1ec23eb54SMauro Carvalho Chehab=================
2ec23eb54SMauro Carvalho ChehabDirectory Locking
3ec23eb54SMauro Carvalho Chehab=================
4ec23eb54SMauro Carvalho Chehab
5ec23eb54SMauro Carvalho Chehab
6ec23eb54SMauro Carvalho ChehabLocking scheme used for directory operations is based on two
7ec23eb54SMauro Carvalho Chehabkinds of locks - per-inode (->i_rwsem) and per-filesystem
8ec23eb54SMauro Carvalho Chehab(->s_vfs_rename_mutex).
9ec23eb54SMauro Carvalho Chehab
10ec23eb54SMauro Carvalho ChehabWhen taking the i_rwsem on multiple non-directory objects, we
11ec23eb54SMauro Carvalho Chehabalways acquire the locks in order by increasing address.  We'll call
12ec23eb54SMauro Carvalho Chehabthat "inode pointer" order in the following.
13ec23eb54SMauro Carvalho Chehab
14ec23eb54SMauro Carvalho ChehabFor our purposes all operations fall in 5 classes:
15ec23eb54SMauro Carvalho Chehab
16ec23eb54SMauro Carvalho Chehab1) read access.  Locking rules: caller locks directory we are accessing.
17ec23eb54SMauro Carvalho ChehabThe lock is taken shared.
18ec23eb54SMauro Carvalho Chehab
19ec23eb54SMauro Carvalho Chehab2) object creation.  Locking rules: same as above, but the lock is taken
20ec23eb54SMauro Carvalho Chehabexclusive.
21ec23eb54SMauro Carvalho Chehab
22ec23eb54SMauro Carvalho Chehab3) object removal.  Locking rules: caller locks parent, finds victim,
23ec23eb54SMauro Carvalho Chehablocks victim and calls the method.  Locks are exclusive.
24ec23eb54SMauro Carvalho Chehab
25*1db06b3dSAl Viro4) rename() that is _not_ cross-directory.  Locking rules: caller locks
26*1db06b3dSAl Virothe parent and finds source and target.  Then we decide which of the
27*1db06b3dSAl Virosource and target need to be locked.  Source needs to be locked if it's a
28*1db06b3dSAl Vironon-directory; target - if it's a non-directory or about to be removed.
29*1db06b3dSAl ViroTake the locks that need to be taken, in inode pointer order if need
30*1db06b3dSAl Viroto take both (that can happen only when both source and target are
31*1db06b3dSAl Vironon-directories - the source because it wouldn't be locked otherwise
32*1db06b3dSAl Viroand the target because mixing directory and non-directory is allowed
33*1db06b3dSAl Viroonly with RENAME_EXCHANGE, and that won't be removing the target).
34*1db06b3dSAl ViroAfter the locks had been taken, call the method.  All locks are exclusive.
35ec23eb54SMauro Carvalho Chehab
36ec23eb54SMauro Carvalho Chehab5) link creation.  Locking rules:
37ec23eb54SMauro Carvalho Chehab
38ec23eb54SMauro Carvalho Chehab	* lock parent
39ec23eb54SMauro Carvalho Chehab	* check that source is not a directory
40ec23eb54SMauro Carvalho Chehab	* lock source
41ec23eb54SMauro Carvalho Chehab	* call the method.
42ec23eb54SMauro Carvalho Chehab
43ec23eb54SMauro Carvalho ChehabAll locks are exclusive.
44ec23eb54SMauro Carvalho Chehab
45ec23eb54SMauro Carvalho Chehab6) cross-directory rename.  The trickiest in the whole bunch.  Locking
46ec23eb54SMauro Carvalho Chehabrules:
47ec23eb54SMauro Carvalho Chehab
48ec23eb54SMauro Carvalho Chehab	* lock the filesystem
4928eceedaSJan Kara	* lock parents in "ancestors first" order. If one is not ancestor of
50*1db06b3dSAl Viro	  the other, lock the parent of source first.
51ec23eb54SMauro Carvalho Chehab	* find source and target.
52ec23eb54SMauro Carvalho Chehab	* if old parent is equal to or is a descendent of target
53ec23eb54SMauro Carvalho Chehab	  fail with -ENOTEMPTY
54ec23eb54SMauro Carvalho Chehab	* if new parent is equal to or is a descendent of source
55ec23eb54SMauro Carvalho Chehab	  fail with -ELOOP
56*1db06b3dSAl Viro	* Lock subdirectories involved (source before target).
