xref: /openbmc/linux/Documentation/filesystems/erofs.rst (revision c496daeb863093a046e0bb8db7265bf45d91775a)
1.. SPDX-License-Identifier: GPL-2.0
2
3======================================
4EROFS - Enhanced Read-Only File System
5======================================
6
7Overview
8========
9
10EROFS filesystem stands for Enhanced Read-Only File System.  It aims to form a
11generic read-only filesystem solution for various read-only use cases instead
12of just focusing on storage space saving without considering any side effects
13of runtime performance.
14
15It is designed to meet the needs of flexibility, feature extendability and user
16payload friendly, etc.  Apart from those, it is still kept as a simple
17random-access friendly high-performance filesystem to get rid of unneeded I/O
18amplification and memory-resident overhead compared to similar approaches.
19
20It is implemented to be a better choice for the following scenarios:
21
22 - read-only storage media or
23
24 - part of a fully trusted read-only solution, which means it needs to be
25   immutable and bit-for-bit identical to the official golden image for
26   their releases due to security or other considerations and
27
28 - hope to minimize extra storage space with guaranteed end-to-end performance
29   by using compact layout, transparent file compression and direct access,
30   especially for those embedded devices with limited memory and high-density
31   hosts with numerous containers.
32
33Here are the main features of EROFS:
34
35 - Little endian on-disk design;
36
37 - Block-based distribution and file-based distribution over fscache are
38   supported;
39
40 - Support multiple devices to refer to external blobs, which can be used
41   for container images;
42
43 - 32-bit block addresses for each device, therefore 16TiB address space at
44   most with 4KiB block size for now;
45
46 - Two inode layouts for different requirements:
47
48   =====================  ============  ======================================
49                          compact (v1)  extended (v2)
50   =====================  ============  ======================================
51   Inode metadata size    32 bytes      64 bytes
52   Max file size          4 GiB         16 EiB (also limited by max. vol size)
53   Max uids/gids          65536         4294967296
54   Per-inode timestamp    no            yes (64 + 32-bit timestamp)
55   Max hardlinks          65536         4294967296
56   Metadata reserved      8 bytes       18 bytes
57   =====================  ============  ======================================
58
59 - Support extended attributes as an option;
60
61 - Support POSIX.1e ACLs by using extended attributes;
62
63 - Support transparent data compression as an option:
64   LZ4 and MicroLZMA algorithms can be used on a per-file basis; In addition,
65   inplace decompression is also supported to avoid bounce compressed buffers
66   and page cache thrashing.
67
68 - Support chunk-based data deduplication and rolling-hash compressed data
69   deduplication;
70
71 - Support tailpacking inline compared to byte-addressed unaligned metadata
72   or smaller block size alternatives;
73
74 - Support merging tail-end data into a special inode as fragments.
75
76 - Support large folios for uncompressed files.
77
78 - Support direct I/O on uncompressed files to avoid double caching for loop
79   devices;
80
81 - Support FSDAX on uncompressed images for secure containers and ramdisks in
82   order to get rid of unnecessary page cache.
83
84 - Support file-based on-demand loading with the Fscache infrastructure.
85
86The following git tree provides the file system user-space tools under
87development, such as a formatting tool (mkfs.erofs), an on-disk consistency &
88compatibility checking tool (fsck.erofs), and a debugging tool (dump.erofs):
89
90- git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
91
92Bugs and patches are welcome, please kindly help us and send to the following
93linux-erofs mailing list:
94
95- linux-erofs mailing list   <linux-erofs@lists.ozlabs.org>
96
97Mount options
98=============
99
100===================    =========================================================
101(no)user_xattr         Setup Extended User Attributes. Note: xattr is enabled
102                       by default if CONFIG_EROFS_FS_XATTR is selected.
103(no)acl                Setup POSIX Access Control List. Note: acl is enabled
104                       by default if CONFIG_EROFS_FS_POSIX_ACL is selected.
105cache_strategy=%s      Select a strategy for cached decompression from now on:
106
107		       ==========  =============================================
108                         disabled  In-place I/O decompression only;
109                        readahead  Cache the last incomplete compressed physical
110                                   cluster for further reading. It still does
111                                   in-place I/O decompression for the rest
112                                   compressed physical clusters;
113                       readaround  Cache the both ends of incomplete compressed
114                                   physical clusters for further reading.
115                                   It still does in-place I/O decompression
116                                   for the rest compressed physical clusters.
