1================================ 2Devres - Managed Device Resource 3================================ 4 5Tejun Heo <teheo@suse.de> 6 7First draft 10 January 2007 8 9.. contents 10 11 1. Intro : Huh? Devres? 12 2. Devres : Devres in a nutshell 13 3. Devres Group : Group devres'es and release them together 14 4. Details : Life time rules, calling context, ... 15 5. Overhead : How much do we have to pay for this? 16 6. List of managed interfaces: Currently implemented managed interfaces 17 18 191. Intro 20-------- 21 22devres came up while trying to convert libata to use iomap. Each 23iomapped address should be kept and unmapped on driver detach. For 24example, a plain SFF ATA controller (that is, good old PCI IDE) in 25native mode makes use of 5 PCI BARs and all of them should be 26maintained. 27 28As with many other device drivers, libata low level drivers have 29sufficient bugs in ->remove and ->probe failure path. Well, yes, 30that's probably because libata low level driver developers are lazy 31bunch, but aren't all low level driver developers? After spending a 32day fiddling with braindamaged hardware with no document or 33braindamaged document, if it's finally working, well, it's working. 34 35For one reason or another, low level drivers don't receive as much 36attention or testing as core code, and bugs on driver detach or 37initialization failure don't happen often enough to be noticeable. 38Init failure path is worse because it's much less travelled while 39needs to handle multiple entry points. 40 41So, many low level drivers end up leaking resources on driver detach 42and having half broken failure path implementation in ->probe() which 43would leak resources or even cause oops when failure occurs. iomap 44adds more to this mix. So do msi and msix. 45 46 472. Devres 48--------- 49 50devres is basically linked list of arbitrarily sized memory areas 51associated with a struct device. Each devres entry is associated with 52a release function. A devres can be released in several ways. No 53matter what, all devres entries are released on driver detach. On 54release, the associated release function is invoked and then the 55devres entry is freed. 56 57Managed interface is created for resources commonly used by device 58drivers using devres. For example, coherent DMA memory is acquired 59using dma_alloc_coherent(). The managed version is called 60dmam_alloc_coherent(). It is identical to dma_alloc_coherent() except 61for the DMA memory allocated using it is managed and will be 62automatically released on driver detach. Implementation looks like 63the following:: 64 65 struct dma_devres { 66 size_t size; 67 void *vaddr; 68 dma_addr_t dma_handle; 69 }; 70 71 static void dmam_coherent_release(struct device *dev, void *res) 72 { 73 struct dma_devres *this = res; 74 75 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle); 76 } 77 78 dmam_alloc_coherent(dev, size, dma_handle, gfp) 79 { 80 struct dma_devres *dr; 81 void *vaddr; 82 83 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp); 84 ... 85 86 /* alloc DMA memory as usual */ 87 vaddr = dma_alloc_coherent(...); 88 ... 89 90 /* record size, vaddr, dma_handle in dr */ 91 dr->vaddr = vaddr; 92 ... 93 94 devres_add(dev, dr); 95 96 return vaddr; 97 } 98 99If a driver uses dmam_alloc_coherent(), the area is guaranteed to be 100freed whether initialization fails half-way or the device gets 101detached. If most resources are acquired using managed interface, a 102driver can have much simpler init and exit code. Init path basically 103looks like the following:: 104 105 my_init_one() 106 { 107 struct mydev *d; 108 109 d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL); 110 if (!d) 111 return -ENOMEM; 112 113 d->ring = dmam_alloc_coherent(...); 114 if (!d->ring) 115 return -ENOMEM; 116 117 if (check something) 118 return -EINVAL; 119 ... 