57*1db06b3dSAl Viro	* Lock non-directories involved, in inode pointer order.
58ec23eb54SMauro Carvalho Chehab	* call the method.
59ec23eb54SMauro Carvalho Chehab
60*1db06b3dSAl ViroAll ->i_rwsem are taken exclusive.
61ec23eb54SMauro Carvalho Chehab
62ec23eb54SMauro Carvalho ChehabThe rules above obviously guarantee that all directories that are going to be
63ec23eb54SMauro Carvalho Chehabread, modified or removed by method will be locked by caller.
64ec23eb54SMauro Carvalho Chehab
65ec23eb54SMauro Carvalho Chehab
66ec23eb54SMauro Carvalho ChehabIf no directory is its own ancestor, the scheme above is deadlock-free.
67ec23eb54SMauro Carvalho Chehab
68ec23eb54SMauro Carvalho ChehabProof:
69ec23eb54SMauro Carvalho Chehab
70*1db06b3dSAl Viro[XXX: will be updated once we are done massaging the lock_rename()]
7128eceedaSJan Kara	First of all, at any moment we have a linear ordering of the
7228eceedaSJan Kara	objects - A < B iff (A is an ancestor of B) or (B is not an ancestor
7328eceedaSJan Kara        of A and ptr(A) < ptr(B)).
74ec23eb54SMauro Carvalho Chehab
75ec23eb54SMauro Carvalho Chehab	That ordering can change.  However, the following is true:
76ec23eb54SMauro Carvalho Chehab
77ec23eb54SMauro Carvalho Chehab(1) if object removal or non-cross-directory rename holds lock on A and
78ec23eb54SMauro Carvalho Chehab    attempts to acquire lock on B, A will remain the parent of B until we
79ec23eb54SMauro Carvalho Chehab    acquire the lock on B.  (Proof: only cross-directory rename can change
80ec23eb54SMauro Carvalho Chehab    the parent of object and it would have to lock the parent).
81ec23eb54SMauro Carvalho Chehab
82ec23eb54SMauro Carvalho Chehab(2) if cross-directory rename holds the lock on filesystem, order will not
83ec23eb54SMauro Carvalho Chehab    change until rename acquires all locks.  (Proof: other cross-directory
84ec23eb54SMauro Carvalho Chehab    renames will be blocked on filesystem lock and we don't start changing
85ec23eb54SMauro Carvalho Chehab    the order until we had acquired all locks).
86ec23eb54SMauro Carvalho Chehab
87ec23eb54SMauro Carvalho Chehab(3) locks on non-directory objects are acquired only after locks on
88ec23eb54SMauro Carvalho Chehab    directory objects, and are acquired in inode pointer order.
89ec23eb54SMauro Carvalho Chehab    (Proof: all operations but renames take lock on at most one
90ec23eb54SMauro Carvalho Chehab    non-directory object, except renames, which take locks on source and
91ec23eb54SMauro Carvalho Chehab    target in inode pointer order in the case they are not directories.)
92ec23eb54SMauro Carvalho Chehab
93ec23eb54SMauro Carvalho ChehabNow consider the minimal deadlock.  Each process is blocked on
94ec23eb54SMauro Carvalho Chehabattempt to acquire some lock and already holds at least one lock.  Let's
95ec23eb54SMauro Carvalho Chehabconsider the set of contended locks.  First of all, filesystem lock is
96ec23eb54SMauro Carvalho Chehabnot contended, since any process blocked on it is not holding any locks.
97ec23eb54SMauro Carvalho ChehabThus all processes are blocked on ->i_rwsem.
98ec23eb54SMauro Carvalho Chehab
99ec23eb54SMauro Carvalho ChehabBy (3), any process holding a non-directory lock can only be
100ec23eb54SMauro Carvalho Chehabwaiting on another non-directory lock with a larger address.  Therefore
101ec23eb54SMauro Carvalho Chehabthe process holding the "largest" such lock can always make progress, and
102ec23eb54SMauro Carvalho Chehabnon-directory objects are not included in the set of contended locks.
