xref: /openbmc/linux/Documentation/driver-api/thermal/sysfs-api.rst (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1===================================
2Generic Thermal Sysfs driver How To
3===================================
4
5Written by Sujith Thomas <sujith.thomas@intel.com>, Zhang Rui <rui.zhang@intel.com>
6
7Updated: 2 January 2008
8
9Copyright (c)  2008 Intel Corporation
10
11
120. Introduction
13===============
14
15The generic thermal sysfs provides a set of interfaces for thermal zone
16devices (sensors) and thermal cooling devices (fan, processor...) to register
17with the thermal management solution and to be a part of it.
18
19This how-to focuses on enabling new thermal zone and cooling devices to
20participate in thermal management.
21This solution is platform independent and any type of thermal zone devices
22and cooling devices should be able to make use of the infrastructure.
23
24The main task of the thermal sysfs driver is to expose thermal zone attributes
25as well as cooling device attributes to the user space.
26An intelligent thermal management application can make decisions based on
27inputs from thermal zone attributes (the current temperature and trip point
28temperature) and throttle appropriate devices.
29
30- `[0-*]`	denotes any positive number starting from 0
31- `[1-*]`	denotes any positive number starting from 1
32
331. thermal sysfs driver interface functions
34===========================================
35
361.1 thermal zone device interface
37---------------------------------
38
39    ::
40
41	struct thermal_zone_device
42	*thermal_zone_device_register(char *type,
43				      int trips, int mask, void *devdata,
44				      struct thermal_zone_device_ops *ops,
45				      const struct thermal_zone_params *tzp,
46				      int passive_delay, int polling_delay))
47
48    This interface function adds a new thermal zone device (sensor) to
49    /sys/class/thermal folder as `thermal_zone[0-*]`. It tries to bind all the
50    thermal cooling devices registered at the same time.
51
52    type:
53	the thermal zone type.
54    trips:
55	the total number of trip points this thermal zone supports.
56    mask:
57	Bit string: If 'n'th bit is set, then trip point 'n' is writable.
58    devdata:
59	device private data
60    ops:
61	thermal zone device call-backs.
62
63	.bind:
64		bind the thermal zone device with a thermal cooling device.
65	.unbind:
66		unbind the thermal zone device with a thermal cooling device.
67	.get_temp:
68		get the current temperature of the thermal zone.
69	.set_trips:
70		    set the trip points window. Whenever the current temperature
71		    is updated, the trip points immediately below and above the
72		    current temperature are found.
73	.get_mode:
74		   get the current mode (enabled/disabled) of the thermal zone.
75
76			- "enabled" means the kernel thermal management is
77			  enabled.
78			- "disabled" will prevent kernel thermal driver action
79			  upon trip points so that user applications can take
80			  charge of thermal management.
81	.set_mode:
82		set the mode (enabled/disabled) of the thermal zone.
83	.get_trip_type:
84		get the type of certain trip point.
85	.get_trip_temp:
86			get the temperature above which the certain trip point
87			will be fired.
88	.set_emul_temp:
89			set the emulation temperature which helps in debugging
90			different threshold temperature points.
91    tzp:
92	thermal zone platform parameters.
93    passive_delay:
94	number of milliseconds to wait between polls when
95	performing passive cooling.
96    polling_delay:
97	number of milliseconds to wait between polls when checking
98	whether trip points have been crossed (0 for interrupt driven systems).
99
100    ::
101
102	void thermal_zone_device_unregister(struct thermal_zone_device *tz)
103
104    This interface function removes the thermal zone device.
105    It deletes the corresponding entry from /sys/class/thermal folder and
106    unbinds all the thermal cooling devices it uses.
107
108	::
109
110	   struct thermal_zone_device
111	   *thermal_zone_of_sensor_register(struct device *dev, int sensor_id,
112				void *data,
113				const struct thermal_zone_of_device_ops *ops)
114
115	This interface adds a new sensor to a DT thermal zone.
116	This function will search the list of thermal zones described in
117	device tree and look for the zone that refer to the sensor device
118	pointed by dev->of_node as temperature providers. For the zone
119	pointing to the sensor node, the sensor will be added to the DT
120	thermal zone device.
121
122	The parameters for this interface are:
123
124	dev:
125			Device node of sensor containing valid node pointer in
126			dev->of_node.
127	sensor_id:
128			a sensor identifier, in case the sensor IP has more
129			than one sensors
130	data:
131			a private pointer (owned by the caller) that will be
132			passed back, when a temperature reading is needed.
133	ops:
134			`struct thermal_zone_of_device_ops *`.
135
136			==============  =======================================
137			get_temp	a pointer to a function that reads the
138					sensor temperature. This is mandatory
139					callback provided by sensor driver.
