the final component through a call to
490``lookup_last()``.  ``path_lookupat()`` returns just the final dentry.
491It is worth noting that when flag ``LOOKUP_MOUNTPOINT`` is set,
492``path_lookupat()`` will unset LOOKUP_JUMPED in nameidata so that in the
493subsequent path traversal ``d_weak_revalidate()`` won't be called.
494This is important when unmounting a filesystem that is inaccessible, such as
495one provided by a dead NFS server.
496
497Finally ``path_openat()`` is used for the ``open()`` system call; it
498contains, in support functions starting with "``open_last_lookups()``", all the
499complexity needed to handle the different subtleties of O_CREAT (with
500or without O_EXCL), final "``/``" characters, and trailing symbolic
501links.  We will revisit this in the final part of this series, which
502focuses on those symbolic links.  "``open_last_lookups()``" will sometimes, but
503not always, take ``i_rwsem``, depending on what it finds.
504
505Each of these, or the functions which call them, need to be alert to
506the possibility that the final component is not ``LAST_NORM``.  If the
507goal of the lookup is to create something, then any value for
508``last_type`` other than ``LAST_NORM`` will result in an error.  For
509example if ``path_parentat()`` reports ``LAST_DOTDOT``, then the caller
510won't try to create that name.  They also check for trailing slashes
511by testing ``last.name[last.len]``.  If there is any character beyond
512the final component, it must be a trailing slash.
513
514Revalidation and automounts
515---------------------------
516
517Apart from symbolic links, there are only two parts of the "REF-walk"
518process not yet covered.  One is the handling of stale cache entries
519and the other is automounts.
520
521On filesystems that require it, the lookup routines will call the
522``->d_revalidate()`` dentry method to ensure that the cached information
523is current.  This will often confirm validity or update a few details
524from a server.  In some cases it may find that there has been change
525further up the path and that something that was thought to be valid
526previously isn't really.  When this happens the lookup of the whole
527path is aborted and retried with the "``LOOKUP_REVAL``" flag set.  This
528forces revalidation to be more thorough.  We will see more details of
529this retry process in the next article.
530
531Automount points are locations in the filesystem where an attempt to
532lookup a name can trigger changes to how that lookup should be
533handled, in particular by mounting a filesystem there.  These are
534covered in greater detail in autofs.txt in the Linux documentation
535tree, but a few notes specifically related to path lookup are in order
536here.
537
538The Linux VFS has a concept of "managed" dentries.  There are three
539potentially interesting things about these dentries corresponding
540to three different flags that might be set in ``dentry->d_flags``:
541
542``DCACHE_MANAGE_TRANSIT``
543~~~~~~~~~~~~~~~~~~~~~~~~~
544
545If this flag has been set, then the filesystem has requested that the
546``d_manage()`` dentry operation be called before handling any possible
547mount point.  This can perform two particular services:
548
549It can block to avoid races.  If an automount point is being
550unmounted, the ``d_manage()`` function will usually wait for that
551process to complete before letting the new lookup proceed and possibly
552trigger a new automount.
553
554It can selectively allow only some processes to transit through a
555mount point.  When a server process is managing automounts, it may
556need to access a directory without triggering normal automount
557processing.  That server process can identify itself to the ``autofs``
558filesystem, which will then give it a special pass through
559``d_manage()`` by returning ``-EISDIR``.
560
561``DCACHE_MOUNTED``
562~~~~~~~~~~~~~~~~~~
563
564This flag is set on every dentry that is mounted on.  As Linux
565supports multiple filesystem namespaces, it is possible that the
566dentry may not be mounted on in *this* namespace, just in some
567other.  So this flag is seen as a hint, not a promise.
568
569If this flag is set, and ``d_manage()`` didn't return ``-EISDIR``,
570``lookup_mnt()`` is called to examine the mount hash table (honoring the
571``mount_lock`` described earlier) and possibly return a new ``vfsmount``
572and a new ``dentry`` (both with counted references).
573
574``DCACHE_NEED_AUTOMOUNT``
575~~~~~~~~~~~~~~~~~~~~~~~~~
576
577If ``d_manage()`` allowed us to get this far, and ``lookup_mnt()`` didn't
578find a mount point, then this flag causes the ``d_automount()`` dentry
579operation to be called.
580
581The ``d_automount()`` operation can be arbitrarily complex and may
582communicate with server processes etc. but it should ultimately either
583report that there was an error, that there was nothing to mount, or
584should provide an updated ``struct path`` with new ``dentry`` and ``vfsmount``.
585
586In the latter case, ``finish_automount()`` will be called to safely
587install the new mount point into the mount table.
588
589There is no new locking of import here and it is important that no
590locks (only counted references) are held over this processing due to
591the very real possibility of extended delays.
592This will become more important next time when we examine RCU-walk
593which is particularly sensitive to delays.
594
595RCU-walk - faster pathname lookup in Linux
596==========================================
597
598RCU-walk is another algorithm for performing pathname lookup in Linux.
599It is in many ways similar to REF-walk and the two share quite a bit
600of code.  The significant difference in RCU-walk is how it allows for
601the possibility of concurrent access.
602
603We noted that REF-walk is complex because there are numerous details
604and special cases.  RCU-walk reduces this complexity by simply
605refusing to handle a number of cases -- it instead falls back to
606REF-walk.  The difficulty with RCU-walk comes from a different
607direction: unfamiliarity.  The locking rules when depending on RCU are
608quite different from traditional locking, so we will spend a little extra
609time when we come to those.