120 121 return register_to_upper_layer(d); 122 } 123 124And exit path:: 125 126 my_remove_one() 127 { 128 unregister_from_upper_layer(d); 129 shutdown_my_hardware(); 130 } 131 132As shown above, low level drivers can be simplified a lot by using 133devres. Complexity is shifted from less maintained low level drivers 134to better maintained higher layer. Also, as init failure path is 135shared with exit path, both can get more testing. 136 137Note though that when converting current calls or assignments to 138managed devm_* versions it is up to you to check if internal operations 139like allocating memory, have failed. Managed resources pertains to the 140freeing of these resources *only* - all other checks needed are still 141on you. In some cases this may mean introducing checks that were not 142necessary before moving to the managed devm_* calls. 143 144 1453. Devres group 146--------------- 147 148Devres entries can be grouped using devres group. When a group is 149released, all contained normal devres entries and properly nested 150groups are released. One usage is to rollback series of acquired 151resources on failure. For example:: 152 153 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 154 return -ENOMEM; 155 156 acquire A; 157 if (failed) 158 goto err; 159 160 acquire B; 161 if (failed) 162 goto err; 163 ... 164 165 devres_remove_group(dev, NULL); 166 return 0; 167 168 err: 169 devres_release_group(dev, NULL); 170 return err_code; 171 172As resource acquisition failure usually means probe failure, constructs 173like above are usually useful in midlayer driver (e.g. libata core 174layer) where interface function shouldn't have side effect on failure. 175For LLDs, just returning error code suffices in most cases. 176 177Each group is identified by `void *id`. It can either be explicitly 178specified by @id argument to devres_open_group() or automatically 179created by passing NULL as @id as in the above example. In both 180cases, devres_open_group() returns the group's id. The returned id 181can be passed to other devres functions to select the target group. 182If NULL is given to those functions, the latest open group is 183selected. 184 185For example, you can do something like the following:: 186 187 int my_midlayer_create_something() 188 { 189 if (!devres_open_group(dev, my_midlayer_create_something, GFP_KERNEL)) 190 return -ENOMEM; 191 192 ... 193 194 devres_close_group(dev, my_midlayer_create_something); 195 return 0; 196 } 197 198 void my_midlayer_destroy_something() 199 { 200 devres_release_group(dev, my_midlayer_create_something); 201 } 202 203 2044. Details 205---------- 206 207Lifetime of a devres entry begins on devres allocation and finishes 208when it is released or destroyed (removed and freed) - no reference 209counting. 210 211devres core guarantees atomicity to all basic devres operations and 212has support for single-instance devres types (atomic 213lookup-and-add-if-not-found). Other than that, synchronizing 214concurrent accesses to allocated devres data is caller's 215responsibility. This is usually non-issue because bus ops and 216resource allocations already do the job. 217 218For an example of single-instance devres type, read pcim_iomap_table() 219in lib/devres.c. 220 221All devres interface functions can be called without context if the 222right gfp mask is given. 223 224 2255. Overhead 226----------- 227 228Each devres bookkeeping info is allocated together with requested data 229area. With debug option turned off, bookkeeping info occupies 16 230bytes on 32bit machines and 24 bytes on 64bit (three pointers rounded 231up to ull alignment). If singly linked list is used, it can be 232reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit). 233 234Each devres group occupies 8 pointers. It can be reduced to 6 if 235singly linked list is used. 236 237Memory space overhead on ahci controller with two ports is between 300 238and 400 bytes on 32bit machine after naive conversion (we can 239certainly invest a bit more effort into libata core layer). 