140			set_trips	a pointer to a function that sets a
141					temperature window. When this window is
142					left the driver must inform the thermal
143					core via thermal_zone_device_update.
144			get_trend 	a pointer to a function that reads the
145					sensor temperature trend.
146			set_emul_temp	a pointer to a function that sets
147					sensor emulated temperature.
148			==============  =======================================
149
150	The thermal zone temperature is provided by the get_temp() function
151	pointer of thermal_zone_of_device_ops. When called, it will
152	have the private pointer @data back.
153
154	It returns error pointer if fails otherwise valid thermal zone device
155	handle. Caller should check the return handle with IS_ERR() for finding
156	whether success or not.
157
158	::
159
160	    void thermal_zone_of_sensor_unregister(struct device *dev,
161						   struct thermal_zone_device *tzd)
162
163	This interface unregisters a sensor from a DT thermal zone which was
164	successfully added by interface thermal_zone_of_sensor_register().
165	This function removes the sensor callbacks and private data from the
166	thermal zone device registered with thermal_zone_of_sensor_register()
167	interface. It will also silent the zone by remove the .get_temp() and
168	get_trend() thermal zone device callbacks.
169
170	::
171
172	  struct thermal_zone_device
173	  *devm_thermal_zone_of_sensor_register(struct device *dev,
174				int sensor_id,
175				void *data,
176				const struct thermal_zone_of_device_ops *ops)
177
178	This interface is resource managed version of
179	thermal_zone_of_sensor_register().
180
181	All details of thermal_zone_of_sensor_register() described in
182	section 1.1.3 is applicable here.
183
184	The benefit of using this interface to register sensor is that it
185	is not require to explicitly call thermal_zone_of_sensor_unregister()
186	in error path or during driver unbinding as this is done by driver
187	resource manager.
188
189	::
190
191		void devm_thermal_zone_of_sensor_unregister(struct device *dev,
192						struct thermal_zone_device *tzd)
193
194	This interface is resource managed version of
195	thermal_zone_of_sensor_unregister().
196	All details of thermal_zone_of_sensor_unregister() described in
197	section 1.1.4 is applicable here.
198	Normally this function will not need to be called and the resource
199	management code will ensure that the resource is freed.
200
201	::
202
203		int thermal_zone_get_slope(struct thermal_zone_device *tz)
204
205	This interface is used to read the slope attribute value
206	for the thermal zone device, which might be useful for platform
207	drivers for temperature calculations.
208
209	::
210
211		int thermal_zone_get_offset(struct thermal_zone_device *tz)
212
213	This interface is used to read the offset attribute value
214	for the thermal zone device, which might be useful for platform
215	drivers for temperature calculations.
216
2171.2 thermal cooling device interface
218------------------------------------
219
220
221    ::
222
223	struct thermal_cooling_device
224	*thermal_cooling_device_register(char *name,
225			void *devdata, struct thermal_cooling_device_ops *)
226
227    This interface function adds a new thermal cooling device (fan/processor/...)
228    to /sys/class/thermal/ folder as `cooling_device[0-*]`. It tries to bind itself
229    to all the thermal zone devices registered at the same time.
230
231    name:
232	the cooling device name.
233    devdata:
234	device private data.
235    ops:
236	thermal cooling devices call-backs.
237
238	.get_max_state:
239		get the Maximum throttle state of the cooling device.
240	.get_cur_state:
241		get the Currently requested throttle state of the
242		cooling device.
243	.set_cur_state:
244		set the Current throttle state of the cooling device.
245
246    ::
247
248	void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev)
249
250    This interface function removes the thermal cooling device.
251    It deletes the corresponding entry from /sys/class/thermal folder and
252    unbinds itself from all the thermal zone devices using it.
253
2541.3 interface for binding a thermal zone device with a thermal cooling device
255-----------------------------------------------------------------------------
256
257    ::
258
259	int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz,
260		int trip, struct thermal_cooling_device *cdev,
261		unsigned long upper, unsigned long lower, unsigned int weight);
262
263    This interface function binds a thermal cooling device to a particular trip
264    point of a thermal zone device.
265
266    This function is usually called in the thermal zone device .bind callback.
267
268    tz:
269	  the thermal zone device
270    cdev:
271	  thermal cooling device
272    trip:
273	  indicates which trip point in this thermal zone the cooling device
274	  is associated with.
275    upper:
276	  the Maximum cooling state for this trip point.
277	  THERMAL_NO_LIMIT means no upper limit,
278	  and the cooling device can be in max_state.
279    lower:
280	  the Minimum cooling state can be used for this trip point.
281	  THERMAL_NO_LIMIT means no lower limit,
282	  and the cooling device can be in cooling state 0.
283    weight:
284	  the influence of this cooling device in this thermal
285	  zone.  See 1.4.1 below for more information.