610
611Clear demarcation of roles
612--------------------------
613
614The easiest way to manage concurrency is to forcibly stop any other
615thread from changing the data structures that a given thread is
616looking at.  In cases where no other thread would even think of
617changing the data and lots of different threads want to read at the
618same time, this can be very costly.  Even when using locks that permit
619multiple concurrent readers, the simple act of updating the count of
620the number of current readers can impose an unwanted cost.  So the
621goal when reading a shared data structure that no other process is
622changing is to avoid writing anything to memory at all.  Take no
623locks, increment no counts, leave no footprints.
624
625The REF-walk mechanism already described certainly doesn't follow this
626principle, but then it is really designed to work when there may well
627be other threads modifying the data.  RCU-walk, in contrast, is
628designed for the common situation where there are lots of frequent
629readers and only occasional writers.  This may not be common in all
630parts of the filesystem tree, but in many parts it will be.  For the
631other parts it is important that RCU-walk can quickly fall back to
632using REF-walk.
633
634Pathname lookup always starts in RCU-walk mode but only remains there
635as long as what it is looking for is in the cache and is stable.  It
636dances lightly down the cached filesystem image, leaving no footprints
637and carefully watching where it is, to be sure it doesn't trip.  If it
638notices that something has changed or is changing, or if something
639isn't in the cache, then it tries to stop gracefully and switch to
640REF-walk.
641
642This stopping requires getting a counted reference on the current
643``vfsmount`` and ``dentry``, and ensuring that these are still valid -
644that a path walk with REF-walk would have found the same entries.
645This is an invariant that RCU-walk must guarantee.  It can only make
646decisions, such as selecting the next step, that are decisions which
647REF-walk could also have made if it were walking down the tree at the
648same time.  If the graceful stop succeeds, the rest of the path is
649processed with the reliable, if slightly sluggish, REF-walk.  If
650RCU-walk finds it cannot stop gracefully, it simply gives up and
651restarts from the top with REF-walk.
652
653This pattern of "try RCU-walk, if that fails try REF-walk" can be
654clearly seen in functions like ``filename_lookup()``,
655``filename_parentat()``,
656``do_filp_open()``, and ``do_file_open_root()``.  These four
657correspond roughly to the three ``path_*()`` functions we met earlier,
658each of which calls ``link_path_walk()``.  The ``path_*()`` functions are
659called using different mode flags until a mode is found which works.
660They are first called with ``LOOKUP_RCU`` set to request "RCU-walk".  If
661that fails with the error ``ECHILD`` they are called again with no
662special flag to request "REF-walk".  If either of those report the
663error ``ESTALE`` a final attempt is made with ``LOOKUP_REVAL`` set (and no
664``LOOKUP_RCU``) to ensure that entries found in the cache are forcibly
665revalidated - normally entries are only revalidated if the filesystem
666determines that they are too old to trust.
667
668The ``LOOKUP_RCU`` attempt may drop that flag internally and switch to
669REF-walk, but will never then try to switch back to RCU-walk.  Places
670that trip up RCU-walk are much more likely to be near the leaves and
671so it is very unlikely that there will be much, if any, benefit from
672switching back.
673
674RCU and seqlocks: fast and light
675--------------------------------
676
677RCU is, unsurprisingly, critical to RCU-walk mode.  The
678``rcu_read_lock()`` is held for the entire time that RCU-walk is walking
679down a path.  The particular guarantee it provides is that the key
680data structures - dentries, inodes, super_blocks, and mounts - will
681not be freed while the lock is held.  They might be unlinked or
682invalidated in one way or another, but the memory will not be
683repurposed so values in various fields will still be meaningful.  This
684is the only guarantee that RCU provides; everything else is done using
685seqlocks.
686
687As we saw above, REF-walk holds a counted reference to the current
688dentry and the current vfsmount, and does not release those references
689before taking references to the "next" dentry or vfsmount.  It also
690sometimes takes the ``d_lock`` spinlock.  These references and locks are
691taken to prevent certain changes from happening.  RCU-walk must not
692take those references or locks and so cannot prevent such changes.
693Instead, it checks to see if a change has been made, and aborts or
694retries if it has.
695
696To preserve the invariant mentioned above (that RCU-walk may only make
697decisions that REF-walk could have made), it must make the checks at
698or near the same places that REF-walk holds the references.  So, when
699REF-walk increments a reference count or takes a spinlock, RCU-walk
700samples the status of a seqlock using ``read_seqcount_begin()`` or a
701similar function.  When REF-walk decrements the count or drops the
702lock, RCU-walk checks if the sampled status is still valid using
703``read_seqcount_retry()`` or similar.
704
705However, there is a little bit more to seqlocks than that.  If
706RCU-walk accesses two different fields in a seqlock-protected
707structure, or accesses the same field twice, there is no a priori
708guarantee of any consistency between those accesses.  When consistency
709is needed - which it usually is - RCU-walk must take a copy and then
710use ``read_seqcount_retry()`` to validate that copy.
711
712``read_seqcount_retry()`` not only checks the sequence number, but also
713imposes a memory barrier so that no memory-read instruction from
714*before* the call can be delayed until *after* the call, either by the
715CPU or by the compiler.  A simple example of this can be seen in
716``slow_dentry_cmp()`` which, for filesystems which do not use simple
717byte-wise name equality, calls into the filesystem to compare a name
718against a dentry.  The length and name pointer are copied into local
719variables, then ``read_seqcount_retry()`` is called to confirm the two
720are consistent, and only then is ``->d_compare()`` called.  When
721standard filename comparison is used, ``dentry_cmp()`` is called
722instead.  Notably it does *not* use ``read_seqcount_retry()``, but
723instead has a large comment explaining why the consistency guarantee
724isn't necessary.  A subsequent ``read_seqcount_retry()`` will be
725sufficient to catch any problem that could occur at this point.
726
727With that little refresher on seqlocks out of the way we can look at
728the bigger picture of how RCU-walk uses seqlocks.