117		       ==========  =============================================
118dax={always,never}     Use direct access (no page cache).  See
119                       Documentation/filesystems/dax.rst.
120dax                    A legacy option which is an alias for ``dax=always``.
121device=%s              Specify a path to an extra device to be used together.
122fsid=%s                Specify a filesystem image ID for Fscache back-end.
123domain_id=%s           Specify a domain ID in fscache mode so that different images
124                       with the same blobs under a given domain ID can share storage.
125===================    =========================================================
126
127Sysfs Entries
128=============
129
130Information about mounted erofs file systems can be found in /sys/fs/erofs.
131Each mounted filesystem will have a directory in /sys/fs/erofs based on its
132device name (i.e., /sys/fs/erofs/sda).
133(see also Documentation/ABI/testing/sysfs-fs-erofs)
134
135On-disk details
136===============
137
138Summary
139-------
140Different from other read-only file systems, an EROFS volume is designed
141to be as simple as possible::
142
143                                |-> aligned with the block size
144   ____________________________________________________________
145  | |SB| | ... | Metadata | ... | Data | Metadata | ... | Data |
146  |_|__|_|_____|__________|_____|______|__________|_____|______|
147  0 +1K
148
149All data areas should be aligned with the block size, but metadata areas
150may not. All metadatas can be now observed in two different spaces (views):
151
152 1. Inode metadata space
153
154    Each valid inode should be aligned with an inode slot, which is a fixed
155    value (32 bytes) and designed to be kept in line with compact inode size.
156
157    Each inode can be directly found with the following formula:
158         inode offset = meta_blkaddr * block_size + 32 * nid
159
160    ::
161
162                                 |-> aligned with 8B
163                                            |-> followed closely
164     + meta_blkaddr blocks                                      |-> another slot
165       _____________________________________________________________________
166     |  ...   | inode |  xattrs  | extents  | data inline | ... | inode ...
167     |________|_______|(optional)|(optional)|__(optional)_|_____|__________
168              |-> aligned with the inode slot size
169                   .                   .
170                 .                         .
171               .                              .
172             .                                    .
173           .                                         .
174         .                                              .
175       .____________________________________________________|-> aligned with 4B
176       | xattr_ibody_header | shared xattrs | inline xattrs |
177       |____________________|_______________|_______________|
178       |->    12 bytes    <-|->x * 4 bytes<-|               .
179                           .                .                 .
180                     .                      .                   .
181                .                           .                     .
182            ._______________________________.______________________.
183            | id | id | id | id |  ... | id | ent | ... | ent| ... |
184            |____|____|____|____|______|____|_____|_____|____|_____|
185                                            |-> aligned with 4B
186                                                        |-> aligned with 4B
187
188    Inode could be 32 or 64 bytes, which can be distinguished from a common
189    field which all inode versions have -- i_format::
190
191        __________________               __________________
192       |     i_format     |             |     i_format     |
193       |__________________|             |__________________|
194       |        ...       |             |        ...       |
195       |                  |             |                  |
196       |__________________| 32 bytes    |                  |
197                                        |                  |
198                                        |__________________| 64 bytes
199
200    Xattrs, extents, data inline are followed by the corresponding inode with
201    proper alignment, and they could be optional for different data mappings.
202    _currently_ total 5 data layouts are supported:
203
204    ==  ====================================================================
205     0  flat file data without data inline (no extent);
206     1  fixed-sized output data compression (with non-compacted indexes);
207     2  flat file data with tail packing data inline (no extent);
208     3  fixed-sized output data compression (with compacted indexes, v5.3+);
209     4  chunk-based file (v5.15+).
210    ==  ====================================================================
211
212    The size of the optional xattrs is indicated by i_xattr_count in inode
213    header. Large xattrs or xattrs shared by many different files can be
214    stored in shared xattrs metadata rather than inlined right after inode.
215
216 2. Shared xattrs metadata space
217
218    Shared xattrs space is similar to the above inode space, started with
219    a specific block indicated by xattr_blkaddr, organized one by one with
220    proper align.
221
222    Each share xattr can also be directly found by the following formula:
223         xattr offset = xattr_blkaddr * block_size + 4 * xattr_id
224
225::
226
227                           |-> aligned by  4 bytes
228    + xattr_blkaddr blocks                     |-> aligned with 4 bytes
229     _________________________________________________________________________
230    |  ...   | xattr_entry |  xattr data | ... |  xattr_entry | xattr data  ...