286
287    ::
288
289	int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz,
290				int trip, struct thermal_cooling_device *cdev);
291
292    This interface function unbinds a thermal cooling device from a particular
293    trip point of a thermal zone device. This function is usually called in
294    the thermal zone device .unbind callback.
295
296    tz:
297	the thermal zone device
298    cdev:
299	thermal cooling device
300    trip:
301	indicates which trip point in this thermal zone the cooling device
302	is associated with.
303
3041.4 Thermal Zone Parameters
305---------------------------
306
307    ::
308
309	struct thermal_bind_params
310
311    This structure defines the following parameters that are used to bind
312    a zone with a cooling device for a particular trip point.
313
314    .cdev:
315	     The cooling device pointer
316    .weight:
317	     The 'influence' of a particular cooling device on this
318	     zone. This is relative to the rest of the cooling
319	     devices. For example, if all cooling devices have a
320	     weight of 1, then they all contribute the same. You can
321	     use percentages if you want, but it's not mandatory. A
322	     weight of 0 means that this cooling device doesn't
323	     contribute to the cooling of this zone unless all cooling
324	     devices have a weight of 0. If all weights are 0, then
325	     they all contribute the same.
326    .trip_mask:
327	       This is a bit mask that gives the binding relation between
328	       this thermal zone and cdev, for a particular trip point.
329	       If nth bit is set, then the cdev and thermal zone are bound
330	       for trip point n.
331    .binding_limits:
332		     This is an array of cooling state limits. Must have
333		     exactly 2 * thermal_zone.number_of_trip_points. It is an
334		     array consisting of tuples <lower-state upper-state> of
335		     state limits. Each trip will be associated with one state
336		     limit tuple when binding. A NULL pointer means
337		     <THERMAL_NO_LIMITS THERMAL_NO_LIMITS> on all trips.
338		     These limits are used when binding a cdev to a trip point.
339    .match:
340	    This call back returns success(0) if the 'tz and cdev' need to
341	    be bound, as per platform data.
342
343    ::
344
345	struct thermal_zone_params
346
347    This structure defines the platform level parameters for a thermal zone.
348    This data, for each thermal zone should come from the platform layer.
349    This is an optional feature where some platforms can choose not to
350    provide this data.
351
352    .governor_name:
353	       Name of the thermal governor used for this zone
354    .no_hwmon:
355	       a boolean to indicate if the thermal to hwmon sysfs interface
356	       is required. when no_hwmon == false, a hwmon sysfs interface
357	       will be created. when no_hwmon == true, nothing will be done.
358	       In case the thermal_zone_params is NULL, the hwmon interface
359	       will be created (for backward compatibility).
360    .num_tbps:
361	       Number of thermal_bind_params entries for this zone
362    .tbp:
363	       thermal_bind_params entries
364
3652. sysfs attributes structure
366=============================
367
368==	================
369RO	read only value
370WO	write only value
371RW	read/write value
372==	================
373
374Thermal sysfs attributes will be represented under /sys/class/thermal.
375Hwmon sysfs I/F extension is also available under /sys/class/hwmon
376if hwmon is compiled in or built as a module.
377
378Thermal zone device sys I/F, created once it's registered::
379
380  /sys/class/thermal/thermal_zone[0-*]:
381    |---type:			Type of the thermal zone
382    |---temp:			Current temperature
383    |---mode:			Working mode of the thermal zone
384    |---policy:			Thermal governor used for this zone
385    |---available_policies:	Available thermal governors for this zone
386    |---trip_point_[0-*]_temp:	Trip point temperature
387    |---trip_point_[0-*]_type:	Trip point type
388    |---trip_point_[0-*]_hyst:	Hysteresis value for this trip point
389    |---emul_temp:		Emulated temperature set node
390    |---sustainable_power:      Sustainable dissipatable power
391    |---k_po:                   Proportional term during temperature overshoot
392    |---k_pu:                   Proportional term during temperature undershoot
393    |---k_i:                    PID's integral term in the power allocator gov
394    |---k_d:                    PID's derivative term in the power allocator
395    |---integral_cutoff:        Offset above which errors are accumulated
396    |---slope:                  Slope constant applied as linear extrapolation
397    |---offset:                 Offset constant applied as linear extrapolation
398
399Thermal cooling device sys I/F, created once it's registered::
400
401  /sys/class/thermal/cooling_device[0-*]:
402    |---type:			Type of the cooling device(processor/fan/...)
403    |---max_state:		Maximum cooling state of the cooling device
404    |---cur_state:		Current cooling state of the cooling device
405    |---stats:			Directory containing cooling device's statistics
406    |---stats/reset:		Writing any value resets the statistics
407    |---stats/time_in_state_ms:	Time (msec) spent in various cooling states
408    |---stats/total_trans:	Total number of times cooling state is changed
409    |---stats/trans_table:	Cooling state transition table
410
411
412Then next two dynamic attributes are created/removed in pairs. They represent
413the relationship between a thermal zone and its associated cooling device.