729
730``mount_lock`` and ``nd->m_seq``
731~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
732
733We already met the ``mount_lock`` seqlock when REF-walk used it to
734ensure that crossing a mount point is performed safely.  RCU-walk uses
735it for that too, but for quite a bit more.
736
737Instead of taking a counted reference to each ``vfsmount`` as it
738descends the tree, RCU-walk samples the state of ``mount_lock`` at the
739start of the walk and stores this initial sequence number in the
740``struct nameidata`` in the ``m_seq`` field.  This one lock and one
741sequence number are used to validate all accesses to all ``vfsmounts``,
742and all mount point crossings.  As changes to the mount table are
743relatively rare, it is reasonable to fall back on REF-walk any time
744that any "mount" or "unmount" happens.
745
746``m_seq`` is checked (using ``read_seqretry()``) at the end of an RCU-walk
747sequence, whether switching to REF-walk for the rest of the path or
748when the end of the path is reached.  It is also checked when stepping
749down over a mount point (in ``__follow_mount_rcu()``) or up (in
750``follow_dotdot_rcu()``).  If it is ever found to have changed, the
751whole RCU-walk sequence is aborted and the path is processed again by
752REF-walk.
753
754If RCU-walk finds that ``mount_lock`` hasn't changed then it can be sure
755that, had REF-walk taken counted references on each vfsmount, the
756results would have been the same.  This ensures the invariant holds,
757at least for vfsmount structures.
758
759``dentry->d_seq`` and ``nd->seq``
760~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
761
762In place of taking a count or lock on ``d_reflock``, RCU-walk samples
763the per-dentry ``d_seq`` seqlock, and stores the sequence number in the
764``seq`` field of the nameidata structure, so ``nd->seq`` should always be
765the current sequence number of ``nd->dentry``.  This number needs to be
766revalidated after copying, and before using, the name, parent, or
767inode of the dentry.
768
769The handling of the name we have already looked at, and the parent is
770only accessed in ``follow_dotdot_rcu()`` which fairly trivially follows
771the required pattern, though it does so for three different cases.
772
773When not at a mount point, ``d_parent`` is followed and its ``d_seq`` is
774collected.  When we are at a mount point, we instead follow the
775``mnt->mnt_mountpoint`` link to get a new dentry and collect its
776``d_seq``.  Then, after finally finding a ``d_parent`` to follow, we must
777check if we have landed on a mount point and, if so, must find that
778mount point and follow the ``mnt->mnt_root`` link.  This would imply a
779somewhat unusual, but certainly possible, circumstance where the
780starting point of the path lookup was in part of the filesystem that
781was mounted on, and so not visible from the root.
782
783The inode pointer, stored in ``->d_inode``, is a little more
784interesting.  The inode will always need to be accessed at least
785twice, once to determine if it is NULL and once to verify access
786permissions.  Symlink handling requires a validated inode pointer too.
787Rather than revalidating on each access, a copy is made on the first
788access and it is stored in the ``inode`` field of ``nameidata`` from where
789it can be safely accessed without further validation.
790
791``lookup_fast()`` is the only lookup routine that is used in RCU-mode,
792``lookup_slow()`` being too slow and requiring locks.  It is in
793``lookup_fast()`` that we find the important "hand over hand" tracking
794of the current dentry.
795
796The current ``dentry`` and current ``seq`` number are passed to
797``__d_lookup_rcu()`` which, on success, returns a new ``dentry`` and a
798new ``seq`` number.  ``lookup_fast()`` then copies the inode pointer and
799revalidates the new ``seq`` number.  It then validates the old ``dentry``
800with the old ``seq`` number one last time and only then continues.  This
801process of getting the ``seq`` number of the new dentry and then
802checking the ``seq`` number of the old exactly mirrors the process of
803getting a counted reference to the new dentry before dropping that for
804the old dentry which we saw in REF-walk.
805
806No ``inode->i_rwsem`` or even ``rename_lock``
807~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
808
809A semaphore is a fairly heavyweight lock that can only be taken when it is
810permissible to sleep.  As ``rcu_read_lock()`` forbids sleeping,
811``inode->i_rwsem`` plays no role in RCU-walk.  If some other thread does
812take ``i_rwsem`` and modifies the directory in a way that RCU-walk needs
813to notice, the result will be either that RCU-walk fails to find the
814dentry that it is looking for, or it will find a dentry which
815``read_seqretry()`` won't validate.  In either case it will drop down to
816REF-walk mode which can take whatever locks are needed.
817
818Though ``rename_lock`` could be used by RCU-walk as it doesn't require
819any sleeping, RCU-walk doesn't bother.  REF-walk uses ``rename_lock`` to
820protect against the possibility of hash chains in the dcache changing
821while they are being searched.  This can result in failing to find
822something that actually is there.  When RCU-walk fails to find
823something in the dentry cache, whether it is really there or not, it
824already drops down to REF-walk and tries again with appropriate
825locking.  This neatly handles all cases, so adding extra checks on
826rename_lock would bring no significant value.
827
828``unlazy walk()`` and ``complete_walk()``
829-----------------------------------------
830
831That "dropping down to REF-walk" typically involves a call to
832``unlazy_walk()``, so named because "RCU-walk" is also sometimes
833referred to as "lazy walk".  ``unlazy_walk()`` is called when
834following the path down to the current vfsmount/dentry pair seems to
835have proceeded successfully, but the next step is problematic.  This
836can happen if the next name cannot be found in the dcache, if
837permission checking or name revalidation couldn't be achieved while
838the ``rcu_read_lock()`` is held (which forbids sleeping), if an
839automount point is found, or in a couple of cases involving symlinks.
840It is also called from ``complete_walk()`` when the lookup has reached
841the final component, or the very end of the path, depending on which
842particular flavor of lookup is used.