231    |________|_____________|_____________|_____|______________|_______________
232
233Directories
234-----------
235All directories are now organized in a compact on-disk format. Note that
236each directory block is divided into index and name areas in order to support
237random file lookup, and all directory entries are _strictly_ recorded in
238alphabetical order in order to support improved prefix binary search
239algorithm (could refer to the related source code).
240
241::
242
243                  ___________________________
244                 /                           |
245                /              ______________|________________
246               /              /              | nameoff1       | nameoffN-1
247  ____________.______________._______________v________________v__________
248 | dirent | dirent | ... | dirent | filename | filename | ... | filename |
249 |___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
250      \                           ^
251       \                          |                           * could have
252        \                         |                             trailing '\0'
253         \________________________| nameoff0
254                             Directory block
255
256Note that apart from the offset of the first filename, nameoff0 also indicates
257the total number of directory entries in this block since it is no need to
258introduce another on-disk field at all.
259
260Chunk-based files
261-----------------
262In order to support chunk-based data deduplication, a new inode data layout has
263been supported since Linux v5.15: Files are split in equal-sized data chunks
264with ``extents`` area of the inode metadata indicating how to get the chunk
265data: these can be simply as a 4-byte block address array or in the 8-byte
266chunk index form (see struct erofs_inode_chunk_index in erofs_fs.h for more
267details.)
268
269By the way, chunk-based files are all uncompressed for now.
270
271Data compression
272----------------
273EROFS implements fixed-sized output compression which generates fixed-sized
274compressed data blocks from variable-sized input in contrast to other existing
275fixed-sized input solutions. Relatively higher compression ratios can be gotten
276by using fixed-sized output compression since nowadays popular data compression
277algorithms are mostly LZ77-based and such fixed-sized output approach can be
278benefited from the historical dictionary (aka. sliding window).
279
280In details, original (uncompressed) data is turned into several variable-sized
281extents and in the meanwhile, compressed into physical clusters (pclusters).
282In order to record each variable-sized extent, logical clusters (lclusters) are
283introduced as the basic unit of compress indexes to indicate whether a new
284extent is generated within the range (HEAD) or not (NONHEAD). Lclusters are now
285fixed in block size, as illustrated below::
286
287          |<-    variable-sized extent    ->|<-       VLE         ->|
288        clusterofs                        clusterofs              clusterofs
289          |                                 |                       |
290 _________v_________________________________v_______________________v________
291 ... |    .         |              |        .     |              |  .   ...
292 ____|____._________|______________|________.___ _|______________|__.________
293     |-> lcluster <-|-> lcluster <-|-> lcluster <-|-> lcluster <-|
294          (HEAD)        (NONHEAD)       (HEAD)        (NONHEAD)    .
295           .             CBLKCNT            .                    .
296            .                               .                  .
297             .                              .                .
298       _______._____________________________.______________._________________
299          ... |              |              |              | ...
300       _______|______________|______________|______________|_________________
301              |->      big pcluster       <-|-> pcluster <-|
302
303A physical cluster can be seen as a container of physical compressed blocks
304which contains compressed data. Previously, only lcluster-sized (4KB) pclusters
305were supported. After big pcluster feature is introduced (available since
306Linux v5.13), pcluster can be a multiple of lcluster size.
307
308For each HEAD lcluster, clusterofs is recorded to indicate where a new extent
309starts and blkaddr is used to seek the compressed data. For each NONHEAD
310lcluster, delta0 and delta1 are available instead of blkaddr to indicate the
311distance to its HEAD lcluster and the next HEAD lcluster. A PLAIN lcluster is
312also a HEAD lcluster except that its data is uncompressed. See the comments
313around "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details.
314
315If big pcluster is enabled, pcluster size in lclusters needs to be recorded as
316well. Let the delta0 of the first NONHEAD lcluster store the compressed block
317count with a special flag as a new called CBLKCNT NONHEAD lcluster. It's easy
318to understand its delta0 is constantly 1, as illustrated below::
319
320   __________________________________________________________
321  | HEAD |  NONHEAD  | NONHEAD | ... | NONHEAD | HEAD | HEAD |
322  |__:___|_(CBLKCNT)_|_________|_____|_________|__:___|____:_|
323     |<----- a big pcluster (with CBLKCNT) ------>|<--  -->|
324           a lcluster-sized pcluster (without CBLKCNT) ^
325
326If another HEAD follows a HEAD lcluster, there is no room to record CBLKCNT,
327but it's easy to know the size of such pcluster is 1 lcluster as well.
328
329Since Linux v6.1, each pcluster can be used for multiple variable-sized extents,
330therefore it can be used for compressed data deduplication.
331