414They are created/removed for each successful execution of
415thermal_zone_bind_cooling_device/thermal_zone_unbind_cooling_device.
416
417::
418
419  /sys/class/thermal/thermal_zone[0-*]:
420    |---cdev[0-*]:		[0-*]th cooling device in current thermal zone
421    |---cdev[0-*]_trip_point:	Trip point that cdev[0-*] is associated with
422    |---cdev[0-*]_weight:       Influence of the cooling device in
423				this thermal zone
424
425Besides the thermal zone device sysfs I/F and cooling device sysfs I/F,
426the generic thermal driver also creates a hwmon sysfs I/F for each _type_
427of thermal zone device. E.g. the generic thermal driver registers one hwmon
428class device and build the associated hwmon sysfs I/F for all the registered
429ACPI thermal zones.
430
431Please read Documentation/ABI/testing/sysfs-class-thermal for thermal
432zone and cooling device attribute details.
433
434::
435
436  /sys/class/hwmon/hwmon[0-*]:
437    |---name:			The type of the thermal zone devices
438    |---temp[1-*]_input:	The current temperature of thermal zone [1-*]
439    |---temp[1-*]_critical:	The critical trip point of thermal zone [1-*]
440
441Please read Documentation/hwmon/sysfs-interface.rst for additional information.
442
4433. A simple implementation
444==========================
445
446ACPI thermal zone may support multiple trip points like critical, hot,
447passive, active. If an ACPI thermal zone supports critical, passive,
448active[0] and active[1] at the same time, it may register itself as a
449thermal_zone_device (thermal_zone1) with 4 trip points in all.
450It has one processor and one fan, which are both registered as
451thermal_cooling_device. Both are considered to have the same
452effectiveness in cooling the thermal zone.
453
454If the processor is listed in _PSL method, and the fan is listed in _AL0
455method, the sys I/F structure will be built like this::
456
457 /sys/class/thermal:
458  |thermal_zone1:
459    |---type:			acpitz
460    |---temp:			37000
461    |---mode:			enabled
462    |---policy:			step_wise
463    |---available_policies:	step_wise fair_share
464    |---trip_point_0_temp:	100000
465    |---trip_point_0_type:	critical
466    |---trip_point_1_temp:	80000
467    |---trip_point_1_type:	passive
468    |---trip_point_2_temp:	70000
469    |---trip_point_2_type:	active0
470    |---trip_point_3_temp:	60000
471    |---trip_point_3_type:	active1
472    |---cdev0:			--->/sys/class/thermal/cooling_device0
473    |---cdev0_trip_point:	1	/* cdev0 can be used for passive */
474    |---cdev0_weight:           1024
475    |---cdev1:			--->/sys/class/thermal/cooling_device3
476    |---cdev1_trip_point:	2	/* cdev1 can be used for active[0]*/
477    |---cdev1_weight:           1024
478
479  |cooling_device0:
480    |---type:			Processor
481    |---max_state:		8
482    |---cur_state:		0
483
484  |cooling_device3:
485    |---type:			Fan
486    |---max_state:		2
487    |---cur_state:		0
488
489 /sys/class/hwmon:
490  |hwmon0:
491    |---name:			acpitz
492    |---temp1_input:		37000
493    |---temp1_crit:		100000
494
4954. Export Symbol APIs
496=====================
497
4984.1. get_tz_trend
499-----------------
500
501This function returns the trend of a thermal zone, i.e the rate of change
502of temperature of the thermal zone. Ideally, the thermal sensor drivers
503are supposed to implement the callback. If they don't, the thermal
504framework calculated the trend by comparing the previous and the current
505temperature values.
506
5074.2. get_thermal_instance
508-------------------------
509
510This function returns the thermal_instance corresponding to a given
511{thermal_zone, cooling_device, trip_point} combination. Returns NULL
512if such an instance does not exist.
513
5144.3. thermal_cdev_update
515------------------------
516
517This function serves as an arbitrator to set the state of a cooling
518device. It sets the cooling device to the deepest cooling state if
519possible.
520
5215. thermal_emergency_poweroff
522=============================
523
524On an event of critical trip temperature crossing the thermal framework
525shuts down the system by calling hw_protection_shutdown(). The
526hw_protection_shutdown() first attempts to perform an orderly shutdown
527but accepts a delay after which it proceeds doing a forced power-off
528or as last resort an emergency_restart.
529
530The delay should be carefully profiled so as to give adequate time for
531orderly poweroff.
532
533If the delay is set to 0 emergency poweroff will not be supported. So a
534carefully profiled non-zero positive value is a must for emergency
535poweroff to be triggered.
536