843
844Other reasons for dropping out of RCU-walk that do not trigger a call
845to ``unlazy_walk()`` are when some inconsistency is found that cannot be
846handled immediately, such as ``mount_lock`` or one of the ``d_seq``
847seqlocks reporting a change.  In these cases the relevant function
848will return ``-ECHILD`` which will percolate up until it triggers a new
849attempt from the top using REF-walk.
850
851For those cases where ``unlazy_walk()`` is an option, it essentially
852takes a reference on each of the pointers that it holds (vfsmount,
853dentry, and possibly some symbolic links) and then verifies that the
854relevant seqlocks have not been changed.  If there have been changes,
855it, too, aborts with ``-ECHILD``, otherwise the transition to REF-walk
856has been a success and the lookup process continues.
857
858Taking a reference on those pointers is not quite as simple as just
859incrementing a counter.  That works to take a second reference if you
860already have one (often indirectly through another object), but it
861isn't sufficient if you don't actually have a counted reference at
862all.  For ``dentry->d_lockref``, it is safe to increment the reference
863counter to get a reference unless it has been explicitly marked as
864"dead" which involves setting the counter to ``-128``.
865``lockref_get_not_dead()`` achieves this.
866
867For ``mnt->mnt_count`` it is safe to take a reference as long as
868``mount_lock`` is then used to validate the reference.  If that
869validation fails, it may *not* be safe to just drop that reference in
870the standard way of calling ``mnt_put()`` - an unmount may have
871progressed too far.  So the code in ``legitimize_mnt()``, when it
872finds that the reference it got might not be safe, checks the
873``MNT_SYNC_UMOUNT`` flag to determine if a simple ``mnt_put()`` is
874correct, or if it should just decrement the count and pretend none of
875this ever happened.
876
877Taking care in filesystems
878--------------------------
879
880RCU-walk depends almost entirely on cached information and often will
881not call into the filesystem at all.  However there are two places,
882besides the already-mentioned component-name comparison, where the
883file system might be included in RCU-walk, and it must know to be
884careful.
885
886If the filesystem has non-standard permission-checking requirements -
887such as a networked filesystem which may need to check with the server
888- the ``i_op->permission`` interface might be called during RCU-walk.
889In this case an extra "``MAY_NOT_BLOCK``" flag is passed so that it
890knows not to sleep, but to return ``-ECHILD`` if it cannot complete
891promptly.  ``i_op->permission`` is given the inode pointer, not the
892dentry, so it doesn't need to worry about further consistency checks.
893However if it accesses any other filesystem data structures, it must
894ensure they are safe to be accessed with only the ``rcu_read_lock()``
895held.  This typically means they must be freed using ``kfree_rcu()`` or
896similar.
897
898.. _READ_ONCE: https://lwn.net/Articles/624126/
899
900If the filesystem may need to revalidate dcache entries, then
901``d_op->d_revalidate`` may be called in RCU-walk too.  This interface
902*is* passed the dentry but does not have access to the ``inode`` or the
903``seq`` number from the ``nameidata``, so it needs to be extra careful
904when accessing fields in the dentry.  This "extra care" typically
905involves using  `READ_ONCE() <READ_ONCE_>`_ to access fields, and verifying the
906result is not NULL before using it.  This pattern can be seen in
907``nfs_lookup_revalidate()``.
908
909A pair of patterns
910------------------
911
912In various places in the details of REF-walk and RCU-walk, and also in
913the big picture, there are a couple of related patterns that are worth
914being aware of.
915
916The first is "try quickly and check, if that fails try slowly".  We
917can see that in the high-level approach of first trying RCU-walk and
918then trying REF-walk, and in places where ``unlazy_walk()`` is used to
919switch to REF-walk for the rest of the path.  We also saw it earlier
920in ``dget_parent()`` when following a "``..``" link.  It tries a quick way
921to get a reference, then falls back to taking locks if needed.
922
923The second pattern is "try quickly and check, if that fails try
924again - repeatedly".  This is seen with the use of ``rename_lock`` and
925``mount_lock`` in REF-walk.  RCU-walk doesn't make use of this pattern -
926if anything goes wrong it is much safer to just abort and try a more
927sedate approach.
928
929The emphasis here is "try quickly and check".  It should probably be
930"try quickly *and carefully*, then check".  The fact that checking is
931needed is a reminder that the system is dynamic and only a limited
932number of things are safe at all.  The most likely cause of errors in
933this whole process is assuming something is safe when in reality it
934isn't.  Careful consideration of what exactly guarantees the safety of
935each access is sometimes necessary.
936
937A walk among the symlinks
938=========================
939
940There are several basic issues that we will examine to understand the
941handling of symbolic links:  the symlink stack, together with cache
942lifetimes, will help us understand the overall recursive handling of
943symlinks and lead to the special care needed for the final component.
944Then a consideration of access-time updates and summary of the various
945flags controlling lookup will finish the story.
946
947The symlink stack
948-----------------
949
950There are only two sorts of filesystem objects that can usefully
951appear in a path prior to the final component: directories and symlinks.
952Handling directories is quite straightforward: the new directory
953simply becomes the starting point at which to interpret the next
954component on the path.  Handling symbolic links requires a bit more
955work.
956
957Conceptually, symbolic links could be handled by editing the path.  If
958a component name refers to a symbolic link, then that component is
959replaced by the body of the link and, if that body starts with a '/',
960then all preceding parts of the path are discarded.  This is what the
961"``readlink -f``" command does, though it also edits out "``.``" and
962"``..``" components.
963
964Directly editing the path string is not really necessary when looking
965up a path, and discarding early components is pointless as they aren't
966looked at anyway.  Keeping track of all remaining components is
967important, but they can of course be kept separately; there is no need
968to concatenate them.  As one symlink may easily refer to another,
969which in turn can refer to a third, we may need to keep the remaining
970components of several paths, each to be processed when the preceding
971ones are completed.  These path remnants are kept on a stack of
972limited size.