240 241 2426. List of managed interfaces 243----------------------------- 244 245CLOCK 246 devm_clk_get() 247 devm_clk_get_optional() 248 devm_clk_put() 249 devm_clk_hw_register() 250 devm_of_clk_add_hw_provider() 251 devm_clk_hw_register_clkdev() 252 253DMA 254 dmaenginem_async_device_register() 255 dmam_alloc_coherent() 256 dmam_alloc_attrs() 257 dmam_free_coherent() 258 dmam_pool_create() 259 dmam_pool_destroy() 260 261DRM 262 devm_drm_dev_init() 263 264GPIO 265 devm_gpiod_get() 266 devm_gpiod_get_index() 267 devm_gpiod_get_index_optional() 268 devm_gpiod_get_optional() 269 devm_gpiod_put() 270 devm_gpiod_unhinge() 271 devm_gpiochip_add_data() 272 devm_gpio_request() 273 devm_gpio_request_one() 274 devm_gpio_free() 275 276I2C 277 devm_i2c_new_dummy_device() 278 279IIO 280 devm_iio_device_alloc() 281 devm_iio_device_free() 282 devm_iio_device_register() 283 devm_iio_device_unregister() 284 devm_iio_kfifo_allocate() 285 devm_iio_kfifo_free() 286 devm_iio_triggered_buffer_setup() 287 devm_iio_triggered_buffer_cleanup() 288 devm_iio_trigger_alloc() 289 devm_iio_trigger_free() 290 devm_iio_trigger_register() 291 devm_iio_trigger_unregister() 292 devm_iio_channel_get() 293 devm_iio_channel_release() 294 devm_iio_channel_get_all() 295 devm_iio_channel_release_all() 296 297INPUT 298 devm_input_allocate_device() 299 300IO region 301 devm_release_mem_region() 302 devm_release_region() 303 devm_release_resource() 304 devm_request_mem_region() 305 devm_request_region() 306 devm_request_resource() 307 308IOMAP 309 devm_ioport_map() 310 devm_ioport_unmap() 311 devm_ioremap() 312 devm_ioremap_nocache() 313 devm_ioremap_wc() 314 devm_ioremap_resource() : checks resource, requests memory region, ioremaps 315 devm_iounmap() 316 pcim_iomap() 317 pcim_iomap_regions() : do request_region() and iomap() on multiple BARs 318 pcim_iomap_table() : array of mapped addresses indexed by BAR 319 pcim_iounmap() 320 321IRQ 322 devm_free_irq() 323 devm_request_any_context_irq() 324 devm_request_irq() 325 devm_request_threaded_irq() 326 devm_irq_alloc_descs() 327 devm_irq_alloc_desc() 328 devm_irq_alloc_desc_at() 329 devm_irq_alloc_desc_from() 330 devm_irq_alloc_descs_from() 331 devm_irq_alloc_generic_chip() 332 devm_irq_setup_generic_chip() 333 devm_irq_sim_init() 334 335LED 336 devm_led_classdev_register() 337 devm_led_classdev_unregister() 338 339MDIO 340 devm_mdiobus_alloc() 341 devm_mdiobus_alloc_size() 342 devm_mdiobus_free() 343 344MEM 345 devm_free_pages() 346 devm_get_free_pages() 347 devm_kasprintf() 348 devm_kcalloc() 349 devm_kfree() 350 devm_kmalloc() 351 devm_kmalloc_array() 352 devm_kmemdup() 353 devm_kstrdup() 354 devm_kvasprintf() 355 devm_kzalloc() 356 357MFD 358 devm_mfd_add_devices() 359 360MUX 361 devm_mux_chip_alloc() 362 devm_mux_chip_register() 363 devm_mux_control_get() 364 365PER-CPU MEM 366 devm_alloc_percpu() 367 devm_free_percpu() 368 369PCI 370 devm_pci_alloc_host_bridge() : managed PCI host bridge allocation 371 devm_pci_remap_cfgspace() : ioremap PCI configuration space 372 devm_pci_remap_cfg_resource() : ioremap PCI configuration space resource 373 pcim_enable_device() : after success, all PCI ops become managed 374 pcim_pin_device() : keep PCI device enabled after release 375 376PHY 377 devm_usb_get_phy() 378 devm_usb_put_phy() 379 380PINCTRL 381 devm_pinctrl_get() 382 devm_pinctrl_put() 383 devm_pinctrl_register() 384 devm_pinctrl_unregister() 385 386POWER 387 devm_reboot_mode_register() 388 devm_reboot_mode_unregister() 389 390PWM 391 devm_pwm_get() 392 devm_pwm_put() 393 394REGULATOR 395 devm_regulator_bulk_get() 396 devm_regulator_get() 397 devm_regulator_put() 398 devm_regulator_register() 399 400RESET 401 devm_reset_control_get() 402 devm_reset_controller_register() 403 404SERDEV 405 devm_serdev_device_open() 406 407SLAVE DMA ENGINE 408 devm_acpi_dma_controller_register() 409 410SPI 411 devm_spi_register_master() 412 413WATCHDOG 414 devm_watchdog_register_device() 415