103ec23eb54SMauro Carvalho Chehab
104ec23eb54SMauro Carvalho ChehabThus link creation can't be a part of deadlock - it can't be
105ec23eb54SMauro Carvalho Chehabblocked on source and it means that it doesn't hold any locks.
106ec23eb54SMauro Carvalho Chehab
107ec23eb54SMauro Carvalho ChehabAny contended object is either held by cross-directory rename or
108ec23eb54SMauro Carvalho Chehabhas a child that is also contended.  Indeed, suppose that it is held by
109ec23eb54SMauro Carvalho Chehaboperation other than cross-directory rename.  Then the lock this operation
110ec23eb54SMauro Carvalho Chehabis blocked on belongs to child of that object due to (1).
111ec23eb54SMauro Carvalho Chehab
112ec23eb54SMauro Carvalho ChehabIt means that one of the operations is cross-directory rename.
113ec23eb54SMauro Carvalho ChehabOtherwise the set of contended objects would be infinite - each of them
114ec23eb54SMauro Carvalho Chehabwould have a contended child and we had assumed that no object is its
115ec23eb54SMauro Carvalho Chehabown descendent.  Moreover, there is exactly one cross-directory rename
116ec23eb54SMauro Carvalho Chehab(see above).
117ec23eb54SMauro Carvalho Chehab
118ec23eb54SMauro Carvalho ChehabConsider the object blocking the cross-directory rename.  One
119ec23eb54SMauro Carvalho Chehabof its descendents is locked by cross-directory rename (otherwise we
120ec23eb54SMauro Carvalho Chehabwould again have an infinite set of contended objects).  But that
121ec23eb54SMauro Carvalho Chehabmeans that cross-directory rename is taking locks out of order.  Due
122ec23eb54SMauro Carvalho Chehabto (2) the order hadn't changed since we had acquired filesystem lock.
123ec23eb54SMauro Carvalho ChehabBut locking rules for cross-directory rename guarantee that we do not
124ec23eb54SMauro Carvalho Chehabtry to acquire lock on descendent before the lock on ancestor.
125ec23eb54SMauro Carvalho ChehabContradiction.  I.e.  deadlock is impossible.  Q.E.D.
126ec23eb54SMauro Carvalho Chehab
127ec23eb54SMauro Carvalho Chehab
128ec23eb54SMauro Carvalho ChehabThese operations are guaranteed to avoid loop creation.  Indeed,
129ec23eb54SMauro Carvalho Chehabthe only operation that could introduce loops is cross-directory rename.
130ec23eb54SMauro Carvalho ChehabSince the only new (parent, child) pair added by rename() is (new parent,
131ec23eb54SMauro Carvalho Chehabsource), such loop would have to contain these objects and the rest of it
132ec23eb54SMauro Carvalho Chehabwould have to exist before rename().  I.e. at the moment of loop creation
133ec23eb54SMauro Carvalho Chehabrename() responsible for that would be holding filesystem lock and new parent
134ec23eb54SMauro Carvalho Chehabwould have to be equal to or a descendent of source.  But that means that
135ec23eb54SMauro Carvalho Chehabnew parent had been equal to or a descendent of source since the moment when
136ec23eb54SMauro Carvalho Chehabwe had acquired filesystem lock and rename() would fail with -ELOOP in that
137ec23eb54SMauro Carvalho Chehabcase.
138ec23eb54SMauro Carvalho Chehab
139ec23eb54SMauro Carvalho ChehabWhile this locking scheme works for arbitrary DAGs, it relies on
140ec23eb54SMauro Carvalho Chehabability to check that directory is a descendent of another object.  Current
141ec23eb54SMauro Carvalho Chehabimplementation assumes that directory graph is a tree.  This assumption is
142ec23eb54SMauro Carvalho Chehabalso preserved by all operations (cross-directory rename on a tree that would
143ec23eb54SMauro Carvalho Chehabnot introduce a cycle will leave it a tree and link() fails for directories).
144ec23eb54SMauro Carvalho Chehab
145ec23eb54SMauro Carvalho ChehabNotice that "directory" in the above == "anything that might have
146ec23eb54SMauro Carvalho Chehabchildren", so if we are going to introduce hybrid objects we will need
147ec23eb54SMauro Carvalho Chehabeither to make sure that link(2) doesn't work for them or to make changes
148ec23eb54SMauro Carvalho Chehabin is_subdir() that would make it work even in presence of such beasts.
149