973
974There are two reasons for placing limits on how many symlinks can
975occur in a single path lookup.  The most obvious is to avoid loops.
976If a symlink referred to itself either directly or through
977intermediaries, then following the symlink can never complete
978successfully - the error ``ELOOP`` must be returned.  Loops can be
979detected without imposing limits, but limits are the simplest solution
980and, given the second reason for restriction, quite sufficient.
981
982.. _outlined recently: http://thread.gmane.org/gmane.linux.kernel/1934390/focus=1934550
983
984The second reason was `outlined recently`_ by Linus:
985
986   Because it's a latency and DoS issue too. We need to react well to
987   true loops, but also to "very deep" non-loops. It's not about memory
988   use, it's about users triggering unreasonable CPU resources.
989
990Linux imposes a limit on the length of any pathname: ``PATH_MAX``, which
991is 4096.  There are a number of reasons for this limit; not letting the
992kernel spend too much time on just one path is one of them.  With
993symbolic links you can effectively generate much longer paths so some
994sort of limit is needed for the same reason.  Linux imposes a limit of
995at most 40 (MAXSYMLINKS) symlinks in any one path lookup.  It previously imposed
996a further limit of eight on the maximum depth of recursion, but that was
997raised to 40 when a separate stack was implemented, so there is now
998just the one limit.
999
1000The ``nameidata`` structure that we met in an earlier article contains a
1001small stack that can be used to store the remaining part of up to two
1002symlinks.  In many cases this will be sufficient.  If it isn't, a
1003separate stack is allocated with room for 40 symlinks.  Pathname
1004lookup will never exceed that stack as, once the 40th symlink is
1005detected, an error is returned.
1006
1007It might seem that the name remnants are all that needs to be stored on
1008this stack, but we need a bit more.  To see that, we need to move on to
1009cache lifetimes.
1010
1011Storage and lifetime of cached symlinks
1012---------------------------------------
1013
1014Like other filesystem resources, such as inodes and directory
1015entries, symlinks are cached by Linux to avoid repeated costly access
1016to external storage.  It is particularly important for RCU-walk to be
1017able to find and temporarily hold onto these cached entries, so that
1018it doesn't need to drop down into REF-walk.
1019
1020.. _object-oriented design pattern: https://lwn.net/Articles/446317/
1021
1022While each filesystem is free to make its own choice, symlinks are
1023typically stored in one of two places.  Short symlinks are often
1024stored directly in the inode.  When a filesystem allocates a ``struct
1025inode`` it typically allocates extra space to store private data (a
1026common `object-oriented design pattern`_ in the kernel).  This will
1027sometimes include space for a symlink.  The other common location is
1028in the page cache, which normally stores the content of files.  The
1029pathname in a symlink can be seen as the content of that symlink and
1030can easily be stored in the page cache just like file content.
1031
1032When neither of these is suitable, the next most likely scenario is
1033that the filesystem will allocate some temporary memory and copy or
1034construct the symlink content into that memory whenever it is needed.
1035
1036When the symlink is stored in the inode, it has the same lifetime as
1037the inode which, itself, is protected by RCU or by a counted reference
1038on the dentry.  This means that the mechanisms that pathname lookup
1039uses to access the dcache and icache (inode cache) safely are quite
1040sufficient for accessing some cached symlinks safely.  In these cases,
1041the ``i_link`` pointer in the inode is set to point to wherever the
1042symlink is stored and it can be accessed directly whenever needed.
1043
1044When the symlink is stored in the page cache or elsewhere, the
1045situation is not so straightforward.  A reference on a dentry or even
1046on an inode does not imply any reference on cached pages of that
1047inode, and even an ``rcu_read_lock()`` is not sufficient to ensure that
1048a page will not disappear.  So for these symlinks the pathname lookup
1049code needs to ask the filesystem to provide a stable reference and,
1050significantly, needs to release that reference when it is finished
1051with it.
1052
1053Taking a reference to a cache page is often possible even in RCU-walk
1054mode.  It does require making changes to memory, which is best avoided,
1055but that isn't necessarily a big cost and it is better than dropping
1056out of RCU-walk mode completely.  Even filesystems that allocate
1057space to copy the symlink into can use ``GFP_ATOMIC`` to often successfully
1058allocate memory without the need to drop out of RCU-walk.  If a
1059filesystem cannot successfully get a reference in RCU-walk mode, it
1060must return ``-ECHILD`` and ``unlazy_walk()`` will be called to return to
1061REF-walk mode in which the filesystem is allowed to sleep.
1062
1063The place for all this to happen is the ``i_op->get_link()`` inode
1064method. This is called both in RCU-walk and REF-walk. In RCU-walk the
1065``dentry*`` argument is NULL, ``->get_link()`` can return -ECHILD to drop out of
1066RCU-walk.  Much like the ``i_op->permission()`` method we
1067looked at previously, ``->get_link()`` would need to be careful that
1068all the data structures it references are safe to be accessed while
1069holding no counted reference, only the RCU lock.  Though getting a
1070reference with ``->follow_link()`` is not yet done in RCU-walk mode, the
1071code is ready to release the reference when that does happen.
1072
1073This need to drop the reference to a symlink adds significant
1074complexity.  It requires a reference to the inode so that the
1075``i_op->put_link()`` inode operation can be called.  In REF-walk, that
1076reference is kept implicitly through a reference to the dentry, so
1077keeping the ``struct path`` of the symlink is easiest.  For RCU-walk,
1078the pointer to the inode is kept separately.  To allow switching from
1079RCU-walk back to REF-walk in the middle of processing nested symlinks
1080we also need the seq number for the dentry so we can confirm that
1081switching back was safe.
1082
1083Finally, when providing a reference to a symlink, the filesystem also
1084provides an opaque "cookie" that must be passed to ``->put_link()`` so that it
1085knows what to free.  This might be the allocated memory area, or a
1086pointer to the ``struct page`` in the page cache, or something else
1087completely.  Only the filesystem knows what it is.
1088
1089In order for the reference to each symlink to be dropped when the walk completes,
1090whether in RCU-walk or REF-walk, the symlink stack needs to contain,
1091along with the path remnants:
1092
1093- the ``struct path`` to provide a reference to the inode in REF-walk
1094- the ``struct inode *`` to provide a reference to the inode in RCU-walk
1095- the ``seq`` to allow the path to be safely switched from RCU-walk to REF-walk
1096- the ``cookie`` that tells ``->put_path()`` what to put.
1097
1098This means that each entry in the symlink stack needs to hold five
1099pointers and an integer instead of just one pointer (the path
1100remnant).  On a 64-bit system, this is about 40 bytes per entry;
1101with 40 entries it adds up to 1600 bytes total, which is less than
1102half a page.  So it might seem like a lot, but is by no means
1103excessive.
1104
1105Note that, in a given stack frame, the path remnant (``name``) is not
1106part of the symlink that the other fields refer to.  It is the remnant
1107to be followed once that symlink has been fully parsed.
1108
1109Following the symlink
1110---------------------
1111
1112The main loop in ``link_path_walk()`` iterates seamlessly over all
1113components in the path and all of the non-final symlinks.  As symlinks
1114are processed, the ``name`` pointer is adjusted to point to a new
1115symlink, or is restored from the stack, so that much of the loop
1116doesn't need to notice.  Getting this ``name`` variable on and off the
1117stack is very straightforward; pushing and popping the references is
1118a little more complex.
1119
1120When a symlink is found, ``walk_component()`` returns the value ``1``
1121(``0`` is returned for any other sort of success, and a negative number
1122is, as usual, an error indicator).  This causes ``get_link()`` to be
1123called; it then gets the link from the filesystem.  Providing that
1124operation is successful, the old path ``name`` is placed on the stack,
1125and the new value is used as the ``name`` for a while.  When the end of
1126the path is found (i.e. ``*name`` is ``'\0'``) the old ``name`` is restored
1127off the stack and path walking continues.
1128
1129Pushing and popping the reference pointers (inode, cookie, etc.) is more
1130complex in part because of the desire to handle tail recursion.  When
1131the last component of a symlink itself points to a symlink, we
1132want to pop the symlink-just-completed off the stack before pushing
1133the symlink-just-found to avoid leaving empty path remnants that would
1134just get in the way.
1135
1136It is most convenient to push the new symlink references onto the
1137stack in ``walk_component()`` immediately when the symlink is found;
1138``walk_component()`` is also the last piece of code that needs to look at the
1139old symlink as it walks that last component.  So it is quite
1140convenient for ``walk_component()`` to release the old symlink and pop
1141the references just before pushing the reference information for the
1142new symlink.  It is guided in this by two flags; ``WALK_GET``, which
1143gives it permission to follow a symlink if it finds one, and
1144``WALK_PUT``, which tells it to release the current symlink after it has been
1145followed.  ``WALK_PUT`` is tested first, leading to a call to
1146``put_link()``.  ``WALK_GET`` is tested subsequently (by
1147``should_follow_link()``) leading to a call to ``pick_link()`` which sets
1148up the stack frame.
1149
1150Symlinks with no final component
1151~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1152
1153A pair of special-case symlinks deserve a little further explanation.
1154Both result in a new ``struct path`` (with mount and dentry) being set
1155up in the ``nameidata``, and result in ``get_link()`` returning ``NULL``.
1156
1157The more obvious case is a symlink to "``/``".  All symlinks starting
1158with "``/``" are detected in ``get_link()`` which resets the ``nameidata``
1159to point to the effective filesystem root.  If the symlink only
1160contains "``/``" then there is nothing more to do, no components at all,
1161so ``NULL`` is returned to indicate that the symlink can be released and
1162the stack frame discarded.
1163
1164The other case involves things in ``/proc`` that look like symlinks but
1165aren't really (and are therefore commonly referred to as "magic-links")::
1166
1167     $ ls -l /proc/self/fd/1
1168     lrwx------ 1 neilb neilb 64 Jun 13 10:19 /proc/self/fd/1 -> /dev/pts/4
1169
1170Every open file descriptor in any process is represented in ``/proc`` by
1171something that looks like a symlink.  It is really a reference to the
1172target file, not just the name of it.  When you ``readlink`` these
1173objects you get a name that might refer to the same file - unless it
1174has been unlinked or mounted over.  When ``walk_component()`` follows
1175one of these, the ``->follow_link()`` method in "procfs" doesn't return
1176a string name, but instead calls ``nd_jump_link()`` which updates the
1177``nameidata`` in place to point to that target.  ``->follow_link()`` then
1178returns ``NULL``.  Again there is no final component and ``get_link()``
1179reports this by leaving the ``last_type`` field of ``nameidata`` as
1180``LAST_BIND``.
1181
1182Following the symlink in the final component
1183--------------------------------------------
1184
1185All this leads to ``link_path_walk()`` walking down every component, and
1186following all symbolic links it finds, until it reaches the final
1187component.  This is just returned in the ``last`` field of ``nameidata``.
1188For some callers, this is all they need; they want to create that
1189``last`` name if it doesn't exist or give an error if it does.  Other
1190callers will want to follow a symlink if one is found, and possibly
1191apply special handling to the last component of that symlink, rather
1192than just the last component of the original file name.  These callers
1193potentially need to call ``link_path_walk()`` again and again on
1194successive symlinks until one is found that doesn't point to another
1195symlink.
1196
1197This case is handled by relevant callers of ``link_path_walk()``, such as
1198``path_lookupat()``, ``path_openat()`` using a loop that calls ``link_path_walk()``,
1199and then handles the final component by calling ``open_last_lookups()`` or
1200``lookup_last()``. If it is a symlink that needs to be followed,
1201``open_last_lookups()`` or ``lookup_last()`` will set things up properly and
1202return the path so that the loop repeats, calling
1203``link_path_walk()`` again.  This could loop as many as 40 times if the last
1204component of each symlink is another symlink.
1205
1206Of the various functions that examine the final component,
1207``open_last_lookups()`` is the most interesting as it works in tandem
1208with ``do_open()`` for opening a file.  Part of ``open_last_lookups()`` runs
1209with ``i_rwsem`` held and this part is in a separate function: ``lookup_open()``.
1210
1211Explaining ``open_last_lookups()`` and ``do_open()`` completely is beyond the scope
1212of this article, but a few highlights should help those interested in exploring
1213the code.
1214
12151. Rather than just finding the target file, ``do_open()`` is used after
1216   ``open_last_lookup()`` to open
1217   it.  If the file was found in the dcache, then ``vfs_open()`` is used for
1218   this.  If not, then ``lookup_open()`` will either call ``atomic_open()`` (if
1219   the filesystem provides it) to combine the final lookup with the open, or
1220   will perform the separate ``lookup_real()`` and ``vfs_create()`` steps
1221   directly.  In the later case the actual "open" of this newly found or
1222   created file will be performed by ``vfs_open()``, just as if the name
1223   were found in the dcache.
1224
12252. ``vfs_open()`` can fail with ``-EOPENSTALE`` if the cached information
1226   wasn't quite current enough.  Rather than restarting the lookup from
1227   the top with ``LOOKUP_REVAL`` set, ``lookup_open()`` is called instead,
1228   giving the filesystem a chance to resolve small inconsistencies.
1229   If that doesn't work, only then is the lookup restarted from the top.
1230
12313. An open with O_CREAT **does** follow a symlink in the final component,
1232   unlike other creation system calls (like ``mkdir``).  So the sequence::
1233
1234          ln -s bar /tmp/foo
1235          echo hello > /tmp/foo
1236
1237   will create a file called ``/tmp/bar``.  This is not permitted if
1238   ``O_EXCL`` is set but otherwise is handled for an O_CREAT open much
1239   like for a non-creating open: ``should_follow_link()`` returns ``1``, and
1240   so does ``do_last()`` so that ``trailing_symlink()`` gets called and the
1241   open process continues on the symlink that was found.
1242
1243Updating the access time
1244------------------------
1245
1246We previously said of RCU-walk that it would "take no locks, increment
1247no counts, leave no footprints."  We have since seen that some
1248"footprints" can be needed when handling symlinks as a counted
1249reference (or even a memory allocation) may be needed.  But these
1250footprints are best kept to a minimum.
1251
1252One other place where walking down a symlink can involve leaving
1253footprints in a way that doesn't affect directories is in updating access times.
1254In Unix (and Linux) every filesystem object has a "last accessed
1255time", or "``atime``".  Passing through a directory to access a file
1256within is not considered to be an access for the purposes of
1257``atime``; only listing the contents of a directory can update its ``atime``.
1258Symlinks are different it seems.  Both reading a symlink (with ``readlink()``)
1259and looking up a symlink on the way to some other destination can
1260update the atime on that symlink.
1261
1262.. _clearest statement: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_08
1263
1264It is not clear why this is the case; POSIX has little to say on the
1265subject.  The `clearest statement`_ is that, if a particular implementation
1266updates a timestamp in a place not specified by POSIX, this must be
1267documented "except that any changes caused by pathname resolution need
1268not be documented".  This seems to imply that POSIX doesn't really
1269care about access-time updates during pathname lookup.
1270
1271.. _Linux 1.3.87: https://git.kernel.org/cgit/linux/kernel/git/history/history.git/diff/fs/ext2/symlink.c?id=f806c6db77b8eaa6e00dcfb6b567706feae8dbb8
1272
1273An examination of history shows that prior to `Linux 1.3.87`_, the ext2
1274filesystem, at least, didn't update atime when following a link.
1275Unfortunately we have no record of why that behavior was changed.
1276
1277In any case, access time must now be updated and that operation can be
1278quite complex.  Trying to stay in RCU-walk while doing it is best
1279avoided.  Fortunately it is often permitted to skip the ``atime``
1280update.  Because ``atime`` updates cause performance problems in various
1281areas, Linux supports the ``relatime`` mount option, which generally
1282limits the updates of ``atime`` to once per day on files that aren't
1283being changed (and symlinks never change once created).  Even without
1284``relatime``, many filesystems record ``atime`` with a one-second
1285granularity, so only one update per second is required.
1286
1287It is easy to test if an ``atime`` update is needed while in RCU-walk
1288mode and, if it isn't, the update can be skipped and RCU-walk mode
1289continues.  Only when an ``atime`` update is actually required does the
1290path walk drop down to REF-walk.  All of this is handled in the
1291``get_link()`` function.
1292
1293A few flags
1294-----------
1295
1296A suitable way to wrap up this tour of pathname walking is to list
1297the various flags that can be stored in the ``nameidata`` to guide the
1298lookup process.  Many of these are only meaningful on the final
1299component, others reflect the current state of the pathname lookup, and some
1300apply restrictions to all path components encountered in the path lookup.
1301
1302And then there is ``LOOKUP_EMPTY``, which doesn't fit conceptually with
1303the others.  If this is not set, an empty pathname causes an error
1304very early on.  If it is set, empty pathnames are not considered to be
1305an error.
1306
1307Global state flags
1308~~~~~~~~~~~~~~~~~~
1309
1310We have already met two global state flags: ``LOOKUP_RCU`` and
1311``LOOKUP_REVAL``.  These select between one of three overall approaches
1312to lookup: RCU-walk, REF-walk, and REF-walk with forced revalidation.
1313
1314``LOOKUP_PARENT`` indicates that the final component hasn't been reached
1315yet.  This is primarily used to tell the audit subsystem the full
1316context of a particular access being audited.
1317
1318``LOOKUP_ROOT`` indicates that the ``root`` field in the ``nameidata`` was
1319provided by the caller, so it shouldn't be released when it is no
1320longer needed.
1321
1322``LOOKUP_JUMPED`` means that the current dentry was chosen not because
1323it had the right name but for some other reason.  This happens when
1324following "``..``", following a symlink to ``/``, crossing a mount point
1325or accessing a "``/proc/$PID/fd/$FD``" symlink (also known as a "magic
1326link"). In this case the filesystem has not been asked to revalidate the
1327name (with ``d_revalidate()``).  In such cases the inode may still need
1328to be revalidated, so ``d_op->d_weak_revalidate()`` is called if
1329``LOOKUP_JUMPED`` is set when the look completes - which may be at the
1330final component or, when creating, unlinking, or renaming, at the penultimate component.
1331
1332Resolution-restriction flags
1333~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1334
1335In order to allow userspace to protect itself against certain race conditions
1336and attack scenarios involving changing path components, a series of flags are
1337available which apply restrictions to all path components encountered during
1338path lookup. These flags are exposed through ``openat2()``'s ``resolve`` field.
1339
1340``LOOKUP_NO_SYMLINKS`` blocks all symlink traversals (including magic-links).
1341This is distinctly different from ``LOOKUP_FOLLOW``, because the latter only
1342relates to restricting the following of trailing symlinks.
1343
1344``LOOKUP_NO_MAGICLINKS`` blocks all magic-link traversals. Filesystems must
1345ensure that they return errors from ``nd_jump_link()``, because that is how
1346``LOOKUP_NO_MAGICLINKS`` and other magic-link restrictions are implemented.
1347
1348``LOOKUP_NO_XDEV`` blocks all ``vfsmount`` traversals (this includes both
1349bind-mounts and ordinary mounts). Note that the ``vfsmount`` which contains the
1350lookup is determined by the first mountpoint the path lookup reaches --
1351absolute paths start with the ``vfsmount`` of ``/``, and relative paths start
1352with the ``dfd``'s ``vfsmount``. Magic-links are only permitted if the
1353``vfsmount`` of the path is unchanged.
1354
1355``LOOKUP_BENEATH`` blocks any path components which resolve outside the
1356starting point of the resolution. This is done by blocking ``nd_jump_root()``
1357as well as blocking ".." if it would jump outside the starting point.
1358``rename_lock`` and ``mount_lock`` are used to detect attacks against the
1359resolution of "..". Magic-links are also blocked.
1360
1361``LOOKUP_IN_ROOT`` resolves all path components as though the starting point
1362were the filesystem root. ``nd_jump_root()`` brings the resolution back to
1363the starting point, and ".." at the starting point will act as a no-op. As with
1364``LOOKUP_BENEATH``, ``rename_lock`` and ``mount_lock`` are used to detect
1365attacks against ".." resolution. Magic-links are also blocked.
1366
1367Final-component flags
1368~~~~~~~~~~~~~~~~~~~~~
1369
1370Some of these flags are only set when the final component is being
1371considered.  Others are only checked for when considering that final
1372component.
1373
1374``LOOKUP_AUTOMOUNT`` ensures that, if the final component is an automount
1375point, then the mount is triggered.  Some operations would trigger it
1376anyway, but operations like ``stat()`` deliberately don't.  ``statfs()``
1377needs to trigger the mount but otherwise behaves a lot like ``stat()``, so
1378it sets ``LOOKUP_AUTOMOUNT``, as does "``quotactl()``" and the handling of
1379"``mount --bind``".
1380
1381``LOOKUP_FOLLOW`` has a similar function to ``LOOKUP_AUTOMOUNT`` but for
1382symlinks.  Some system calls set or clear it implicitly, while
1383others have API flags such as ``AT_SYMLINK_FOLLOW`` and
1384``UMOUNT_NOFOLLOW`` to control it.  Its effect is similar to
1385``WALK_GET`` that we already met, but it is used in a different way.
1386
1387``LOOKUP_DIRECTORY`` insists that the final component is a directory.
1388Various callers set this and it is also set when the final component
1389is found to be followed by a slash.
1390
1391Finally ``LOOKUP_OPEN``, ``LOOKUP_CREATE``, ``LOOKUP_EXCL``, and
1392``LOOKUP_RENAME_TARGET`` are not used directly by the VFS but are made
1393available to the filesystem and particularly the ``->d_revalidate()``
1394method.  A filesystem can choose not to bother revalidating too hard
1395if it knows that it will be asked to open or create the file soon.
1396These flags were previously useful for ``->lookup()`` too but with the
1397introduction of ``->atomic_open()`` they are less relevant there.
1398
1399End of the road
1400---------------
1401
1402Despite its complexity, all this pathname lookup code appears to be
1403in good shape - various parts are certainly easier to understand now
1404than even a couple of releases ago.  But that doesn't mean it is
1405"finished".   As already mentioned, RCU-walk currently only follows
1406symlinks that are stored in the inode so, while it handles many ext4
1407symlinks, it doesn't help with NFS, XFS, or Btrfs.  That support
1408is not likely to be long delayed.
1409